Experimental Study compared with Various International codes - Concrete- filled – Double skin Circular Tubular Steel Concrete column

Usha Sivasankaran, Dr. S. Seetha Raman
Senior Design Manager, (Metro rail) - Afcons Infrastructure Ltd, Chennai. India.

Abstract
Six Specimens with three different volume fractions of steel fibers are cast and tested. Experiments on circular steel tubes in – filled with steel fiber reinforced concrete (SFRC) and normal concrete have been performed to investigate the contribution of steel fibers to the load bearing capacity of Short Composite Columns. The main variable considered in the test study is the percentage of steel fibers added to the in – filled concrete. All the specimens were tested under axial failure state realization. This project presents the percentage Variation in the compression strengths of the 3 types of Composite members taken under study. The results show that 1.5% SFRC in filled steel columns exhibit enhanced ultimate load carrying compression until capacity. Experimental studies compared with American code.

Keywords-component; formatting; style; styling; insert

I. INTRODUCTION
The main aim of the project is to use utilize the properties of concrete and steel effectively as a composite column. The in-fill material inside steel tubes is required to be of the quality as to increase the ductility of composite columns. Hence steel fiber reinforced concrete is chosen as the in-fill material and its optimum volume fraction in concrete is to be found out. This project further inspires studies on the ductility, flexural strength and slenderness characteristics of double skin columns in-filled with fiber reinforced concrete.

To determine the compressive strength of the double skin composite concrete-filled steel tubular members in-filled with SCC mixed with fiber, subjected to axial loading.

1) To study the stress-strain behavior of the members in the different stages of axial loading.
2) To discuss the effect of variations in the volume fractions of steel fibers used in the concrete.
3) To propose the optimum fiber content to be used in double skin composite columns.

<table>
<thead>
<tr>
<th>Data</th>
<th>Outer tube dia (mm)</th>
<th>Inner tube dia (mm)</th>
<th>Outer tube thick (mm)</th>
<th>Inner tube thick (mm)</th>
<th>L (mm)</th>
<th>Vol Fibres (Vf) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>165</td>
<td>89</td>
<td>3.2</td>
<td>3</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>165</td>
<td>89</td>
<td>3.2</td>
<td>3</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>1a</td>
<td>165</td>
<td>89</td>
<td>3.2</td>
<td>3</td>
<td>300</td>
<td>1%</td>
</tr>
<tr>
<td>1b</td>
<td>165</td>
<td>89</td>
<td>3.2</td>
<td>3</td>
<td>300</td>
<td>1%</td>
</tr>
<tr>
<td>1.5a</td>
<td>165</td>
<td>89</td>
<td>3.2</td>
<td>3</td>
<td>300</td>
<td>1.5%</td>
</tr>
<tr>
<td>1.5b</td>
<td>165</td>
<td>89</td>
<td>3.2</td>
<td>3</td>
<td>300</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

II. EXPERIMENTAL PROCEDURE
In order to study the behavior of Double Skin Concrete Filled Tubes (DSCFT) in-filled with steel fiber-reinforced self-compacting concrete (SCC) under compression, six specimens with three different volume fractions of steel fibres are cast and tested. Steel pipes of 165mm and 89mm diameter with 3.2mm and 3mm wall thickness respectively were cut to 300mm height. The outer and inner tubes were fixed in concentric position by welding with 6mm diameter rod at top and bottom. The summary of the composite column details are given in Table 1.
The experimental work carried out is divided into the following parts:

1. Preliminary tests on materials used
2. Test on fresh concrete
3. Casting and curing
4. Compression tests

III. MIX DESIGN FOR M30 GRADE CONCRETE

Grade Designation = M30
Type of Cement = PPC
Maximum size of aggregate = 12 mm
Minimum cement content = 372 kg

W/C ratio = 0.45
Slump = 275 mm

Test data
- Specific gravity of cement = 3.15
- Specific gravity of coarse aggregate = 2.78
- Specific gravity of fine aggregate = 2.65

A. Calculation of target mean strength:

Target mean compressive strength \(f_{ck} = f_{ck} + 1.65 \sigma \) = 30 + 1.65 x 5
\(= 38.25 \text{ N/mm}^2 \)

Where \(f_{ck} = 30 \text{ N/mm}^2 \)
\(\sigma = \) standard deviation = 5 (From Table 1, IS 10262:2009)

B. Selection of Water-Cement Ratio

From Table 5 of IS 456, maximum water-cement ratio = 0.45
Based on experience, adopt water-cement ratio as 0.40. 0.40 < 0.45, hence O.K.

1. Calculation of water content:

2. From Table 2, of IS 456 maximum water content for 12 mm aggregate = 203.6 litres

3. (for 25 to 50 mm slump range)

4. According to IS 10262:2009, water content is increased by 3% for every additional 25 mm slump,

5. Estimated water content for 275 mm slump = 203.6 + 27100 x 203.6 = 258.57 litres

6. 20% decrease in water content due to use of super plasticizer

7. Hence, the arrived water content = 258.57 x 0.80 = 206.86 litres

5. Determination of cement content:

Water-cement ratio = 0.40
Cement content = 206.860.40 = 517.15 kg/m³

From Table 5 of IS 456, minimum cement content for M35 grade concrete with 12 mm size aggregate= 340 + 32 = 372 kg/m³

517.15 kg/m³ > 372 kg/m³, hence O.K.

5. Proportion of volume of coarse aggregate and fine aggregate

From Table 3 of IS 10262:2009, volume of coarse aggregate corresponding to 12 mm size aggregate and fine aggregate (Zone II) for water-cement ratio of 0.50 = 0.492

In the present case water-cement ratio is 0.40. Therefore volume of coarse aggregate is required to be in-
creased to decrease the fine aggregate content. As the water-cement ratio is lower by 0.10. The proportion of volume of coarse aggregate is increased by 0.02 (at the rate of -/+ 0.01 for every ± 0.05 change in water-31 cement ratio). Therefore corrected proportion of volume of coarse aggregate for the water-cement ratio of 0.40 = 0.512

Volume of coarse aggregate per unit Volume of Total aggregate = 0.512

Volume of fine aggregate per unit Volume of Total aggregate = 1 - 0.512 = 0.488

6. Mix Calculations
a) Volume of concrete = 1 m3
b) Volume of cement = Mass of cement Specific gravity of cement x 11000
= 517.153.15 x 11000
= 0.164 m3
c) Volume of water = Mass of water Specific gravity of water x 11000
= 206.861 x 11000
= 0.207 m3
d) Volume of super plasticizer (@ 600ml per 100 kg of cement)
= 600100x11000 x 517.15 x 11000
= 0.0031 m3
e) Volume of all in aggregate = [a – (b + c + d)]
= [1 - (0.164 + 0.207 + 0.0031)]
= 0.626 m3

APPENDIX - II
CALCULATIONS
1. TESTS ON CEMENT
a) FINENESS TEST
Fineness of the cement = Weight of sample retained on the sieve Total weight of the sample x 100
= 7100 x 100
= 7%
b) CONSISTENCY TEST
Consistency of the cement = Weight of water added Weight of cement x 100
= 145500 x 100
= 29%
c) SPECIFIC GRAVITY OF CEMENT
Specific gravity of cement = (W2− W1) [(W2− W1) − (W3− W4)] ×0.79
= (86.23−37.47) [(86.23−37.47) − (105.35−76.16)]
×0.79
= 3.15 34

2. TESTS ON FINE AGGREGATE
a) PARTICLE SIZE DISTRIBUTION
Coefficient of Uniformity Cu = D60/D10 = 1.26/0.29 = 4.34
Coefficient of Curvature Cc = D30²/D60 × D10
= 0.5221.26 × 0.29 = 0.74
b) SPECIFIC GRAVITY OF FINE AGGREGATE
Specific gravity of fine aggregate = (W2− W1) (W2− W1)/ (W2− W1)
W1) − (W3– W4) = (1.445–0.690) (1.445–0.690) − (2.035–1.565) = 2.65

IV. TEST ON COARSE AGGREGATE

SPECIFIC GRAVITY OF COURSE AGGREGATE

Specific gravity of coarse aggregate = (W2– W1) (W2– W1) − (W3– W4) = (1.455–0.690) (1.455–0.690) − (2.055–1.565) = 2.78

4. COMRESSIVE STRENGTH OF CUBE

Compressive Strength of cube = Peak Load / Cross-sectional area
= 902 ×1000 / (150 × 150) = 40.09 N/mm²

V. COMRESSIVE STRENGTH OF COLUMN

Compressive Strength of column = Peak Load / Cross-sectional area
= 1370 ×1000 / 4 × (161.82– 892) = 93 N/mm²

f) Mass of coarse aggregate = e x Volume of coarse aggregate x Specific Gravity of coarse aggregate x 1000
= 0.626 x 0.512 x 2.78 x 1000 = 891.02 kg

VI. AMERICAN CODE

Tubular COMPOSITE column Steel Design

[As per AISC 360-10 & ACI 318-14]

Type of Steel Used Mild Steel-Hot rolled steel

Steel Modulus of Elasticity Es = 200000 Mpa
Concrete Modulus of Elasticity Ec = 0.043wc^1.5 *(F'c)^0.5

Weight of concrete per unit volume Wc =2500 Kg/m3

Yield strength of steel Fy = 250 Mpa

Compressive Strength Fc = 20 N/mm²

Length of member L= 600 mm

Thickness of Outer tube section T(outier) 3.2 mm

Thickness of Outer tube section T(inner) 3 mm

Outer Dia of outer tube section (outer) 165 mm

Inner dia of outer tube section (inner) 161.8 mm

Outer dia of inner tube section di (outer) 89 mm

Inner dia of inner tube section (inner) 86 mm

0.15*E/Fy = 120

D/t = 51.5625 < 0.15*E/Fy

Moment of Inertia (P(do4-di4)/64)

Outer steel tube Is(outier) 2740043.384 mm⁴

Inner steel tube Is(inner) 394532.4141 mm⁴

M.O.I of the steel section = (Isouter + Is inner) / 3134575.798 mm⁴

Area= (P(do2-di2)/4)

Area of outer tube section As(outier) 820.921 mm²

Area of inner tube section As(inner) 412.125 mm²

Area of the steel section = (Asouter + Asinner) / 1233.046 mm²

Radius of gyration r = (I/A)^0.5
r = 50.41962869

M.O.I of the Concrete section = (IC)

(P(do(inner)^4-di(outer)^4)/64) = 30546821.08 mm⁴

Concrete section size: Ac
(P(do(inner)^2-di(outer)^2)/4) = 14332.7184 mm²

Support Condition Pinned
K= 1

Column Effective Length, KL = 600 mm

Slenderness ratio = KL/r
= 11.9001273 < 40

Hence it is short column

Pno = Pp = Fy*As+C2*F'c*Ac
= 580583.2996

(12-9a) of AISC 360-10 C2 = 0.95 (for Round Sections)

Pe = (π^2*Eleff)/Kl²
= 17169813.08

Eleff = Es*Is+C3*Ec*Ic
6.26915E+11

C3 = 0.6+2(As/(Ac+As)) ≤ 0.9

Therefore, C3 = 0.9

Pno/Pe = 0.033814189

Pn = Pno(0.658*(Pno/Pe)) = 572424.2125

Design Compressive Strength = 0.75 * Pn = 429318.1594 N

Design Compressive Strength = 429.3181594 kN

III. EURO CODE

Tubular COMPOSITE column Steel Design

[As per BS EN 1994-1-1:2004]

Type of Steel Used Mild Steel-Hot rolled steel

Steel Modulus of Elasticity Ea = 200000 Mpa

Concrete Modulus of Elasticity E cm= 22360.67977 Mpa

Yield strength of steel Fy = 250 Mpa

Design Yield strength of steel Fyd = 217.3913043 Mpa

Concrete comp Strength: Fc = 20 N/mm²

Design value of Comp. strength
Fcd= 13.3333333 N/mm²
Length of member \(L = 600 \) mm
Thickness of Outer tube section \(T(\text{outer}) = 3.2 \) mm
Thickness of Outer tube section \(T(\text{inner}) = 3 \) mm
Outer Dia of outer tube section \(d(\text{outer}) = 165 \) mm
Inner dia of outer tube section \(d(\text{inner}) = 161.8 \) mm
Outer dia of inner tube section \(d(\text{outer}) = 89 \) mm
Inner dia of inner tube section \(d(\text{inner}) = 86 \) mm
\(D/t = 51.562 < 90*235/F_y = 84.6 \)
Hence Compact Section

Moment of Inertia \((P(d(\text{outer})^4 - d(\text{inner})^4)/64) \)
Outer steel tube \(I_a(\text{outer}) = 2740043.384 \) mm\(^4\)
Inner steel tube \(I_a(\text{inner}) = 394532.4141 \) mm\(^4\)

\[M.O.I \text{ of the steel section} = (I_a(\text{outer}) + I_a(\text{inner})) \]
\[= 3134575.798 \text{ mm}^4 \]

Area \(= (P(d(\text{outer})^2 - d(\text{inner})^2)/4) \)
Outer steel tube \(A_s(\text{outer}) = 820.9216 \) mm\(^2\)
Inner steel tube \(A_s(\text{inner}) = 412.125 \) mm\(^2\)

\[\text{Area of the steel section} A_a = (A_s(\text{outer}) + A_s(\text{inner})) \]
\[= 1233.0466 \text{ mm}^2 \]

Radius of gyration \(r = (I/A)^{0.5} \)
\[r = 50.41962869 \]

Moment of Inertia \((P(d(\text{inner})^4)/64) \)
Concrete section size:
\[Ac(P(d(\text{inner})^2 - d(\text{outer})^2)/4) \]
\[= 14332.7184 \text{ mm}^2 \]

Support Condition \(P\text{inned} \)

K = 1
Column Effective Length, \(KL = 600 \) mm

Slenderness ratio \(= KL/r \)
\[= 11.9001273 < 40 \]
Hence it is short column

Npl,Rd = Aa* Fyd + Ac*Fcd
459156.5207
(As per (6.30 of EN 1994-1-1:2004)

Npl,Rk = 594916.018 (As per (6.39 of EN 1994-1-1:2004)
Ncr = \(\pi 2*\text{Eleff}/Kl^2 \)

\(\lambda = 0.13606143 \)
Reduction factor, \(x = 1/(\phi + (\phi^2 + \lambda^2)^{0.5}) \)
(As per (6.3.1.2 of EN 1993-1-1:2004)

\[\phi = 0.5(1 + \alpha (\lambda -0.2) + \lambda 2) \]
\[= 0.502542807 \]
\[\alpha = 0.21 \]
\[x = 0.97734615 \]

Resistance of member for axial compression
\[x * Npl,Rd = 448754.8579 \text{ N} \]

Design Normal force strength = 448.7548579 kN

VII. CONCLUSION

The primary aim of this project is to determine the axial load capacity of the double skin steel tubes in –filled with self – compacting steel fiber reinforced concrete. To that end, the project has been carried out and completed successfully.

In order to understand the behavior of SFRCFT columns under pure compression, axial load tests were carried out and the following conclusions were drawn. The use of SCC reduced significantly the time of in –fill of the concrete between the steel tubes. There is a uniform increase in ultimate load with increase in percentage of steel fibers up to 1.5% in both the concrete cubes and the columns. However, the percentage increase in the compressive strengths of the columns with addition of steel fibers was not as high as that in the concrete cubes. Compared to all other columns, 1.5% SFRCFT columns exhibit significantly improved performance with large ductility and load carrying capacity. The column specimen having 1.5% steel fiber exhibits maximum strain.

Hence there is a significant increase in the strength of double skin composite columns with the use of steel fiber reinforced concrete.

VIII. REFERENCES

[9] Qing Quan Liang, ‘Inelastic Behavior of Concrete-Filled Thin-Walled Steel Tubular Columns Subjected to Local Buckling’, 37

TEXT BOOKS

CODES
