
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue 3–May 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 5

Enhanced semi-Automated Refactoring Engine
with Behavioral testing

Abstract— Refactoring is a transformation that
preserves the external behavior of a program and improves its
internal quality. Usually, compilation errors and behavioral
changes are avoided by preconditions determined for each
refactoring transformation. However, to formally define these
preconditions and transfer them to program checks is a rather
complex task. In practice, refactoring engine developers
commonly implement refactoring in an ad hoc manner since no
guidelines are available for evaluating the correctness of
refactoring implementations. As a result, even mainstream
refactoring engines contain critical bugs. The system technique
presents a technique to test Java refactoring engines. It
automates test input generation by using a Java program
generator that exhaustively generates programs for a given scope
of Java declarations. The refactoring under test is applied to each
generated program. The technique uses SAFEREFACTOR, a
tool for detecting behavioral changes, as an oracle to evaluate the
correctness of these transformations. Finally, the technique
classifies the failing transformations by the kind of behavioral
change or compilation error introduced by them. The main
objective of this paper is to create the Java Integrated
Development Environment with Refactoring Engine and
automated Behavioral Testing process.

I. INTRODUCTION

Software has become integral part of most of the fields of
human life. We name a field and we find the usage of software
in that field. Software applications are grouped in to eight
areas for convenience System software: Infrastructure
software come under this category like compilers, operating
systems, editors, drivers, etc. Basically system software is a
collection of programs to provide service to other programs.
Real time software is used to monitor, control and analyze real
world events as they occur. An example may be software
required for weather forecasting. Such software will gather
and process the status of temperature, humidity and other
environmental parameters to forecast the weather. Embedded
software is placed in Read-Only-Memory of the product and
controls the various functions of the product. The product
could be an aircraft, automobile, security system, signaling
system, control unit of power plants, etc. The embedded
software handles hardware components and is also termed as
intelligent software. Business software is the largest
application area. The software designed to process business
applications is called business software. Business software
could be payroll, file monitoring system, employee
management, and account management. It may also be a data
warehousing tool which helps us to take decisions based on
available data. Management information system, enterprise

resource planning and such other software are popular
examples of business software. Personal computer software is
used in personal computers is covered in this category.
Examples are word processors, computer graphics, multimedia
and animating tools, database management, computer games
etc. This is a very upcoming area and many big organizations
are concentrating their effort here due to large customer base.
Artificial Intelligence software makes use of non- numerical
algorithms to solve complex problems that are not amenable to
computation or straight forward analysis. Examples are expert
systems, artificial neural network, signal processing software
etc. Web based software: The software related to web
applications comes under this category. Scientific and
engineering application software is grouped in Engineering
and scientific software. Huge computing is normally required
to process data.
Software products represent the information-intensive artifacts
that are incrementally constructed and iteratively revised
through a software development effort. Such efforts can be
modeled using software product life cycle models. These
product development models represent an evolutionary
revision to the traditional software life cycle models. The
revisions arose due to the availability of new software
development technologies such as software prototyping
languages and environments, reusable software, application
generators, and documentation support environments. Each of
these technologies seeks to enable the creation of executable
software implementations either earlier in the software
development effort or more rapidly. Therefore in this regard,
the models of software development may be implicit in the use
of the technology, rather than explicitly articulated. This is
possible because such models become increasingly intuitive to
those developers whose favorable experiences with these
technologies substantiate their use. Thus, detailed examination
of these models is most appropriate when such technologies
are available for use or experimentation.

II. REFACTORING ENGINE:

Software refactoring is used to restructure the internal
structure of object-oriented software to improve its quality,
especially its maintainability, extensibility, and reusability,
while preserving its external behavior. Software refactoring is
widely used to delay the degradation effects of software aging
and facilitate software maintenance. Because software is
repeatedly modified according to evolving requirements,
source code shifts from its original design structure. The
source code becomes complex, difficult to read or debug, and

Kannan M
M.E.(Computer Science and Engineering)
University College of Engineering-Panruti

S.Ayshwaryalakshmi
Assistant Professor-Department of CSE,

University College of Engineering-Panruti,

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue 3–May 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 6

even harder to extend. Software refactoring improves
readability and extensibility by cleaning up Bad Smell
(unstructured program)s in the source code.
A key issue in software refactoring is determining the kind of
source code that requires refactoring. Experts have
summarized typical situations that may require refactoring.

A. Evaluated Bad Smell (unstructured program)s:

As an initial study, we consider nine kinds of Bad Smell
(unstructured program)s for evaluation. A brief introduction is
presented here so that the paper can be understood on its own.
a. Duplicated Code. Duplicated Code is comprised of
fragments of source code appearing in more than one location.
In a narrow sense, only identical copies are called Duplicated
Codes. In a broad sense, however, they may include slightly
different fragments resulting from copy-paste-modify editions.
b. Long Method. The longer a method is, the harder it is to
read or modify. Consequently, long and complex methods
should be divided into short and well-named methods with
refactoring rules.
c. Large Class. Large classes usually try to take too many
responsibilities, making them complex and confusing. To
improve their readability and maintainability, large classes
should be divided into smaller ones, each for a single
responsibility.
d. Long Parameter List. Methods with too many parameters
are difficult to use and even harder to change. The parameters
can ordinarily be replaced with a few objects that contain the
parameters.
e. Feature Envy. A method or a fragment of a method may be
more interested in features of another class than those of the
enclosing class, which is called feature envy.
f. Primitive Obsession. Primitive Obsession is the situation in
which objects should have been used instead of primitives. It
is further divided into three subcategories: Simple Primitive
Obsession, Simple Type Code, and Complex Type code. The
division is necessary because different refactoring rules should
be applied depending on whether the primitive object is a type
code and whether the type code influences the behavior of the
enclosing class. If the primitive object is not a type code, the
refactoring is simple: The data value is replaced with an
object. If it is a type code, the refactoring is more complicated,
depending on whether the type code affects behavior. If it
does, refactoring rule Replace Type Code with Subclasses
should be applied. Otherwise, Replace Type Code with Class
is preferred.
f. Useless Field. It is a synonym of Dead Field, referring to
fields defined but never used.
g. Useless Method. Once a domain class is found, designers
may propose methods (operations) for it. Unfortunately,
sometimes certain operations are irrelevant to the role the class
plays in the specific system. These operations are useless in
the system.
h. Useless Class. Useless classes are those defined but never
used. Typically, these are results of inappropriate boundaries
of systems.

B. Refactoring Activities:

 The refactoring process consists of a number of distinct

activities:
a. Identify where the software should be refactored.
b. Determine which refactoring should be applied to the
identified places.
c. Guarantee that the applied refactoring preserves behavior.
d. Apply the refactoring.
e. Assess the effect of the refactoring on quality characteristics
of the software e.g., complexity, understandability,
maintainability or the process e.g., productivity, cost, effort.
f. Maintain the consistency between the refactored program
code and other software artifacts such as documentation,
design documents, requirements specifications, tests, etc.

III. OVERVIEW OF BEHAVIORAL TESTING:

The software developers use an automatic approach to classify
compilation errors. It consists of splitting the failing tests
based on messages from the test oracle. The goal is to group
together the failing tests related to the same bug. The
traditional approach ignores (package, class, method, or field)
names within quotes. If the same refactoring is applied to two
different programs, and they result in compilation error
messages following the same template, a single bug is
assigned to these two failures. We developed a tool to
automate this grouping.

 Additionally, they propose an approach to classify
behavioral changes by analyzing each detected change based
on the characteristics of each pair source program-target
program. Our approach is based on a set of filters; a filter
checks whether the programs follow a specific structural
pattern. For example, there are filters for transformations that
enable or disable overloading/overriding of a method in the
target program, relatively to the source program. All filters are
presented in Table 1.3. We defined these filters by analyzing
bugs found through the use of our approach, in addition to
other bug reports from refactoring engines. The filters may be
applied in any order. The bug category of a behavior-changing
transformation is then designated by the filters matched by its
source and target programs. When a transformation does not
fit any of these filters, conventional debugging is demanded
from refactoring engine developers. For instance, the failure in
the Pull up Method on either Eclipse JDT 3.7 or JRRTv1
matches the filter named “Changes super (this) to this (super)”
from Table 1.3, in which a problem with replacing a reference
to super with this is detected. The set of filters is not complete.
New filters can be proposed based on additional bugs found
by refactoring engine developers. Currently, the classification
of behavioral changing transformations is carried out
manually. The process consists of analyzing each pair of
programs and testing every filter for matches.

Table 1.3 Filters for classifying Behavioral Changes
Filter Description
Enables / disables
overriding

A Method comes to be overridden, After
refactoring

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue 3–May 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 7

Enables / disables
overloading

A Method comes to be overloaded, After
refactoring

Enables/disables
field hiding

A field comes to be hidden by another
filed declaration, After refactoring

Shadows class
declaration

A class declaration comes to be
shadowed by another declaration

Maintains Super
while changing
hierarchy

A reference to super is moved up or
down the hierarchy during refactoring

Changes
Accessibility

The refactoring changes the access
modifier of a given filed or method

The refactoring
program crashes

The original program is normally
executed by the test suite but the
refactoring program one throws some
exceptions

Enables / Disables
implicit cast

An implicit cast between primitive types
is applied where it did not take place
originally

IV. EXISTING TECHNIQUES:

A. Semi Automated Refactoring Engine with Regression
Testing

 A key issue in software refactoring is determining the
kind of source code that requires refactoring. Experts have
summarized typical situations that may require refactoring.
Fowler et al. call them Bad Smell (unstructured program)s,
indicating that some part of the source code smells terrible. In
other words, Bad Smell (unstructured program)s (e.g.,
Duplicated Code) are signs of potential problems in code that
may require refactoring. The definition and explanation of Bad
Smell (unstructured program)s can be found in the third
chapter of their book. These Bad Smell (unstructured
program)s are usually linked to corresponding refactoring
rules that can help dispel these Bad Smell (unstructured
program)s.

First, uncovering Bad Smell (unstructured program)s
in large systems necessitates the use of detection tools because
manually uncovering these smells is tedious and time-
consuming, especially those involving more than one file or
package, e.g., duplicated code. The tools are expected to
detect Bad Smell (unstructured program)s automatically or
semi-automatically. Clone detection is an excellent example,
and researchers have proposed detection algorithms, and
developed tools for clone detection in the last decades.

Second, software engineers need tools to

automatically or semi-automatically carry out refactoring to
clean Bad Smell (unstructured program)s. Manual refactoring
is time-consuming and error prone. For example, renaming a
variable requires revising all references to that variable.
Manually identifying all references is challenging an issue that
detection tools based on program analysis seek to address.

Existing System Architecture:

The detection tool proposes initial results that require manual
confirmation. Once the detected Bad Smell (unstructured
program) is confirmed, the software engineer decides how to
refactor it. Selected refactoring rules are manually or semi-
automatically applied to the Bad Smell (unstructured
program)s with the help of refactoring tools.

Then, the software engineer moves on to the next kind of Bad
Smell (unstructured program)s, and repeats the process until
all kinds of Bad Smell (unstructured program)s have been
detected and resolved.

As a result, different kinds of Bad Smell (unstructured
program)s are detected and resolved one after the other,
regardless of whether the sequence is arranged consciously or
unconsciously.

In earlier the detection of Bad Smell (unstructured program)s
in the code remains automated but the checking process of the
Bad Smell (unstructured program)s and to determine how to
restructure Bad Smell (unstructured program)s in terms of
refactoring rules that should be applied, and arguments of the
rules may also be semi-automated, it need human intervention.

Most Bad Smell (unstructured program)s automatically
detected should be rechecked manually because 100 percent
precision cannot be guaranteed by detection tools.
• In earlier the detection of Bad Smell (unstructured

program)s in the code remains automated but the
checking process of the Bad Smell (unstructured
program)s and to determine how to restructure Bad Smell
(unstructured program)s in terms of refactoring rules that

Decision Making over Refactoring
Rules

Refactoring

BERT : Behavioral
Regression Testing

Manual Operation

 Automated Operation

Detection of a kind of bad smell in
Source Code Program

Bad Smell Checking Process

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue 3–May 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8

should be applied, and arguments of the rules may also be
semi-automated, it need human intervention.

• Most Bad Smell (unstructured program)s automatically
detected should be rechecked manually because 100
percent precision cannot be guaranteed by detection tools.

V. PROBLEM STATEMENT:

Bad Smell (unstructured program)s are signs of potential
problems in code. Detecting and resolving Bad Smell
(unstructured program)s, however, remain time-consuming for
software engineers despite proposals on Bad Smell
(unstructured program) detection and refactoring tools.
Numerous Bad Smell (unstructured program)s have been
recognized, yet the sequences in which the detection and
decree of different kinds of Bad Smell (unstructured
program)s are performed are rarely discussed because
software engineers do not know how to optimize sequences or
determine the benefits of an optimal sequence. The behavioral
changes in the restructures code may remain make error in
compilation or in run time. Thus the changes should be tested
as automatically.

VI. PROPOSED WORK:

Usually, compilation errors and behavioral changes are
avoided by preconditions determined for each refactoring
transformation. However, to formally define these
preconditions and transfer them to program checks is a rather
complex task. Bad Smell (unstructured program)s are signs of
potential problems in code. Detecting and resolving Bad Smell
(unstructured program)s, however, remain time-consuming for
software engineers despite proposals on Bad Smell
(unstructured program) detection and refactoring tools.
Numerous Bad Smell (unstructured program)s have been
recognized, yet the sequences in which the detection and
decree of different kinds of Bad Smell (unstructured
program)s are performed are rarely discussed because
software engineers do not know how to optimize sequences or
determine the benefits of an optimal sequence. The behavioral
changes in the restructures code may remain make error in
compilation or in run time. Thus the changes should be tested
as automatically.
In practice, refactoring engine developers commonly
implement refactoring in an ad hoc manner since no guidelines
are available for evaluating the correctness of refactoring
implementations. As a result, even mainstream refactoring
engines contain critical bugs. The system technique presents a
technique to test Java refactoring engines. It automates test
input generation by using a Java program generator that
exhaustively generates programs for a given scope of Java
declarations. The refactoring under test is applied to each
generated program. The technique uses SAFEREFACTOR, a
tool for detecting behavioral changes, as an oracle to evaluate
the correctness of these transformations. Finally, the technique
classifies the failing transformations by the kind of behavioral
change or compilation error introduced by them.

The contributions of this paper are as follows: First, it
discovers and illustrates the importance of decree
sequences of Bad Smell (unstructured program)s.
Second, it proposes a decree sequence for commonly
occurring Bad Smell (unstructured program)s. Finally, it
validates the effect of decree sequences of Bad Smell
(unstructured program)s on two nontrivial applications.

System Architecture:

The system checks for compilation errors in the resulting
program and reports those errors; if no errors are found, it
analyzes the results and generates a number of tests suited for
detecting behavioral changes.

This approach is based on a set of filters; a filter checks
whether the programs follow a specific structural pattern. For
example, there are filters for transformations that enable or
disable overloading/overriding of a method in the target
program, relatively to the source program. Thus this system
helps to overcome the issues in existing system.
A. Semi Automated Refactoring Engine:

Refactoring is a transformation that preserves the
external behavior of a program and improves its internal
quality. Usually, compilation errors and behavioral changes
are avoided by preconditions determined for each refactoring
transformation. However, to formally define these
preconditions and transfer them to program checks is a rather
complex task. In practice, refactoring engine developers
commonly implement refactorings in an ad hoc manner since
no guidelines are available for evaluating the correctness of
refactoring implementations. As a result, even mainstream
refactoring engines contain critical bugs. Most Bad Smell
(unstructured program)s automatically detected should be
rechecked manually because 100 percent precision cannot be
guaranteed by detection tools.

Detection of a kind of bad
smell in Source Code Program

Bad Smell Checking Process

Decision Making over
Refactoring Rules

Refactoring

Behavioral Testing

Manual Operation

Automated Operation

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume1 issue 3–May 2014

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 9

The process of make decisions over the determination
of refactoring rules to resolve the Bad Smell (unstructured
program)s can be optimized as automated that it is possible to
analyze the impact of Bad Smell (unstructured program)s by
analyzing historical information. Thus the Bad Smell
(unstructured program)s can be restructured by refactoring
process.

Automated refactoring Engine:

Additionally, the system technique proposes an
approach to classify behavioral changes by analyzing each
detected change based on the characteristics of each pair
source program-target program. Our approach is based on a
set of filters; a filter checks whether the programs follow a
specific structural pattern. For example, there are filters for
transformations that enable or disable overloading/overriding
of a method in the target program, relatively to the source
program. We defined these filters by analyzing bugs found
through the use of our approach, in addition to other bug
reports from refactoring engines. The set of filters is not
complete. Currently, they focus on the Java constructs
supported by java editor refactoring engine. New filters can be
proposed based on additional bugs found by refactoring
engine developers. Currently, the classification of behavioral
changing transformations is carried out manually. The process
consists of analyzing each pair of programs and testing every
filter for matches.

VII.ADVANTAGES

• The contributions of this paper are as follows: First, it

discovers and illustrates the importance of decree
sequences of Bad Smell (unstructured program)s. Second,
it proposes a decree sequence for commonly occurring
Bad Smell (unstructured program)s. Finally, it validates
the effect of decree sequences of Bad Smell (unstructured
program)s on two nontrivial applications.

• The system checks for compilation errors in the resulting
program and reports those errors; if no errors are found, it
analyzes the results and generates a number of tests suited
for detecting behavioral changes.

• This approach is based on a set of filters; a filter checks
whether the programs follow a specific structural pattern.
For example, there are filters for transformations that
enable or disable overloading/overriding of a method in
the target program, relatively to the source program.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we first motivated the necessity of arranging
decree sequences of Bad Smell (unstructured program)s with
an example. Then, we illustrated how to arrange such a decree
sequence for commonly occurring Bad Smell (unstructured
program)s. We also carried out evaluations on two nontrivial
applications to validate the research. The results suggest a
significant reduction in refactoring can be achieved when Bad
Smell (unstructured program)s are resolved using the
recommended decree sequence. The contributions of this
paper are as follows: First, it discovers and illustrates the
importance of decree sequences of Bad Smell (unstructured

program) s. Second, it proposes a decree sequence for
commonly occurring Bad Smell (unstructured program)s.
Third, it validates the effect of decree sequences of Bad Smell
(unstructured program)s on two nontrivial applications.
Finally, the technique classifies the failing transformations by
kind of behavioral change or compilation error introduced by
them. We propose a Java program generator to run the
program generation step of our technique.
The contributions of this paper are as follows: First, it
discovers and illustrates the importance of decree
sequences of Bad Smell (unstructured program)s.
Second, it proposes a decree sequence for commonly
occurring Bad Smell (unstructured program)s. Finally, it
validates the effect of decree sequences of Bad Smell
(unstructured program)s on two nontrivial applications.

Thus the above project which deals with the application
oriented languages. It has been enhanced with the Web Pipe
like mashups. The mashup are becoming increasingly popular
as end users are able to easily access, manipulate, and
compose data from many web sources. We have observed,
however, that mashups tend to suffer from deficiencies that
propagate as mashups are reused. To address these
deficiencies, we would like to bring some of the benefits of
software engineering techniques to the end users creating
these programs. In this work, we focus on identifying code
smells indicative of the deficiencies we observed in web
mashups programmed in the popular Yahoo! Pipes
environment.

IX. REFERENCES:

[1]B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated Testing of
Refactoring Engines,” Proc. Sixth Joint Meeting European Software Eng.
Conf. and ACM SIGSOFT Symp. The Foundations of Software Eng., pp. 185-
194, 2007.

[2]B. Korel and A.M. Al-Yami, “Automated Regression Test Generation,”
Proc. Fourth Int’l Symp. Software Testing and Analysis, pp. 143-152, 1998.

[3]F. Steimann and A. Thies, “From Public to Private to Absent: Refactoring
Java Programs under Constrained Accessibility,” Proc. 23rd European
Conf.Object-Oriented Programming, pp. 419-443, 2009.

[4]G.Soares et al., “A Survey of Software Refactoring,” IEEE Trans. Software
Eng., vol. 39, no. 2, pp. 147-162, Feb. 2013.

[5]H. Li and S. Thompson, “Testing Erlang Refactorings with QuickCheck,”
Proc. 19th Int’l Symp. Implementation and Application of Functional
Languages, pp. 19-36, 2008.

[6]T. Mens and T. Tourwe ´, “A Survey of Software Refactoring,” IEEE
Trans. Software Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004.

[7]T. Mens, S. Demeyer, and D. Janssens, “Formalising Behaviour Preserving
Program Transformations,” Proc. First Int’l Conf. Graph Transformation, pp.
286-301, 2002.

