Ni nanoparticles dispersed on γ-Al₂O₃ by induced-gelation sol-gel method

M. Mónica Guraya*, Soledad Perez Catán**, Miguel D. Sánchez***, and Sergio Moreno**

Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Bustillo 9500, 8400-S.C.de Bariloche, Argentina.

** Departamento de Física, Universidad Nacional del Sur y Planta Piloto de Ingeniería Química (UNS-CONICET), Avda Alem 1253, 8000-Bahía Blanca, Argentina.

*** Centro Atómico Bariloche, CONICET, Bustillo 9500, 8400- S.C.de Bariloche, Argentina.

Abstract —
A series of Ni/γ-Al₂O₃ samples were prepared by the sol-gel method using a solution of nickel nitrate as gelation agent. The Ni content of the samples was in the range 7-39 wt%. High specific BET areas, from 150 to 200 m²/g, were determined in samples after 4 h calcination at 600 ºC.

As the metal was incorporated into the alumina during formation of the porous structure, high metal-support interaction and nickel dispersion were expected. To investigate the extent of these effects, reducing treatments were carried out and monitored by Thermogravimetry (TG), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Diffractometry (XRD).

All XRD spectra from calcined samples showed patterns corresponding to NiO and spinel-like NiAl₂O₄ structures. Reducing treatments at 400ºC were performed in a TG set up, in 10% H₂/Ar flow, until no mass change was detected. XRD spectra recorded afterwards showed Ni²⁺ diffraction peaks corresponding to 20nm metal particles but also NiO and NiAl₂O₄ patterns consistent with smaller particles of 4-7 nm in size.

Subsequent treatments at 700ºC also in H₂/Ar flow allowed accomplishing the metal reduction. XRD spectra indicated that reduction was complete in all samples after 30 min plateau. This time proved short enough to avoid introducing much distortion in the alumina matrix as confirmed by BET area.

All samples showed particles of 20-30 nm in size under TEM, indicating that this method allows the obtention of high dispersed Ni particles even for very high Ni contents.

Keywords: Ni/γ-alumina, NiAl₂O₄ spinel, high dispersion Ni

I. INTRODUCTION

Ni catalysts supported on mesoporous alumina have been widely investigated for decades due to their applicability in many industrial processes involving hydrocarbons decomposition [1]-[4]. In the last years this one and other active materials have been proposed for membranes coatings to be used in both catalytic membrane reactors and hydrogen separation [5]-[10].

Regardless the specific application involved, a general requirement of high and stable metal dispersion is demanded. This property is associated to formation of very small metal particles, which are resistant to sintering and carbon deposition in case of reforming and oxidation reactions [11]-[14]. High specific support area is also necessary when designing a catalyst or membrane coatings; for this purpose γ-Al₂O₃ is particularly suitable for moderate operation temperatures [15]-[17].

Kim et al. have studied the influence of strong metal support interaction (SMSI) [12] on the final Ni particle size, i.e. after calcination and subsequent reduction to obtain Ni⁰. Murata et al. [18] have reported that Ni/Al₂O₃ catalysts were more active and stable than the corresponding supported on SiO₂. The general agreement among authors is that nickel aluminate species produced by SMSI give nickel nanoparticles, i.e. high metal dispersion [19], [20].

Sample preparation by impregnation methods proved efficient in obtaining Ni/γ-Al₂O₃ materials, although high metal dispersion can only be achieved with low Ni contents. Xu et al. [21] demonstrated that high metal loadings in impregnated samples led to large metal particles and, therefore, to low metal dispersion.

Sol-gel methods however, are more suitable for producing small nickel particles as many studies have established [22].

A disadvantage observed in Ni/γ-Al₂O₃ materials, where SMSI mostly generates NiAl₂O₄ – like species, is that reduction temperature becomes high, thus resulting undesirable matrix distortion the porous alumina support, which reduces its specific area [23].

In this work we prepared a series of Ni/γ-Al₂O₃ samples via sol-gel, where peptising was modified in order to favor the dispersion of Ni ions in
the boehmite matrix. Samples with Ni loadings in the range 9 to 39 wt% with high specific area and high nickel dispersion were obtained.

Porous structure and nickel distribution on the samples was characterised by nitrogen adsorption at liquid nitrogen temperature, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray Diffractometry (XRD), the latter to identify nickel chemical states. Reduction process was investigated by a combination of Thermogravimetry (TG) in H₂/Ar flow, XRD, and TG- MS, with which the metal areas were determined.

II. EXPERIMENTAL

A. Sample Preparation

A boehmite colloidal suspension was prepared, following Yoldas method [24] by hydrolysis at 80°C of aluminium sec-butoxide previously prepared in our laboratory, and subsequent peptising with nitric acid, the ratio acid/boehmite being 0.07 mol/mol. Aliquots of 9.3 % solution of nickel nitrate (Fluka Ni(NO₃)₂.6H₂O, 99.7 %) were incorporated to the suspension, inducing gelation in a very short time. Gels were dried at 90°C for 12 h and calcined afterwards 4h at 600°C.

Following the same procedure, a sample of γ-Al₂O₃ without Ni was prepared for comparison to support behaviour; peptising was performed by an adequate volume of HNO₃ to compensate the absence of nickel nitrate.

B. Sample Characterisation

Quantitative determinations of Al and Ni were carried out in Atomic Absorption Spectroscopy (AAS) and Scanning Electron Microscope with Energy Dispersive X-ray Analyses (SEM-EDAX).

Nitrogen adsorption- desorption isotherms at liquid nitrogen temperature were recorded in a Digisorb 2600 instrument from Micromeritics Inst. Corp.

Reducing treatments were carried out in a Netzsch STA 409 set-up in 60 cc/min H₂/Ar (1:10) flow. Powder X-ray Diffraction (XRD) measurements (15° < 2θ < 85°) were conducted in a Philips PW1700 diffractometer with Cuα radiation and a graphite monochromator. Crystallite sizes were determined by Scherrer formula [25] from XRD data. Multi-component peaks were fitted by means of pseudo-Voight curves to determine peak widths.

Scanning Electron Microscopy (SEM) determinations were performed in a Philips 515 scanning electron microscope with energy dispersive X-ray analyser (EDAX) Genesis 2000 whereas TEM observations were carried out in a Philips CM200UT Microscope.

III. RESULTS AND DISCUSSION

Ni content values for all samples as determined by Atomic Absorption Spectroscopy and EDAX are presented in Table 1, where the labels assigned to samples are also indicated.

Porous structure of samples calcined at 600°C and after reducing treatments was derived from the adsorption – desorption isotherms obtained by means of nitrogen adsorption at liquid nitrogen temperature. BET surface areas for calcined and completely reduced samples are included in Table 1.

Volume pore distribution for all samples after calcination is presented in Fig. 1. The γ-Al₂O₃ support obtained in all cases, had high specific area and narrow pore distribution centered at 4nm, approximately. The centre of the pore distribution shifted towards larger diameters with Ni content, but remained below 5 nm for all samples. This suggested high porosity in the samples even for the sample with highest Ni load.

Also regarding the porous matrix structure, results from SEM characterisation of the samples with highest Ni contents are presented in Fig. 2. Primarily, it can be seen that γ-Al₂O₃ structure is quite homogeneous, with a mean particle size of 100nm, approximately. For Ni content determination by EDAX, 200x150 μm² was chosen as a typical analysis area; the even distribution of Ni species was tested by mapping the sample composition at many points analysing 1 μm² regions. Ni content distribution was found homogeneous; the statistical dispersion among values determined in different regions, kept within 20% for all samples.

Table 1 : Ni Content and Bet Areas for All Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>AAS (wt%)</th>
<th>EDAX (wt%)</th>
<th>BET area calcined (m²/g)</th>
<th>BET area reduced (m²/g)</th>
<th>Metal area * (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-Al₂O₃</td>
<td>266</td>
<td>229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni 7</td>
<td>6.9</td>
<td>9.4</td>
<td>184</td>
<td>170</td>
<td>18.4</td>
</tr>
<tr>
<td>Ni 9</td>
<td>9.2</td>
<td>11.8</td>
<td>173</td>
<td>155</td>
<td>25.5</td>
</tr>
<tr>
<td>Ni 24</td>
<td>24.5</td>
<td>21.4</td>
<td>170</td>
<td>158</td>
<td>31.9</td>
</tr>
<tr>
<td>Ni 39</td>
<td>39.3</td>
<td>38.1</td>
<td>146</td>
<td>128</td>
<td>27.7</td>
</tr>
</tbody>
</table>

* indicated as m²/(g of metal)

Fig. 1 Volume Pore Distribution of Calcined Samples.
Gelation times when adding nickel nitrate solution were much shorter than those observed in similar preparations using only HNO₃ as peptising agent. As nickel nitrate solution was incorporated before peptising of the boehmite was completed, the integration of Ni³⁺ ions in the matrix could proceed through a very close approximation to the boehmite particles. A much higher metal dispersion is expected relative to impregnation methods [22]. Another advantage of this modified sol-gel method is that accelerating the gelation process results in a greater gel volume.

![Fig. 2 SEM Photographs from Calcined Samples.](image)

During calcination of already dry gels, the close proximity of Ni to aluminium hydroxide, allows a strong interaction between the metal and the support precursor. This way diffusion and sintering to produce larger Ni particles should not be favoured.

The homogeneous alumina structure observed by SEM together with these results demonstrated that samples with very high Ni loadings can be obtained by this method without losing specific area and porosity. In addition, the porous structure of the calcined material proved rather stable after complete reduction at 700°C, as indicated by the values of BET area from reduced samples listed in Table 1.

In Fig. 3, all XRD spectra for samples after calcination are shown. Besides the sample spectra the position of the most intense structures corresponding to NiO, spinel-like nickel aluminate, metallic Ni, and gamma-alumina are indicated. The presence of NiO in all samples was evident from these results. Pattern corresponding to γ-Al₂O₃ could also be observed. At first sight, there was not clear indication of structures matching nickel aluminate pattern; when analysing however, the two more intense diffraction peaks from gamma-alumina at 45.8 and 66.8°, it was possible to observe a shift of the peak maxima towards lower angles. This effect was more important as the Ni content increased: Shifts from 45.8 ° in gamma-alumina to 45.4 ° in sample Ni 7, and to 45.0 ° in sample Ni 39 were determined. From this analysis it is possible to infer the presence of spinel-like nickel aluminate particles small enough to show not definite diffraction patterns. The size of the metal particle has been a troublesome aspect for catalysts and active membrane design. A general agreement among different authors indicates that high dispersed samples, i.e., with small metal particles are much more active and stable on stream [12]. NiO species are usually associated to larger metal particles. In our case, Ni 39 which is the sample with narrowest NiO pattern was used to estimate the NiO particle size; by means of the width of the 75.5 ° peak, 12 nm particles were evaluated.

A first treatment in reducing gas flow up to 800°C at 10°C/min was conducted with the aim of identifying the different chemical states of Ni present in our samples. The results are presented in Fig. 4 as TG and DTG curves. In addition to humidity release about 150°C, two very well defined structures can be observed at 400 and 700°C, approximately, which have been associated by other authors to reduction of NiO and spinel-like nickel aluminate particles, respectively [26].

![Fig. 3 XRD Spectra From Calcined Ni-Samples and Gamma Alumina.](image)

The second structure at 700°C shifted towards lower temperatures as the Ni content increased. This shift is not completely evident from Fig. 4, but was confirmed by similar TG experiments on sample Ni 7 up to 1000°C (not shown). This indicates that in samples with lower Ni loadings, spinel NiAl₄O₇ species are more crystalline, their reduction temperature being closer to that reported for stoichiometric [27] and non-stoichiometric nickel aluminate [28]. A similar effect was observed by Kim et al. in NiAl₂O₄ [12] and by Guo et al. [29] in Ni/MgAl₂O₄ catalysts, where reduction temperature of the species produced by SMSI decreased from 800
to 705°C when nickel loading increased from 1 to 15%.

In order to confirm that the results shown in Fig. 4 were just due to reduction processes, two samples (Ni 9 and Ni 39) were analysed in a TG-MS set-up where in addition to mass changes, H2O release was monitored. Results from the experience corresponding to sample Ni 9 are presented in Fig. 5.

The H2O curve showed three features at similar temperatures as those of Fig. 4.b), corresponding to sample humidity desorption and the two reduction stages described before.

(Fig. 3), was confirmed by the two stage reduction scheme observed for all samples in reducing temperature treatments.

With the objective of only accomplishing the reduction of nickel oxide particles a treatment at 400°C was carried out in the STA set-up until no changes in mass were observed. Fig. 6 shows TG and DTG curves corresponding to these experiments. Two regions are indicated in this figure, one corresponding to the 1°C/min heating rate stage and the other to the 400°C plateau. From TG and DTG curves is evident that reducing flow at 400°C had no further effect on the samples under study after 30 min on stream (plateau). The XRD spectra recorded after this treatment are presented in Fig. 7. The peak at 52 ° originated from metallic Ni is clearly detected; this structure has the advantage of not overlapping any peak from other nickel compounds, acting as a fingerprint of the metallic state. Two aspects should be considered in relation to Fig. 7: spinel-like nickel aluminate can be observed as discussed in relation to calcined samples; on the other hand, contrary to what might be expected, NiO pattern was identified in treated samples. In Fig. 7 spectra, NiO reflections were evident for samples with higher Ni content as Ni 24 and Ni 39. Particle sizes estimated from these spectra were 3.5 nm for nickel aluminate, 7nm for NiO, and 20 nm metallic particles. Nickel aluminate and NiO particle sizes were obtained by means of multi-peak fitting of the overlapped structures. Although no sharp diffraction peak was observed, the presence of NiAl2O4 is plausible enough to justify its inclusion when fitting. A similar result has been presented by Kim et al. [11] in relation to very small particles not detectable by XRD in Ni/alumina aerogel catalysts.

Fig. 4 TG (A) and Corresponding DTG (B) Curves After 800°C Treatment.

Fig. 5 DTG Curves From Calcined Sample Ni 9 Treated Up to 800°C And H2O Release Measured Simultaneously By MS.

The presence of very small spinel-like NiAl2O4 particles, which was deduced from the shift of the diffraction peak at 45.8 ° in the XRD spectra
In order to elucidate this argument, we analysed spectra obtained subtracting XRD γ-Al2O3 spectrum from every sample XRD spectrum; the resulting spectra are shown in Fig. 8. There is no way to separate completely the components corresponding to NiO and nickel aluminate; it is possible to observe however, that nickel aluminate structures are indeed broad enough to be originated by 3 nm particles.

After the last reducing treatment at 700°C, neither NiO nor NiAl2O4 could be detected in the XRD spectra for all samples but Ni 39, as displayed in Fig. 9, thus indicating that Ni particles are mainly arranged at the interstices between γ-Al2O3 agglomerates. This result is very important for the possible application of these materials as reactive ones, either as catalysts or membrane coatings, because it indicates that most of Ni will be accessible to reactive gases. Metal particle sizes in 700°C-reduced samples were evaluated from XRD spectra, 18 nm on average.

Reduction treatment at 400°C is known to be effective in reducing NiO [29], it was also tested in our DTA-TG instrument set up with a pure NiO sample, which resulted almost completely (more than 95 wt%) reduced to Ni0 after 20 min of treatment. After a similar treatment, however, our samples had and important amount of NiO as indicated XRD spectra. In principle, it could have been speculated about NiO particles immersed in bulk dense regions of the alumina matrix, inaccessible to reducing gas; the subsequent reduction of this structures during treatments at 700°C, which was determined by the
XRD characterisation, demonstrated, however, the presence in calcined samples of NiO species that were not reducible at a standard temperature. Evaluation of the particle size of these NiO structures gave values < 7 nm, significantly smaller than those particles found in calcined samples. Similar treatment at the temperature of reduction of spinel-like NiAl₂O₄ produced the total reduction of NiO in all samples. As mentioned above, the size for spinel-like NiAl₂O₄ particles in samples after reduction at 400°C; were estimated to be not larger than 3.5 nm.

This anomalous behaviour of NiO species in the reduction reaction at 400°C can be explained in terms of strong metal alumina interaction at the surface of NiO particles, which favours the formation of a layer of nickel aluminate. Some XPS-AES results that will be published elsewhere, from samples prepared by sol-gel (12 h calcination) and by impregnation, showed the presence of spinel-like NiAl₂O₄ in calcined samples. The thickness of this aluminate layer was variable, depending on the Ni loading and the preparation method. In samples prepared by sol-gel and by impregnation with low Ni content, the aluminate layer remained long after long periods of Ar sputtering. On the contrary, in samples prepared by impregnation with Ni loading higher than 10%, were the NiO particles are expected to be larger, the aluminate layer was instable even to permanence in ultra-high vacuum and easily removed by Ar bombardment. In our case, larger NiO particles of 15 nm could be reduced at the standard NiO reduction temperature due to the instability of their very thin nickel aluminate outer layer. Intermediate NiO particles of 7 nm should have a thicker aluminate layer, thus being more resistant to reduction but still reducible at 700°C. Very small particles of 3.5 nm or smaller formed by spinel-like NiAl₂O₄ species could also be reduced at 700°C. Maluf et al. have recently reported the presence of a high binding energy XPS peak corresponding to NiAl₂O₄ on the surface for samples prepared by coprecipitation [30].

SEM observations from the two samples with highest Ni content are shown in Fig. 11. In sample Ni 24 the gamma-alumina structure seemed to be modified when compared to that of the calcined sample (Fig. 2). Some aggregation of particles appears for both samples in SEM observations indicating the beginning of sintering after 700°C treatment.

All samples were observed by TEM; some photographs are presented in Fig. 12 to 13. All samples showed a homogeneous dispersion of Ni particles in a gamma-alumina matrix, with size-mean-value in the range of 20 - 30 nm, even for the sample with highest Ni content. These images give evidence of the possibility of preparing high dispersed Ni particles in the ceramic matrix regardless the Ni content.
in size were probably covered by a thin aluminate-like layer as indicated previous studies in similar materials, smaller NiO particles of 7 nm in size were much less reducible due to a thicker aluminate surface layer. Once the aluminate-like reduction temperature was reached, at 700°C, all Ni species were reduced.

All samples showed particles of 20-30 nm in size under TEM, indicating that this method allows the attainment of high dispersed Ni particles even for high Ni contents.

ACKNOWLEDGMENTS
We are grateful to C. Osuna from INVAP SE for XRD and SEM experiments. MDS is grateful to CONICET for partial financial support.

REFERENCES

