Microstructure and Weight Loss Corrosion Studies of Za-27 Metal Matrix Composites Containing Red Mud Particulates

Jayaprakash, H.V.1 P.V. Krupakara2
1Department of Chemistry, Sri Sidhartha Institute of Technology, Tumkur,
2Vice Principal, Professor and Head, Department of Chemistry, Adarsha Institute of Technology, Bangalore

Abstract
This paper deals with the high corrosion resistance developed by the metal matrix composites when compared with that of matrix alloy. Matrix selected is ZA-27 and reinforcement selected is red mud particulates, which is a ceramic material. It is obtained after the removal of aluminium from its ore, procured from Hindalco, Renikoot district, UP. The composites are prepared using liquid melt metallurgy technique using vortex method. Preheated but uncoated red mud particulates are added to the melt. Metal matrix composites containing 2, 4 and 6 weight percentage of red mud are prepared. Matrix was also casted in the same way for comparison. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Microstructures of the specimens are taken and studied for uniform distribution of particulates. Corrosion tests were conducted at room temperature (230C) using conventional weight loss method according to ASTM G69-80. The corrosives used for the tests were 0.025, 0.05 and 0.1 normal solutions of hydrochloric acid, 0.25 M equimolar solutions of sodium chloride and sodium hydroxide. Corrosion rates were calculated using the formula 534DAT/W. In each case the corrosion rate in all corrosives decreases with increase in exposure time for matrix and metal matrix composites. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material and less exposure of matrix alloy in those metal matrix composites. Corrosion rate in all concentrations of hydrochloric acid were high when compared to the corrosion rate in equimolar solutions of sodium chloride and sodium hydroxide. Hence the composites are more suitable for the use in saltish or marine environment.

I. INTRODUCTION

Metal matrix composites are engineering combination of two or more materials (one of which will be metal or alloy) where tailored properties are achieved by systematic combination of different constituents [1]. Composites are metal systems consisting of a mixture of two or more constituent’s insoluble in each other and differing in form and material composition [2]. They are heterogeneous materials consisting of two or more phase, which are in intimate contact with each other on a microscopic scale. They are also homogeneous material in sense that any part of it will have the same physical properties on a microscopic scale [3]. The present research work involves the above mentioned metal matrix composites where ZA-27 is reinforced with red mud particles.

II. EXPERIMENTAL PROCEDURE

A. Material selection

The composition of ZA-27 is given in Table 1 and that of Red mud is given in Table 1.

<table>
<thead>
<tr>
<th>Table 1 Composition of ZA-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
</tr>
<tr>
<td>25-28 %</td>
</tr>
</tbody>
</table>

The reinforcement selected is red mud which is a waste obtained after the removal of aluminium from its ore, procured from HINDALCO, Renikoot district, UP. The corrosives used for the tests were 0.025, 0.05 and 0.1 normal solutions of hydrochloric acid, 0.25 M equimolar solutions of sodium chloride and sodium hydroxide.
B. Preparation of composites

The liquid metallurgy route using vortex technique [4] is employed to prepare the composites. A mechanical stirrer was used to create the vortex. The reinforcement material used was red mud particulates of size varying 50-80 µm. The weight percentage of red mud used was 2-6 weight percentage in steps 2%. Addition of red mud in to the molten ZA-27 alloy melt is carried out by creating a vortex in the melt using a mechanical stainless steel stirrer coated with aluminite (to prevent migration of ferrous ions from the stirrer material to the zinc alloy). The stirrer was rotated at a speed of 450 rpm in order to create the necessary vortex. The red mud particles were pre heated to 200°C and added in to the vortex of liquid melt at a rate of 120 g/m[5]. The composite melt was thoroughly stirred and subsequently degassed by passing nitrogen through the melt at a rate 2-3 l/min for three to four minutes. Castings were produced in permanent moulds.

C. Microstructure

![Microstructure of ZA-27-Matrix](image1.png)

![Microstructure of ZA-27/6% red mud](image2.png)

Fig 1 shows the micrograph of unreinforced ZA-27 alloy. Here the large, columnar aluminium-rich dendrites appear white. The small, very dark spots are interdendritic shrinkage micro-porosities, characteristic of long freezing range alloys[6]. It is noted that the branches of aluminium rich dendrites are enclosed in a gray, zinc-rich skin. The coring effects revealed by colour variations in these dendrites are also typical of a long freezing-range alloy.

The microstructures composites show negligible solid solubility of red mud in either the aluminium or zinc-rich phases

Fig 2 is the microstructure of ZA-27/6%red mud composite taken at 100µM. The grain size of the composites is slightly lower than matrix alloy

The structures reveal that the relatively colder particle chills the metal and unitized nucleation. The dendrites grow away from the particle, due to the restriction caused by the particle to solute enrichment. Thus the grains grow outwards from the particle and the last remaining eutectic liquid solidifies around the particles.

D. Specimen preparation

The cylindrical castings were cut into 20x20mm pieces using an abrasive cutting wheel. The matrix alloy was also casted under identical conditions for comparison. The samples were successively ground using 240, 320, 400 and 600 SiC paper and were polished according to standard metallographic techniques and dipped in acetone and dried. The samples were weighed to fourth decimal place using electronic balance and the specimen dimensions were noted down using Vernier gauge.

E. Corrosion test

The corrosion behaviour of ZA-27 alloy was studied by immersion test. The static Samples were suspended in the corrosive medium for different time intervals up to 96 hours in steps of 24 hours. To minimize the contamination of the aqueous solution and loss due to evaporation, the beakers were covered with paraffin paper during the entire test period. After the specified time the samples were cleaned mechanically by using a brush in order to remove the heavy corrosion deposits on the surface. The corresponding changes in the weights were noted.

Corrosion rates were computed using the equation

\[
\text{Corrosion rate} = \frac{534W}{DAT} \text{ mpy} \quad \text{.......(1)}
\]

Where \(W\) is the weight loss in gm, \(D\) is density of the specimen in gm/cc, \(A\) is the area of the specimen (inch\(^2\)) and \(T\) is the exposure time in hours.
III. RESULTS AND DISCUSSIONS

Fig 1-4 are the computer simulation graphs of the results of weight loss corrosion in 0.025, 0.05 and 0.1 normal solutions of hydrochloric acid, 0.25 M equimolar solutions of sodium chloride and sodium hydroxide respectively.

A. Effect of test duration

The corrosion rate mpy measurement as a function of exposure time in the static immersion test is shown in the Fig 1 to 4. The trend observed in all the cases show decrease in corrosion with increase in test duration. It is clear from the graph that the resistance of the composite to corrosion increases as the exposure time increases. This eliminates the possibility of hydrogen bubbles clinging on to the surface of the specimen and forming a permanent layer affecting the corrosion process. The phenomenon of gradually decreasing corrosion rate indicates the possible passivation of the matrix alloy. W. Smith [9] explained that the protective black film consists of hydrogen hydroxy chloride, which retards the forward reaction. R.J. Barnhurst et al.[10] pointed out that the black film consists of aluminium hydroxide compound. This layer protects further corrosion in corrosion media. But exact chemical nature of such protective film still is not determined.

B. Effect of red mud content

From the Fig 1 to 4 it can be clearly observed that for both as cast and composite, corrosion rate decreases monotonically with increase in red mud content. In the present case, the corrosion rate of the composites as well as the matrix alloy is predominantly due to the formation of pits and cracks on the surface. In the case of base alloy, the sodium chloride solution used induces crack formation on the surface, which eventually lead to the formation of pits, thereby causing the loss of material. The presence of cracks and pits on the base alloy surface was observed clearly. Since there is no reinforcement provided in
any form the base alloy fails to provide any sort of resistance to the acidic medium. Hence the weight loss in case of unreinforced alloy is higher than in the case of composites[7-9].

Red mud being the ceramic remains inert and is hardly affected by sodium chloride solution during the test and is not expected to affect the corrosion mechanism of the composite. The corrosion result indicates an improvement in corrosion resistance as the percentage of red mud particulates increased in the composite, which shows that the red mud particulates directly or indirectly influence the corrosion property of the composites[10-14]. B.M.Satish et.al. [15] who obtained similar results in glass short fiber reinforced ZA-27 alloy composites reported that the corrosion resistance increases with increase in reinforcement.

Wu.Jinaxin et.al [16] in their work on corrosion of aluminium based particulate reinforced MMCs, state that the corrosion is not affected to a significant extent by the presence of red mud particulates in aluminium, where as the particulates definitely play a secondary role as a physical barrier as far as MMC corrosion characteristics are concerned. A particulate acts as a physical barrier to the initiation and development of corrosion pits and also modifies the microstructure of the matrix material and hence reduces the rate of corrosion.

One more reason for the decrease in corrosion rate is the intermetallic region, which is the site of corrosion forming crevice around each particulates, which may be due to formation of magnesium inter-metallic layer adjacent to the particulate during manufacture as discussed by Trzaskoma[17], McIntyre[18] et.al. further showed that the magnesium inter-metallic compounds are more active than the alloy matrix. Pitting in the composites is associated with the particulate matrix interface, because of the higher magnesium concentration in this region. With increase in time pitting would continue to occur at random sites on the particulate matrix interface. The active nature of the crevices would cathodically protect the reminder of the matrix and restrict pit formation and propagation.

IV. CONCLUSIONS

The red mud content in ZA-27 alloys plays a significant role in the corrosion resistance of the material. Increase in the percentage of red mud will be advantageous to reduce the density and increase in the strength of the alloy, but the corrosion resistance is thereby significantly reduced.

ZA-27 MMCs when reinforced with red mud of weight percentage from 0 to 6 percent could be successfully produced by liquid melt metallurgy technique.

The rate of corrosion of both the alloy and composite decreased with increase in time duration in 0.025, 0.05 and 0.1 normal solutions of hydrochloric acid, 0.25 M equimolar solutions of sodium chloride and sodium hydroxide.

REFERENCES