Ratio cum Median Based Modified Ratio Estimators with Known First and Third Quartiles

Srija and Jambulingam Subramani

1Ph.D. Research Scholar, MS University, Tirunelveli, Tamilnadu,
2Department of Statistics, Pondicherry University, R V Nagar, Kalapet, Puducherry – 605014, India.

Abstract
In this paper, some ratio cum median based modified ratio estimators with known quartiles of the auxiliary variable have been proposed. The performance of the proposed class of estimators is assessed with that of simple random sampling without replacement (SRSWOR) sample mean, ratio estimator and modified ratio estimators in terms of variance/mean squared errors. The performance of proposed class of estimators is illustrated with the help of certain natural population available in the literature. The percentage relative efficiency of the proposed class of estimators with respect to SRSWOR sample mean, ratio estimator and some of the existing modified ratio estimators are also obtained.

Keywords
Auxiliary variable; Bias; Mean squared error; Natural population; Percentage relative efficiency; Simple random sampling.

I. INTRODUCTION
The main objective of sampling is to estimate the population mean of the study variable on the basis of selecting a random sample of size n from the population of sizeN. In this connection, a finite population \(U = \{U_1, U_2, ..., U_n\} \) of N distinct and identifiable units has been considered for the estimation of the finite population mean. Let \(Y(X) \) denote the study (auxiliary) variable taking values \(Y_i(X_i), i = 1, 2, ..., N \) and is measured on \(U_i \). Ratio estimator is used to improve the precision of the estimator based on SRSWOR sample mean by making use of the information of auxiliary variable which is positively correlated with that of the study variable. For a detailed discussion on the ratio estimator and its related problems the readers are referred to the text books by Cochran (1977) and Murthy (1967). The efficiency of the ratio estimator can be improved further with the help of known parameters of the auxiliary variable such as, correlation coefficient, coefficient of variation, Skewness, Kurtosis, Quartiles etc. The resulting estimators are called in literature as modified ratio estimators. See for example Adepoju and Shittu (2013), Das and Tripathi (1978), Diana, Giordan and Perri (2011), Gupta and Shabbir(2008), Kadilar and Cingi (2004), Kadilar and Cingi (2006a, 2006b), Koyuncu (2012), Koyuncu and Kadilar (2009), Shittu and Adepoju (2013), Singh and Agnihotri (2008), Singh and Tailor(2003), Sisodia and Dwivedi (1981), Subramani and Kumarapandiyan (2012a, 2012b) and the references cited there in.

Recently a new median based ratio estimator that uses the population median of the study variable has been introduced by Subramani (2013). From the median based ratio estimator, the median based modified ratio estimators are developed by Subramani and Prabavathy (2014a, 2014b, 2015). Recently Jayalakshmi et.al (2016), Srija et.al and Subramani et.al (2016) have introduced some ratio cum median based modified ratio estimators for estimation of finite population mean with known parameters of the auxiliary variable such as kurtosis, skewness, coefficient of variation and correlation coefficient and their linear combinations. In this paper, some more ratio cum median based modified ratio estimators with known quartiles of the auxiliary variable and their linear combinations are introduced. Before discussing about the proposed estimators, we present the notations to be used and are as follows:

A) Notations to be used
- \(N \) – Population size
- \(n \) – Sample size
- \(f = \frac{n}{N} \), Sampling fraction
- \(\delta = \frac{1-f}{n} \), finite population correction
- \(\bar{X}, \bar{Y} \) – Population means
- \(\bar{x}, \bar{y} \) – Sample mean
- \(S_x, S_y \) – Population standard deviations
- \(S_{xy} \) – Population covariance between X and Y
- \(C_x(C_y) \) – Co-efficient of variation of X (Y)
- \(\rho = \frac{S_{xy}}{S_x S_y} \) – Co-efficient of correlation between X and Y
- \(\beta_1 = \frac{\mu_x^2}{\mu_y^2} \), skewness of the auxiliary variable
• \(\beta_2 = \frac{n \mu_4}{\mu_2^2} \): Kurtosis of the auxiliary variable
 where \(\mu_4 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^4 \)
• \(\text{Q}_1 \) – First(lower) quartile of the auxiliary variable
• \(\text{Q}_3 \) – Third(upper) quartile of the auxiliary variable
• \(M(m) \) – Population (sample) Median of the study variable
• \(B(.) \) – Bias of the estimator
• \(\text{MSE}(.) \) – Mean squared error of the estimator
• \(V(.) \) – Variance of the estimator
• \(\bar{Y} \) – Simple random sampling without replacement (SRSWOR) sample mean
• \(\bar{Y}_R \) – Ratio estimator
• \(\bar{Y}_M \) – Median Based Ratio Estimator
• \(\bar{Y}_{Pi} \) – \(j^{th} \) Proposed median based modified ratio estimator of \(Y \)

B) Existing Estimators

In case of SRSWOR, the sample mean \(\bar{Y} \) is used to estimate population mean \(\bar{x} \) which is an unbiased estimator. The SRSWOR sample mean together with its variance is given below:

\[
\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i
\]

\[
V(\bar{Y}) = \left(\frac{1}{n} \right) S_y^2
\]

where \(n, S_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2 \)

The ratio estimator for estimating the population mean \(\bar{Y} \) of the study variable \(Y \) is defined as

\[
\bar{Y}_R = \frac{\sum_{i=1}^{n} \bar{Y} y_i}{\sum_{i=1}^{n} \bar{Y}} \quad \text{(3)}
\]

The mean squared error of \(\bar{Y}_R \) is given below:

\[
\text{MSE}(\bar{Y}_R) = \bar{Y}^2 \{ C_{yy} + C_{xx} - 2C_{yx} \}
\]

where \(C_{yy} = \frac{V(\bar{Y})}{V(\bar{Y})}, C_{xx} = \frac{V(\bar{X})}{\bar{Y}^2}, \ C_{yx} = \frac{\text{Cov}(\bar{X}, \bar{Y})}{\bar{Y}^2} \)

The modified ratio estimator \(\bar{Y}_i \) with known parameter \(\lambda_i \) of the auxiliary variable for estimating the finite population mean \(\bar{Y} \) is defined as

\[
\bar{Y}_i = \bar{Y} \left(\frac{\bar{Y} + \lambda y_i}{\bar{Y} + \lambda y_i} \right)
\]

The mean squared error of \(\bar{Y}_i \) is as follows:

\[
\text{MSE}(\bar{Y}_R) = \delta \bar{Y}^2 \{ C_{yy} + \theta_i^2 C_{xx}^2 - 2 \theta \phi C_{yx} \}
\]

II. PROPOSED ESTIMATORS

In this section, some more ratio cum median based modified ratio estimators with known linear combinations of the known parameters of the auxiliary variable like First Quartile \(Q_1 \) and Third Quartile \(Q_3 \) in line with the ratio cum median based modified ratio estimators by Jayalakshmi et al. (2016), Subramani et al. (2016) and Srjia et al. (2016). The proposed estimators together with their mean squared errors are given below:

Case i: The proposed estimator with known First Quartile \(Q_1 \) and the Third Quartile \(Q_3 \) is:

\[
\bar{Y}_1 = \bar{Y} \left(\frac{\bar{Y} + Q_1}{\bar{Y} + Q_1} \right) + \frac{1}{4} \left(\frac{\bar{Y} + Q_1}{\bar{Y} + Q_1} \right)
\]

Case ii: The proposed estimator with known First Quartile \(Q_1 \) and the Third Quartile \(Q_3 \) is:

\[
\bar{Y}_2 = \bar{Y} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right) + \frac{1}{4} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right)
\]

Case iii: The proposed estimator with known First Quartile \(Q_1 \) and the Third Quartile \(Q_3 \) is:

\[
\bar{Y}_3 = \bar{Y} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right) + \frac{1}{4} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right)
\]

Theorem 1.4: In SRSWOR, ratio cum median based modified ratio estimator

\[
\bar{Y}_{P_3} = \bar{Y} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right) + \frac{1}{4} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right)
\]

where \(\alpha_1 + \alpha_2 = 1 \), for the known parameter \(Q_2 \) is not an unbiased estimator for its population mean \(\bar{Y} \) and its bias and MSE are respectively given as:

\[
B(\bar{Y}_{P_3}) = \bar{Y} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right) + \frac{1}{4} \left(\frac{\bar{Y} + Q_3}{\bar{Y} + Q_3} \right)
\]

\[
\text{MSE}(\bar{Y}_{P_3}) = \bar{Y}^2 \left(C_{yy} + \alpha_1^2 C_{mm}^2 - 2 \alpha_1 \theta \phi C_{ym} \right)
\]

where \(\theta_1 = \frac{M}{M + Q_2}, \phi_1 = \bar{X} + Q_2 \)

Proof: By replacing \(T_i = Q_r \) in Theorem 2.0 the proof follows (Srija et al. 2016).
where $\theta_i = \frac{M}{M + Q_d}, \varphi_i = \frac{X}{X + Q_d}$

Proof: By replacing $T_i = Q_d$ in Theorem 2.0 the proof follows. (Srija et.al.(2016))

Theorem 1.5 In SRSWOR, ratio cum median based modified ratio estimator

$$\hat{Y}_{P_2} = \hat{y}\left\{\alpha_1 \left(\theta_i^2 C_{mm} + \theta_i C_{ym} - \theta_i \frac{B(m)}{M}\right) + \alpha_2 \left(\varphi_i C_{xx} - \varphi_i C_{yx}\right)\right\}$$

Proof: By replacing $T_i = Q_d$ in Theorem 2.0 the proof follows. (Srija et.al.(2016))

Note: The proposed estimators are written into a class of estimators with the population parameter T_i is

$$\hat{Y}_{P_2} = \hat{y}\left\{\alpha_1 \left(\frac{M + T_i}{M + Q_d}\right) + \alpha_2 \left(\frac{X + T_i}{X + T_i}\right)\right\}$$

where $\alpha_1 + \alpha_2 = 1, i = 1, 2, 3$.

The mean squared error of proposed estimator is given as

$$\text{MSE}\left(\hat{Y}_{P_2}\right) = \frac{M}{M + T_i} \theta_i \frac{X}{X + T_i} C_{mm} + \frac{M}{M + T_i} \theta_i \frac{X}{X + T_i} C_{ym} - 2\alpha_1 \alpha_2 \theta_i \varphi_i C_{yx}$$

B) Comparison with that of Ratio Estimator

Comparing (11) and (5), it is noticed that the proposed estimators perform better than the ratio estimator if $\text{MSE}\left(\bar{Y}_{P_2}\right) \leq \text{MSE}\left(\bar{Y}\right)$ i.e.,

$$\alpha_1^2 \theta_i^2 C_{mm} + \alpha_2^2 \varphi_i^2 C_{xx} + 2 \alpha_1 \alpha_2 \theta_i \varphi_i C_{xm} \leq 2\left[\alpha_1 \theta_i C_{ym} + \alpha_2 \varphi_i C_{yx}\right]$$

C) Comparison with that of Modified Ratio Estimators

Comparing (11) and (6), it is noticed that the proposed estimators perform better than the modified ratio estimator.

That is, $\text{MSE}\left(\hat{Y}_{P_2}\right) \leq \text{MSE}\left(\hat{Y}\right)$ if

$$\alpha_1^2 \theta_i^2 C_{mm} + (\alpha_2^2 - 1) \varphi_i^2 C_{xx} + 2 \alpha_1 \alpha_2 \theta_i \varphi_i C_{xm} \leq 2[\alpha_1 \theta_i C_{ym} + (\alpha_2 - 1) \varphi_i C_{yx}]$$

IV. NUMERICAL COMPARISON

In the section 3, the conditions for the efficiency of proposed estimators given in (15) with that of existing estimators have been derived algebraically. To support it by means of numerical comparison, data of a natural population from Singh and Chaudhary (1986, page. 177) has been considered.

A) Population Description

$X =$ Area under Wheat in 1971 and $Y =$ Area under Wheat in 1974

The population parameters computed for the above population is given below:

| N | 34 | $M = 767.5$ | $\bar{Y} = 208.8824$ |
| n | 3 | $\rho = 0.4491$ | $Q_d = 254.75$ |

The variance/mean squared error of the existing and proposed estimators at different values of α_1 and α_2 are given in the following table

Table 4.1: Mean Squared Errors for different values of α_1 and α_2

<table>
<thead>
<tr>
<th>Existing Estimators</th>
<th>\bar{Y}</th>
<th>\bar{Y}_r</th>
<th>\hat{Y}_1</th>
<th>\hat{Y}_2</th>
<th>\hat{Y}_3</th>
<th>\hat{Y}_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRSWOR Sample mean</td>
<td>16356.41</td>
<td>155579.71</td>
<td>133203.49</td>
<td>131204.42</td>
<td>130523.62</td>
<td>134533.03</td>
</tr>
</tbody>
</table>
From Table 4.1, it is observed that the proposed estimators discussed in (10) have less mean squared errors than the SRSWOR sample mean, ratio estimator and the modified ratio estimators.

The percentage relative efficiencies (PRE) of the proposed estimators with respect to the existing estimators are obtained by using the formula $\text{PRE}(e, p) = \frac{\text{MSE}(e)}{\text{MSE}(p)} \times 100$ and are given in the following table:

Table 4.2: PRE of proposed estimators with respect to SRSWOR Sample mean.

<table>
<thead>
<tr>
<th>α_1</th>
<th>α_2</th>
<th>\bar{y}_{p_1}</th>
<th>\bar{y}_2</th>
<th>\bar{y}_{p_3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>134.17</td>
<td>131.03</td>
<td>134.16</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>143.45</td>
<td>140.97</td>
<td>143.33</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>152.81</td>
<td>151.00</td>
<td>152.58</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>162.01</td>
<td>160.84</td>
<td>161.69</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>170.78</td>
<td>170.10</td>
<td>170.40</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>178.77</td>
<td>178.36</td>
<td>178.37</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>185.63</td>
<td>185.16</td>
<td>185.27</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>191.01</td>
<td>190.07</td>
<td>190.75</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>194.60</td>
<td>192.74</td>
<td>194.53</td>
</tr>
</tbody>
</table>

Table 4.3: PRE of proposed estimators with respect to Ratio Estimator

<table>
<thead>
<tr>
<th>α_1</th>
<th>α_2</th>
<th>\bar{y}_{p_1}</th>
<th>\bar{y}_2</th>
<th>\bar{y}_{p_3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>127.78</td>
<td>124.80</td>
<td>127.78</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>136.62</td>
<td>134.26</td>
<td>136.50</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>145.53</td>
<td>143.81</td>
<td>145.31</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>154.30</td>
<td>153.18</td>
<td>153.99</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>162.65</td>
<td>162.00</td>
<td>162.28</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>170.26</td>
<td>169.87</td>
<td>169.88</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>176.79</td>
<td>176.34</td>
<td>176.45</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>181.91</td>
<td>181.02</td>
<td>181.67</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>185.33</td>
<td>183.57</td>
<td>185.27</td>
</tr>
</tbody>
</table>

Table 4.4: PRE of proposed estimators with respect to Modified Ratio Estimators

<table>
<thead>
<tr>
<th>α_1</th>
<th>α_2</th>
<th>\bar{y}_{p_1}</th>
<th>\bar{y}_2</th>
<th>\bar{y}_{p_3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.9</td>
<td>107.21</td>
<td>107.92</td>
<td>107.11</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>114.62</td>
<td>116.10</td>
<td>114.43</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>122.09</td>
<td>124.36</td>
<td>121.81</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>129.45</td>
<td>132.46</td>
<td>129.09</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>136.45</td>
<td>140.09</td>
<td>136.04</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>142.84</td>
<td>146.89</td>
<td>142.41</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
<td>148.32</td>
<td>152.49</td>
<td>147.92</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>152.62</td>
<td>156.53</td>
<td>152.29</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>155.49</td>
<td>158.73</td>
<td>155.31</td>
</tr>
</tbody>
</table>

From Tables 4.2, 4.3 and 4.4, it is observed that the PRE values of the proposed estimators with respect to SRSWOR sample mean, ratio estimator and modified ratio estimators are greater than 100 and hence we conclude that the proposed estimators are efficient estimators.

- In fact the PREs are ranging from
 - 134.16 to 194.60 for the case of SRSWOR sample mean
 - 124.80 to 185.57 for the case of ratio estimator
 - 107.11 to 158.73 for the case of modified ratio estimators
V. SUMMARY

In this paper we have proposed some more ratio cum median based modified ratio estimators with the known parameters such as quartiles Q_1 and Q_3 of the auxiliary variable and their linear combinations. The efficiencies of the proposed ratio cum median based modified ratio estimators are assessed algebraically as well as numerically with that of SRSWOR sample mean, ratio estimator and some of the modified ratio estimators. Further it is shown from the numerical comparison that the PREs of proposed ratio cum median based modified ratio estimators with respect to the existing estimators are more than 100. Hence the proposed ratio cum median based modified ratio estimators with known quartiles may be recommended for the use of practical applications.

ACKNOWLEDGEMENT

The Heading of the Acknowledgement section and the References section must not be numbered. Causal Productions wishes to acknowledge Michael Shell and the other contributors for developing and maintaining the SSRG International Journals LaTeX style files which have been used in the preparation of this template. To see the list of contributors, Please refer to the top of file SSRG International JournalsTran.cls in the SSRG International JournalsLaTeX distribution.

REFERENCES

[19]. Subramani J (2013): A New Median Based Ratio Estimator For Estimation Of The Finite Population Mean, Statistics- In Transition – Accepted For Publication