
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 43

An Email based Offline Download Manager

for Large Distributed File System using

Hadoop Map Reduce Framework

Pradeep H K, Rohitaksha K,

Abhilash C B

Assistant Professor, Computer Science & Engineering,

JSS Academy of Technology Bangalore, Karnataka, India

Abstract - People are using P2P (Peer to Peer) network

for sharing and transferring digital content contains

video, audio, and any other data files over the internet

from different part of the world. The general peer to

peer file sharing protocols was designed to work

optimally in the case that all the peers have an end

node on the internet. The end peers should capable of

delivering the contents in proper way with limited

time constraint. To solve this problem, a method is

proposed a new approach that will be implemented

using email’s as a medium for data transfer and load

balancing with the help of Hadoop-MapReduce

framework and moreover if we use systems like Gmail

and Yahoo then most of the mails would be

transferred internally and with more efficiency, thus

improving the overall efficiency of the internet.

MapReduce is a framework which is pioneered by

Goggle for distributed programming. It includes user

specified Map and Reduce functions which process

inputs in the form of key/value pairs. Along with the

MapReduce paradigm, Hadoop also implements

HDFS which is known as Hadoop distributed file

system.

Keywords - peer to peer (P2P), Hadoop, MapReduce,

HDFS.

1. INTRODUCTION

P2P file sharing makes up the bulk of internet traffic

nowadays. But most of them are inefficient in

different ways, and rely on the presence of

connectable hosts (end node on the internet).

Currently there are lots of P2P based applications like

eDonkey, SoulSeek, DC++, Lime Wire, eMule and

Bittorrent etc. But all of them work within TCP/IP.

Because of this all system suffer from the same

disadvantages as enumerated:

Reachability Problem occurs if 2 nodes are behind a

proxy or firewall or any other NAT device they cannot

contact each other since they don’t have a reachable

global IP Address. Due to the shortages of IP

addresses more and more service providers are

shifting over to NAT1. Currently no method exists for

providing reachability to users behind proxies, but

attempts have been made to establish connectivity

between hosts behind NAT. Studies in have shown

that NAT Traversal techniques give efficiencies of

about 82% in UDP and 64% in TCP. But these

methods require the use of a meditating server [1].

P2P blocking in most of the networks disallow or ban

P2P on their networks due to heavy traffic. Due to this

many users cannot use file sharing with the outside

world. Most proxy servers only allow outbound access

to a few service ports (like HTTP, SMTP, POP3,

Telnet and SSH etc.)

Low Upload speed of clients in most broadband

connections that is the download speed is usually

much higher than the upload speed. Most general

broadband connections in the world provide ADSL

connections which are symmetric in nature [1].

Due to the shortage of IPv4 addresses and IPv6

compatibility problem it’s not possible to make all

peers reachable and since many OS’s and programs

still lack support for IPv6. P2P applications haven’t

made the switch to IPv6 yet. Thus in the current

situation it’s not possible to have all reachable clients

in a P2P network [1].

More Load on Each Peer since Each Peer may get a

lot of load since it requires a lot of time to send the

requested mail. This imposes a more idle time for the

client [1].

The above stated problems motivated us to formulate

a new p2p file transfer protocol which can overcome

all the stated drawbacks of the available p2p file

transfer protocols. Load balancing problem stated

above is overcome here by using Hadoop-MapReduce

Framework.

MapReduce is a programming model and an

associated implementation for processing and

generating large datasets that is amenable to a broad

variety of real world tasks. The MapReduce technique

in cloud can be applied here[2].Users specify the

computation in terms of map and reduce function, and

the underlying runtime system automatically

parallelizes the computation across large-scale clusters

of machines, handles machine failures, and schedules

inter-machine communication to make efficient use of

networks and disks. Google and Hadoop both provide

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 44

MapReduce runtimes with fault tolerance and

dynamic flexibility support. Programs written in this

functional style are automatically parallelized and

executed on a large cluster of commodity machines.

The run-time system takes care of the details of

partitioning the input data, scheduling the program's

execution across a set of machines, handling machine

failures, and managing the required inter-machine

communication. This allows programmers without any

experience with parallel and distributed systems to

easily utilize the resources of a large distributed

system. The implementation of MapReduce runs on a

large cluster of commodity machines. In a typical

MapReduce computation processes many terabytes of

data on thousands of machines are used. Implementers

find the system easy to use and hundreds of

MapReduce programs have been implemented and

upwards of one thousand MapReduce jobs are

executed frequently [3].

2. RELATED WORK
Currently No P2P protocols exist that work at the

email level. The only software remotely related to

email is Pando [9]. It use email to transfer the

metadata only and all the other data transfer occurs

though TCP/UDP. Moreover, the user has to manually

open the inbox, download the metafile and start it in

the application Pando. Then it starts transferring the

files from the Internet using TCP. Thus, we would not

call this an email P2P file sharing application.

Bit Torrent is the most widely used P2P protocol on

the internet. Bit Torrent works by establishing end to

end connections between the hosts, and using them to

transfer files. There are two versions of the protocol,

one depends on the presence of a tracker to

communicate with the peers, other doesn’t require the

presence of trackers, and it is based on DHT

(Distributed Hash Table). Bit Torrent [6] in itself is

only a file-downloading protocol. In Bit Torrent, files

are split up into chunks (on the order of a thousand per

file), and the downloaders of a file barter for chunks of

it by uploading and downloading them in a tit-for-tat-

like manner to prevent parasitic behavior. Each peer is

responsible for maximizing its own download rate by

contacting suitable peers, and peers with high upload

rates will with high probability also be able to

download with high speeds. When a peer has finished

downloading a file, it may become a seed by staying

online for a while and sharing the file for free, i.e.,

without bartering.

Direct Connect protocol is based on the concept of

hubs clients and a super hub. Peers connect to the hubs.

The hub servers as a connecting point for all the peers.

Peers can view the files shared by other peers, and

transfer them. Advanced Direct Connect can be

considered a successor protocol.ADC is structured

around clients that connect to a central hub, where the

clients (users) can chat and download files from other

clients (users). The hub provides routing between

clients for chat, searches and requests for connections.

The actual file transfers are between clients.

Gnutella [5] is a fully distributed file sharing protocol.

In this protocol each Gnutella client is connected to at

least one client in the network After that the Gnutella

clients asks for a list of peers from the other client.

Although the Gnutella protocol supports a traditional

client/centralized server search paradigm, Gnutella’s

distinction is its peer-to-peer, decentralized model. In

this model, every client is a server, and vice versa.

These so-called Gnutella servants perform tasks

normally associated with both clients and servers.

They provide client-side interfaces through which

users can issue queries and view search results, while

at the same time they also accept queries from other

servants, check for matches against their local data set,

and respond with applicable results. Due to its

distributed nature, a network of servants that

implements the Gnutella protocol is highly fault-

tolerant, as operation of the network will not be

interrupted if a subset of servants goes offline.

Even searching is done in a distributed way, clients

disseminate the search query to the nodes that are

directly connected to them.

3. BIG DATA
Big Data is nothing but bigger data chunks―imagine

song preferences of 10 million people from 50

different nationalities, divided according to the music

genre, in multiple servers―that’s a lot of

decimals―categorized into sets of data based on data

similarities. These data sets are then analysed to gain

insights and information.

Big Data sizes are a constantly moving target, as of

2012 ranging from a few dozen Terabytes (1 terabyte =

1024 Gigabytes) to many Petabytes (1 petabyte = 1024

Terabytes) of data in a single data set.

Analysing Big Data [8] involves massive numbers of

parallel software running on tens, hundreds, or even

thousands of servers. Big data analytics is done with

the software tools commonly used as part of advanced

analytics disciplines such as predictive analytics and

data mining. But the unstructured data sources used for

Big Data analytics may not fit within traditional data

warehouses. A traditional method of data processing

and analysis was never built to accommodate the

complexities of size, diversity and movement, making

it difficult to process Big Data. As a result, a new class

of technology has emerged and is being used in many

big data analytics environments. Clever IT

organizations working in this realm quickly realized

the limitations of traditional approaches—economics,

operations, lack of agility, etc. —and decided to

provide Big Data users with something better and more

cost-effective.

http://en.wikipedia.org/wiki/Predictive_analytics
http://en.wikipedia.org/wiki/Data_mining
http://www.dummies.com/how-to/content/unstructured-data-in-a-big-data-environment.html

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 45

The technologies associated with big data analytics

include NoSQL databases, Hadoop MapReduce

framework.

Analysis of Big Data requires clusters of servers,

running distributed analysis backed by complex

programming models. Software like Hadoop is almost

completely modular, which means that you can swap

out almost any of its components for a different

software tool. That makes the architecture incredibly

flexible, as well as robust and efficient

4. HADOOP

The Apache Hadoop software library is a framework

that allows for the distributed processing of large data

sets across clusters of computers using simple

programming models. It is designed to scale up from

single servers to thousands of machines, each offering

local computation and storage. Rather than rely on

hardware to deliver high-availability, the library itself

is designed to detect and handle failures at the

application layer, so delivering a highly-available

service on top of a cluster of computers, each of which

may be prone to failures. An important characteristic of

Hadoop [7] is the partitioning of data and computation

across many (thousands) of hosts, and executing

application computations in parallel close to their data.

Hadoop's distributed compute framework called

MapReduce, exploits the distributed storage

architecture of Hadoop's distributed file system HDFS

to deliver scalable, reliable parallel processing services

for arbitrary algorithms. The shuffle phase of Hadoop's

MapReduce computation involves movement of

intermediate data from Mappers to Reducers.

The Apache Hadoop framework is composed of the

following modules:

Hadoop Common – contains libraries and utilities

needed by other Hadoop modules

Hadoop Distributed File System (HDFS) – a

distributed file-system that stores data on commodity

machines, providing very high aggregate bandwidth

across the cluster. The Hadoop Distributed File

System (HDFS) [4] is designed to store very large data

sets reliably, and to stream those data sets at high

bandwidth to user applications. In a large cluster,

thousands of servers both host directly attached

storage and execute user application tasks. By

distributing storage and computation across many

servers, the resource can grow with demand while

remaining economical at every size.

Hadoop YARN – a resource-management platform

responsible for managing compute resources in

clusters and using them for scheduling of users'

applications.

Hadoop MapReduce – a programming model for large

scale data processing.

Apache Hadoop's MapReduce and HDFS components

originally derived respectively from Google

MapReduce and Google File System (GFS) papers.

5. MAPREDUCE

'MapReduce' is a framework for processing

parallelizable problems across huge datasets using a

large number of computers (nodes), collectively

referred to as a cluster (if all nodes are on the same

local network and use similar hardware) or a grid (if

the nodes are shared across geographically and

administratively distributed systems, and use more

heterogeneous hardware). Computational processing

can occur on data stored either in a file

system (unstructured) or in a database (structured).

MapReduce can take advantage of locality of data,

processing data on or near the storage assets to

decrease transmission of data.

"Map" step: The master node takes the input, divides

it into smaller sub-problems, and distributes them to

worker nodes. A worker node may do this again in

turn, leading to a multi-level tree structure. The

worker node processes the smaller problem, and

passes the answer back to its master node.

"Reduce" step: The master node then collects the

answers to all the sub-problems and combines them in

some way to form the output – the answer to the

problem it was originally trying to solve.

The Map invocations are distributed across multiple

machines by automatically partitioning the input data

into a set of M splits. The input splits can be processed

in parallel by different machines. Reduce invocations

are distributed by partitioning the intermediate key

space into R pieces using a partitioning function (e.g.,

hash (key) mod R). The number of partitions (R) and

the partitioning function are specified by the user [3].

Figure 1 shows the overall flow of a MapReduce

operation in our implementation. When the user

program calls the MapReduce function, the following

sequence of actions occurs (the numbered labels in

Figure 1 correspond to the numbers in the list below):

1. The MapReduce library in the user program first

splits the input files into M pieces (controllable by the

user via an optional parameter). It then starts up many

copies of the program on a cluster of machines.

2. One of the copies of the program is special the

master. The rest are workers that are assigned work by

the master. There are M map tasks and R reduce tasks

to assign. The master picks idle workers and assigns

each one a map task or a reduce task.

http://www.mongodb.com/learn/nosql
http://cloudtimes.org/2014/01/24/hadoop-2-0-a-big-step-for-big-data-momentum/
http://en.wikipedia.org/wiki/MapReduce
http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works#awesm=~ou6TKygUIAykLo
http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works#awesm=~ou6TKygUIAykLo
http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works#awesm=~ou6TKygUIAykLo
http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works#awesm=~ou6TKygUIAykLo
http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works#awesm=~ou6TKygUIAykLo
http://readwrite.com/2013/05/23/hadoop-what-it-is-and-how-it-works#awesm=~ou6TKygUIAykLo

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 46

3. A worker who is assigned a map task reads the

contents of the corresponding input split. It parses

key/value pairs out of the input data and passes each

pair to the user-designed Map function. The

intermediate key/value pairs produced by the Map

function are buffered in memory.

Fig-1: MapReduce

4. Periodically, the buffered pairs are written to local

disk, partitioned into R regions by the partitioning

function. The locations of these buffered pairs on the

local disk are passed back to the master, who is

responsible for forwarding these locations to the

reduce workers.

5. When a reduce worker is notified by the master

about these locations, it uses remote procedure calls to

read the buffered data from the local disks of the map

workers. When a reduce worker has read all

intermediate data, it sorts it by the intermediate keys

so that all occurrences of the same key are grouped

together. The sorting is needed because typically

many different keys map to the same reduce task. If

the amount of intermediate data is too large to fit in

memory, an external sort is used.

6. The reduce worker iterates over the sorted

intermediate data and for each unique intermediate

key encountered, it passes the key and the

corresponding set of intermediate values to the user's

Reduce function. The output of the Reduce function is

appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been

completed, the master wakes up the user program. At

this point, the MapReduce call in the user program

returns back to the user code.

After successful completion, the output of the

MapReduce execution is available in the R output files

(one per reduce task, with file names as specified by

the user).Typically, users do not need to combine

these R output files into one file they often pass these

files as input to another MapReduce call, or use them

from another distributed application that is able to deal

with input that is partitioned into multiple files.

6. PROPOSED APPROACH

The proposed system makes use of Hadoop Map

Reduce framework for solving the problem of peer-

reachability and load balancing of existing systems.

The Hadoop framework makes use of the MapReduce

feature to pass the incoming request splitting the tasks

to the multiple task executors and getting the

combined report of task completion status.

The System involves the 3 Parties

1. The Client

2. The Hadoop Mapper

3. The Task Executors

Since, email providers usually set limits on the

maximum size of email that can be sent, so to get over

this limitation the file should be broken pieces.

Moreover, breaking it into pieces allows partial

piecewise downloading for a file. So the protocol

basically deals with the various steps involved in

getting these pieces to all the hosts.

The main functionalities of the Client side application

are, sending the request another, downloading the mail

from the Gmail server and integrating them to become

a single piece.

Requesting for a file is the First main part in the client

side. When the client sends the request he has to send

the Gmail Id with password and the metadata file to

the mapper or the Hadoop server. The Metadata file

maintains all the information like name of the file,

number of pieces, and name of each piece of the file.

The Client side Mail Receiving application will check

the mail of the client each minute. When the file

pieces are received the save attachments function will

downloads the files from the mail and saves the

divided file chunks to the admin folder. Once all

unique pieces of the file from the mail are downloaded

completely then the integration will be done by

sequentially reading each file piece and writing to the

final file.

The Client side Mail checking application has to

check the mail for the files, as Hadoop will assign the

files to more than one cluster so more than one copy

of the same file will arrive in Gmail. The Client

application has to take only one piece from each

similar files, So there will be only one copy of a file in

client system.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 47

The main task of the Hadoop Mapper is to schedule

the tasks to the Task Executers. The Hadoop Mapper

will have the list of files with them that are already

divided and also have the number of divided files.

Once the request for a file is received by the Hadoop

Mapper then a check is performed to see if the client

requested file is present in the Hadoop Mapper.If the

files are present then they will forward the request to

the clusters. Here the mapper checks for the load

balance in the clusters. If the clusters are busy then the

Hadoop will move to other clusters which are free and

can perform the work faster. Defending upon the load

present in the different clusters they will allocate the

task to them.

The Hadoop Mapper will also check the file size and

the network load of the task executer if the load on the

single network is more than the other then the file

from the lesser loaded task executer will be transferred

faster.

The Hadoop will map the data in more than one

cluster because if one cluster fails to transfer the data

to the proper destination or correct email Id because of

the network failure or more load in the network at that

time other clusters can pass the same message over the

network to the client thus saving the time or loss of

data from one cluster. Sometimes we will get the file

from more than cluster.

The Task Executers main function is to forward the

requested file to the requested client Email-id. The

task executer will get the forwarded request from the

Hadoop Mapper. The Hadoop Mapper will send the

request only to a few task executers those who have

the pieces of the file. The task executer will forward

the file piece to the client Email-id. The Task

Executor will have the split files thus maintaining the

load across the network. They will transfer these

divided files one by one to the client as they will finish

mapping and reducing of each piece of the file. Once

100% completion is displayed in the map and reduce

function then the particular piece of the file which has

been mapped is sent to the client.

The Requirements of the system are

1. In this system the user can send the mail or

any file at any time he wants.

2. The Gmail server should receive this file

when the user sends it.

3. The proposed system needs to reduce the

polling time wasted while waiting to receive

the file.

4. The Hadoop cluster must be able to notify the

receiver of the file as soon as the other user

sends the file.

5. The system must work in the absence of the

other user.

Download

Client

Network

Hadoop

Mapper

Server

Hadoop

Task Executor

Hadoop

Task Executor

Hadoop

Task Executor

GMAIL

Server
SMTP

Communication

POP3

Communicator

Fig-2: System Architecture

7. IMPLEMENTATION

SMTP is the de facto standard for sending messages

and IMAP/POP3 can be used for retrieval.

The implementation can be divided in to four distinct

processes

 File splitter process.

 Data Integrator process.

 Job scheduler manager.

 Email polling process.

File splitter process include

 Divide the file in to 1MB pieces.

 Store pieces to file separately.

 Store pieces in Hadoop clusters.

 Data Integrator process includes

 Read downloaded file chunks.

 Integrate the pieces sequentially.

 Store Data to final file.

 Job scheduler manager includes

 Read Email-Id from Job request.

 Create Mail with Attachment Data.

 Send Email.

 Email polling Manager includes

 Connect to Gmail.

 Check Data Availability.

 Download file content.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 48

Fig-3: Data flow diagram of the system

The system flow includes:

 File Splitter Process is concerned with

splitting the given file into pieces. The

files split will be stored in hadoop file

system.

 Once that file is split and stored in

hadoop file system, the details of the

split file chunks will be sent to the

hadoop file scheduler.

 Job scheduler manager is concerned with

sending the split files to the client from

the clusters upon receiving the Email-id

of the client.

 Email polling process checks whether

mail has been received.

 Once all the piece of the file is received

by the client. Data Integrator Process

will be used to download the pieces of

files from the mail server of the client

and integrating those split files to get the

requested file.

Registration

with Hadoop

Cluster

Download

Process

Hadoop

Messaging

Receiver

Process

Mail Download

Process

File Integration

Process

Fig-4: Data flow diagram of client

Client will send the file download request to the

scheduler along with his Email-id and password.

The scheduler will map the files to the appropriate

clusters which will forward the mail. The Hadoop

message receiving process will check the mail server

of the client once the pieces arrive, the Mail download

process will download the pieces on to the client

system and the File integration process will integrate

them to a single file.

Connect to

Hadoop

Cluster

Process

File request

fetch process

File sending

process

Email sender

Hadoop

Messaging

process

Fig-5: Data flow diagram of server

The file request fetch process will fetch the request for

the file and map them to appropriate clusters. The File

sending process will contact the Hadoop messaging

process to obtain the Email-id and password. Email

sender process is used to forward the file to the mail

server.

As a result of implementing these modules, we were

able to come up with our application and here are a

few snapshots of the same.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 49

Fig-6: Hadoop server

Fig-6 shows the snapshot of Hadoop server where a

file is split in to 1mb pieces and stored in Hadoop file

system.

Fig-7: File list of Hadoop server

Fig-7 shows the snapshot of File list of Hadoop server.

These are the details of the files present in HDFS.

Send Details to Match maker button sends the files

details to the scheduler.

Fig-8: File scheduler

Fig-8 shows the snapshot of file scheduler after

receiving the file details from Hadoop server.

Fig-9: client application

Fig-9 shows the snapshot of client requesting for the

file by specifying the metadata file.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue10 Dec 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 50

Fig-10: Task details of scheduler

Fig-10 shows the snapshot of File scheduler after

receiving the request from the client.

Fig-11: client application

Fig-11 shows the snapshot of client after downloading

of split files and integration of the split files to a single

file is complete.

8. CONCLUSION
In this paper we have proposed a peer to peer file

sharing protocol that will be implemented using email

as a medium of data transfer which would be a huge

improvement over existing p2p networks since every

node would be available, and would be possible to

send a file to multiple users without uploading it

multiple times, since we are using Gmail server the

overall efficiency of the internet is improved. All P2P

file sharing protocols work when the peers are

connectible. Due to this, the load is unevenly

distributed between the connectible, while connectible

users suffer from too many uploads. In the case that all

the peers are not connectible it is not possible to make

use of peer to peer at all. In this paper, we present an

entirely new p2p protocol which takes care of the

deficiency of Load balancing by using Hadoop

MapReduce Framework.

REFERENCES

[1] MailZoro Email Based P2P File Sharing. Ajit D Dhiwal1, Sudip

Gautam2, Akshay K Singh3, Vijay K. Chaurasiya 4 IIITAllahabad,
India, 211011.

[2] A Scalable Two-Phase Top-Down Specialization Approach for
DataAnonymization using MapReduce on Cloud

Xuyun Zhang, Laurence T. Yang, Senior Member, IEEE, Chang Liu,

Jinjun Chen, Member, IEEE.

[3] MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat.

[4] The Hadoop Distributed File System Konstantin Shvachko,

Hairong Kuang, Sanjay Radia, Robert Chansler Yahoo!Sunnyvale,
California USA.

[5] The Gnutella Protocol Specification v0.4 Clip2 Distributed
Search Services.

[6] THE BITTORRENT P2P FILE-SHARING SYSTEM:
MEASUREMENTS AND ANALYSIS J.A. Pouwelse, P. Garbacki,

D.H.J. Epema, H.J. Sips Department of Computer Science, Delft

University of Technology, the Netherlands.

[7] Parallel & distributed processing (ipdps), 2010 ieee international

symposium on mapreduce programming with apache hadoop
bhandarkar, m. ; yahoo! Inc., hadoop solutions architect

[8] Big Data analytics Singh, S. ; Bus. Analytics Div., IBM India

Software Lab. (ISL), Pune, India ; Singh, N.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5465899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5465899
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bhandarkar,%20M..QT.&searchWithin=p_Author_Ids:37350216400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Singh,%20S..QT.&searchWithin=p_Author_Ids:38255331600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Singh,%20N..QT.&searchWithin=p_Author_Ids:38253067500&newsearch=true

