
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 1 Issue 1–Feb 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 9

An Overview of Object Oriented Software Testability

N.Suresh
M.A.M Engineering College

Dept of computer science and Engineering
Trichy.

Abstract: - Building high quality and testable software is an essential requirement for
software system. Software testability is a critical aspect during the software development
life cycle. Software that is easily testable is known as testable software. Testability is an
essential or distinctive aspect that is acquainted with the objective of predicting efforts
needed for testing the program. Designing testability is a very important issue in software
engineering. It is suggested to design software with high degree of testability. A program
with high degree of testability illustrate that a selected testing criterion could be achieved
with less effort and the existing faults can be revealed more easily during testing.
This paper gives the concept of software testability, previously defined by The IEEE
standard Glossary, our measurement for testability and complexity and also shares our
thought and understanding about the testability in the object oriented system. In this
paper we have explained the concept of software testability and complexity in very
sophisticated manner. The results are verified by suitable example and graph.

Keywords: Software Testing, Software Testability, Simplicity, Complexity.

1 Introduction

Necessity of Testing: In early days,
application was manual but today mostly
application are software based. So
testing is very crucial. It is most crucial
when human life is associated with the
software in any sense. So our main
emphasis will be on software quality and
their reliability on the defined input and
their desired output. So we need the
effective testing to get adequate level of
software quality and reliability. There
are some reasons why do we test a
system.

• Provide confidence in the
system

• Identify areas of weakness
• Establish the degree of

quality

• Establish the extent that the
requirements have been met

• To prove it is both usable and
operable

Methodology of Development: When
we are going to develop a software
application our main focus is on that
which methodologies we use. There are
lots of reasons for using object oriented
methodologies as a benchmark for
development of software system. Some
reasons are as follows:

• Provide Reusability
• Reduce the complexity,
• Reduce the incidence of error
• OO has a unique feature, like

inheritance, abstraction,
information hiding,
polymorphism, dynamic binding
[2].

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 1 Issue 1–Feb 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 10

But studies mention that information
hiding and abstraction can decrease the
testability of software in object oriented
methodologies [1]. The above mention
feature also introduces some kind of
error. And the testing issue in OO
software is different from the
conventional software testing. That why
we cannot use the techniques of
conventional software in the object
oriented system.
It is impossible to conduct an exhaustive
testing process for software product. To
increase the quality process for software
product we need.

 Economic test methods
 Effective test tools
 Software components

with high testability.

How ever we are facing a dilemma that
the complexity in the software system is
growing rapidly while the testing
resources are limited. To maximize the
impact of testing, we need to design
system so that their testability is apex.

This paper presents a testability and
complexity analysis. Here testability
shows that how much effort required for
testing a system and complexity shows
that how much system is complex for
testing. The rest of the paper is
organized as follows. Section 2 discusses
related work. Section 3 gives our view
with example. In section 4 we review the
benefits of the testability. Section 5
concludes paper.

2 Related Works

2.1 Software Testability

To get adequate level of software quality
and reliability we used software
testability as a quality attribute for
determining the complexity and how
much efforts required for testing to
getting the desired results. Software
testability has been defined and
described in various literatures from
different point of views.
The most common is the “ease of
performing testing “[3].The IEEE
Standard Glossary defines testability as
the degree to which a system or
component facilitates the establishment
of test criteria and performance of tests
to determine whether those criteria have
been met [3]. Testable software is one
that can be tested easily, systematically
and externally at the user interface level
without any ad-hoc measure [4]
[5].Robert V. Binder defines testability
as “The relative ease and expense of
revealing software faults [6]”.

Testability is an important attribute to
the Maintainability, Reliability, and
Changeability of software. Testable
software is affluent and less expansive to
maintain.Testable software need two
characteristics i.e. observability and
controllability. Binder defines these two
facets of testability succinctly [6]:

Observability: During the software
testing process it is compulsion or
requirement to observe the internal
details of software execution, to
diagnose errors which are discovered
during this process. A system is said to
be observable if the possible input state
of the system can be observed
Observable software makes it suitable
for the tester to observe the internal
behavior of the system.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 1 Issue 1–Feb 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 11

Controllability: During the software
testing process some of the condition is
really difficult to test, like disk full, out
of memory, resource failure, network
link failure, communication failure etc.
A system is said to be controllable if and
only if the system states can be changed
by changing the system input.
Controllable software makes it possible
to initialize the software to desired
states, prior to the execution of various
tests.

2.2 Testability Measurement

Several techniques have been made for
development of meaningful testability
[4, 7, 8] But here we are using the
testability measurement techniques of
John McGregor and S. Srinivas [10].
They mentioned that Testability of a
method into the class depends upon the
visibility component. Testability of
method is

ή=constant*(ζ)

Where ζ is the visibility component

Testability of the class is
θ=min (ή)

The definition of the visibility
component (VC) is

ζ= Possible Output/Possible Input

Inputs are as follows:

1. Number of explicit parameter in
the method signature

2. Number of implicit parameter in
the declared in the class

Outputs are as follows:

1. Explicit reference parameter in
the method signature

2. Implicit parameter, object
attribute in the class

3. Return value of the method
4. Any exception throws by the

method.

2.3 Complexity Measurement

Cyclomatic complexity is software
metric (measurement). It was developed
by Thomas J. McCabe [11] and is used
to measure the complexity of a program.
It directly measures the number of
linearly independent paths through a
program's source code. Cyclomatic
complexity is computed using
the control flow graph of the program:
the nodes of the graph correspond to the
commands of a program, and a directed
edge connects two nodes if the second
command might be executed
immediately after the first command.
The cyclomatic complexity of a flow
graph is as follows
M = E − N + 2P
Where
M = Cyclomatic complexity
E = Number of edges of the graph
N = Number of nodes of the graph
P = Number of connected components.

3. Examples
In this research our working definition of
testability is “Testability of a program is
a degree of simplicity of the program”.
By using following example we are
trying to understand the simplicity in the
form of complexity. Means if system’s
complexity is increase that means its
simplicity decrease and the effort of
testing (Testability) will increase.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 1 Issue 1–Feb 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 12

For understanding and the analysis the
role of complexity in the software
testability we are taking examples of
vending machine and coin dispenser. In
these examples, in the first step we
measure the testability by using the
method of John McGregor and S.
Srinivas [10]. Than in the second step
we draw the Control flow graph and find
the complexity of the program.

1.Vending Machine

2. Coin Dispenser

Process
There are two examples first is vending
machine and second one is coin dispenser. In
both examples we do two stage processes, in
first step we find out the testability [11] and in
the second step we find the cyclometic
complexity [12] of the program. Than we
analyze that how complexity affects the
testability of a program.

1. public class VendingMachine
2. {
3. final private int COIN = 25;
4. final private int VALUE = 50;
5. private int totValue;
6. private int currValue;
7. private Dispenser d;
8. public VendingMachine()
9. {
10.totValue = 0;
11.currValue = 0;
12.d = new Dispenser();
13.}
14. public void insert()
15. {
16. currValue += COIN;
17. System.out.println("Current value = " +
currValue);
18. }
19. public void return()
20. {
21. if (currValue == 0)
22. System.err.println("no coins to return");
23. else
24. {
25. System.out.println("Take your coins");
26. currValue = 0;}
27. }
28. public void vend(int selection)

29. {
30. int expense;
31. expense = d.dispense(currValue, selection);
32. totValue += expense;
33. currValue -= expense;
34. System.out.println("Current value = " +
currValue);
35. }
36. }

1. public class Dispenser
2. {
3. final private int MAXSEL = 20;
4. final private int VAL = 50;
5. private int[] availSelectionVals =
{2,3,13};
6. public int dispense(int credit,
int sel)
7. {
8. int val=0;
9. if (credit == 0)
10.System.err.println("No coins
inserted");
11.else if (sel > MAXSEL)
12.System.err.println("Wrong
selection "+sel);
13.else if (!available(sel))
14.System.err.println("Selection
"+sel+" unavailable");
15.else
16.{
17.val = VAL;
18.if (credit < val)
19.System.err.println("Enter "+(val-
credit)+" coins");
20.else
21.System.err.println("Take
selection"); }
22.return val;
23.}
24.private boolean available(int sel
)
25.{
26.for (int i = 0;
i<availSelectionVals.length; i++)
27.if (availSelectionVals[i] == sel)
28.return true;
29.else
30.return false;
31.}
32.}

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 1 Issue 1–Feb 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 13

Table 1.Testability Analysis of Vending Machine.

S.No Method Name Visibility
Component(ζ)

Method
Testability(ή)

Class Testability
(θ)

1 VendingMachine() 3/3=1 2*1=2
2 2 void insert() 3/3=1 2*1=2

3 void return() 3/3=1 2*1=2
4 void vend() 4/4=1 2*1=2

Table 2. Testability Analysis of Coin Dispenser

S.No Method Name Visibility
Component(ζ)

Method
Testability(ή)

Class Testability
(θ)

1 int dispense() 5/4=1.25 1.25*2=2.5
2.5 2 private Boolean

available(int sel)
4/3=1.33 1.33*2=2.66

Fig. 1 Fig.2

Fig 1 shows the flow graph of the
vending machine, its complexity is 2
while the fig 2 shows the flow graph of
coin dispenser and its complexity is 4
that means as the complexity of the
program is increases as well as the
testing effort is also increases. This
result is verified by the graph. In fig 3
we show the graph which is drawn
between complexity and the testability.

 Fig.3

A

B C

D
E

F G

H

I J

K

L

B

C

E

A

F

D

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 1 Issue 1–Feb 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 14

 4. Benefits of Testability

There are a lot of other characteristics of
design that are related to testability. In
particular the lists below are benefits to
testability [9].

• Understandability
• Modifiability
• Availability
• Flexibility
• Maintainability
• Reliability
• Usability
• Changeability
• Fault Tolerance

5. Conclusions

Software testability is an important
factor during the software development
life cycle. In this paper we are giving our
view that testability is the degree of the
simplicity of the program and it will
increase as the complexity of the
program will increases as shown in fig.3
and its complexity will depends on
whole software development life cycle.

References:

[1]. Corporation, R.S.T., Testability of
Object-Oriented Systems,.1995, National
Institute of Standards and Technology:
Gaithersburg, MD. Report Number:
NIST GCR 95-675

[2]. J. E. Payne, R. T. Alexander, C. H.
Hutchinson: “Design-for-Testability for
Object Oriented Software”, Object
Magazine, SIGS Publications Inc., vol.
7, no.5, 1997, pp. 34-43

[3].“IEEE standard Glossary of Software
Engineering Terminology,”ANSI/IEEE

Standard 610-12-1990, IEEE Press, New
York,1990.

[4]. R. S. Freedman, “Testability of
Software Components”, IEEE
Transactions on Software Engineering,
vol. 17, No. 6, June 1991, pp. 553-563

[5]. S. C. Gupta, M. K. Sinha:
“Improving Software Testability by
Observability and Controllability
Measures”, 13th World Computer
Congress,IFIP, vol. 1, 1994, pp. 147-
154

[6]. Binder, R.V., Design for Testability
with Object-Oriented Systems.
Communications of the ACM, 1994.
37(9): p. 87-101.

[7]. Voas, J.M., PIE: a dynamic failure-
based technique. IEEE Transactions on
Software Engineering, 1992. 18(8): p.
717-27.

[8]. Voas, J.M. and K.W. Miller,
Software Testability: The New
Verification. IEEE
Software, 1995. 12(3): p. 17-28.

[9].Appendix D of Stefan Jungmayr’s
thesis Improving testability of object-
oriented systems

[10]. A Measure of Testing Effort
Conference on Object-Oriented
Technologies Toronto, Ontario, Canada,
June 1996.

[11]. T.J.McCabe, “A Complexity
Measure”, IEEE Tran. Software Eng.,
vol. SE-2, No.4, Dec.1976, pp. 308-320.

