
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 12

Replica Synchronization in Distributed File

System using Asynchronous Replication

 Mr. B. Muruganantham, Mr.Tushar Kumar Pandey
Assistant Professor(Sr.G), Department of Computer Science and Engineering, SRM University, India

M.Tech Scholar, Department of Computer Science and Engineering, SRM University, India

 ABSTRACT The availability of resources in a

distributed environment is an important factor to

be considered when designing a distributed system.

Replication is a well-known technique to achieve

fault tolerance in distributed systems, thereby

enhancing availability. But some efficient

techniques are required to keep all the replicas

consistent i.e every replica should have the same

copy of the data. When a user changes or does any

modification, the similar modification has to be

done on every other replica for the purpose of

achieving consistency. Proposed method uses write

through mechanism i.e. whenever the client make

any modification on the file, that modification will

be immediately transmitted to the server, so the

server can also perform similar modification on the

server copy of the file and then asynchronous

replication is followed i.e whenever any

modification is done, first the primary copy is

updated and new version number is added with the

dirty bit marked as 0. This shows that the data is a

valid data. A threshold is set between subsequent

modification and once the threshold is reached,

then the updates will be propagated to other

replicas also. It ensures data consistency from the

viewpoint of client.

Keywords - File Replication, Update Propagation.

1 Introduction
DFS is implemented on a cooperating set

of server computer connected by a communication

network, which together create the illusion of a

single, logical system for the purpose of creation,

deletion, and random accessing of data. There are

many importance of distributed file system like it

improves scalability, improves reliability and

supports inherent distribution. In DFS, there are

one or more servers that store the data and are

accessed over the network. Challenges faced by

distributed file system are partial failures and

concurrency. Partial failures include network

congestion and node failures. Concurrency problem

arise because multiple nodes execute in parallel so

challenge lies in keeping the data consistent. Some

Other problems also needs to be addressed like if a

client is accessing a file and some other client

requested the same file from the same server at the

same time. i.e. if a client say client A is modifying

a file , but the modified data has not yet propagated

to the server and at the same time client B puts a

request and downloads the same file from the same

server into its local cache. Here client B will have

an inconsistent copy of the file and this problem

can be avoided by using a write through

mechanism i.e. the modification done by a client is

immediately propagated to the server, so that the

primary copy can also be updated. This mechanism

introduces another problem known as cache

consistency problem that can be solved by cache

invalidation scheme. For increasing availability,

redundancy is done which is called replication.

1.1 Replication

It is the process of creating and managing

duplicate versions of a database. Replication not

only copies a database but also synchronizes a set

of replicas so that changes made to one replica are

reflected in all the others. The beauty of replication

is that it enables many users to work with their own

local copy of a database but have the database

updated as if they were working on a single,

centralized database. For database applications

where users are geographically widely distributed,

replication is often the most efficient method of

database access. A replicated file is a file that has

multiple copies, with each file on a separate file

server. A problem associated with replication is

that whenever a file is modified or updated, then

that modification has to be propagated to all other

copies also. There are basically two types of

replication: active replication and passive

replication. Replication is used to increase

availability and to reduce the access time, but it

increases overhead like cost, time and to keep all

the replicas consistent. There is no need to replicate

every copy of the data each time when any

modification is done, because if a data is changing

now, then it has a higher probability that it will

change in future also. So, certain threshold should

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 13

be set, based upon which the other copies should be

updated.

The rest of the paper is organized as

follows. The next section discusses a brief

literature survey of existing theories and work done

so far. Section 3 discuss about the proposed

approach. Finally, section 4 concludes the work

followed by references.

2 Related work

Many distributed file systems support

different replication policies for reliability and

replica synchronization mechanisms.

An adaptive replica synchronization[1.]

mechanism among storage servers (SSs) without

the interference from the metadata server (MDS) in

a distributed file system is a mechanism that

employs a chunk list data structure, which holds the

information about the relevant chunk replicas and

is stored on the associated SSs corresponding to the

replicas. In most of the conventional distributed file

systems, the data replication is controlled between

the MDS and is transparent to the SSs, which will

place extra pressure onto the MDS. PARTE, a

prototype parallel file[2.] system with

active/standby configured metadata servers

(MDSs). PARTE replicates and distributes a part of

files metadata to the corresponding metadata

stripes on the storage servers (OSTs) with a per-file

granularity; meanwhile the client file system

(client) keeps certain sent metadata requests. If the

active MDS has crashed for some reason, these

client backup requests will be replayed by the

standby MDS to restore the lost metadata. Jajodia

[3.] addressed data replication and claimed that the

adaptive data replication algorithm aims at

decreasing the bandwidth utilization and latency by

moving data closer to clients. He considered that

adaptive replication algorithms change the

replication scheme of an object to reflect the read-

write patterns and eventually converge towards the

optimal scheme. Random replication[4.] is widely

used in data center storage systems to prevent data

loss. However, random replication is almost

guaranteed to lose data in the common scenario of

simultaneous node failures due to cluster-wide

power outages. Due to the high fixed cost of each

incident of data loss, many data center operators

prefer to minimize the frequency of such events at

the expense of losing more data in each event.

Copyset Replication, a novel general purpose

replication technique that significantly reduces the

frequency of data loss events. Such systems require

that each node‟s data be scattered across several

nodes for parallel data recovery and access. Clark

et al. [5.] replicates objects both on insertion and

retrieval on the path from the initiator to the target,

mainly for anonymity and availability purposes.

Google File System[6.], a scalable distributed file

system for large distributed data-intensive

applications. It provides fault tolerance while

running on inexpensive commodity hardware, and

it delivers high aggregate performance to a large

number of clients.

3 Proposed work

Replica synchronization is the process of

keeping every replica consistent. In a distributed

environment, whenever a data is modified by any

client, in order to maintain replica consistency the

changes have to be propagated to all other replicas.

So if any other client puts a read request, it should

get a valid copy of the data. This method uses write

through mechanism but has a small difference that

whenever the client make any changes on the file,

that changes will be first transmitted to the primary

server, so that the server can be synchronized and

then asynchronous replication is followed. All

write operations will be carried out on a primary

copy and then later based on certain threshold,

other replicas will be updated. Replica consistency

will be maintained from the viewpoint of client i.e.

though all the replicas will not be consistent, then

also client will always get valid data. Replication is

reduced by using asynchronous replication which

increases the performance.

Each operation is either a read operation

or a write operation, where write means writing a

value and read means reading the data. For write

operation, every time they are carried on a single

primary copy which is later replicated to all other

replicas. Read operations are done based on the

version and dirty bit. When a read request comes,

the system checks for the replica with the highest

version number and also checks its dirty bit. A

value one in the dirty field represents that the data

is dirty and a value zero represents that the data is

valid and is the latest written value. Read

operations are carried out based on the version and

dirty bit. Upon receiving a read request the system

checks for the replica with the highest version

number and also checks its dirty bit. A value one in

the dirty field represents that the data is dirty and a

value zero represents that the data is valid and is

the latest written value.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 14

 The goal is to perform replica

synchronization efficiently. Asynchronous

replication helps to do so because this mechanism

does not replicate the data immediately after the

write operation, rather than it will wait for a

threshold and based on that it will make all the

other replicas consistent.

Figure. 1. Replica Synchronization

Replica synchronization is done by using

asynchronous replication i.e whenever any

modification is done, first the primary copy is

updated and new version number is added with the

dirty bit marked as 0. This shows that the data is a

valid data. A threshold is set between subsequent

modification and once the threshold is reached,

then the updates will be propagated to other

replicas also. Replication list contains the

information about all replicas and is stored on the

SSs. After getting updateList request, information

in the list is updated. It can ensure the replica

consistency from the viewpoint of clients, although

certain replicas have not been updated. List helps to

maintain replica consistency from the viewpoint of

clients.

Figure. 2. System Architecture

Every modification is done on the primary

server and then is replicated to other copies. By

using the versioning concept and dirty bit,

consistency is maintained because during every

read operation, the data is read from the replica

where the value of the dirty bit is 0 and version is

the maximum.

In the Fig. 2, the given architecture describes

the read/write operations and asynchronous

replication mechanism. Client performs its

operations by using front end. For write operation,

every time they are carried on a single primary

copy which is later replicated to all other replicas.

Read operations are done based on the version and

dirty bit. When a read request comes, the system

checks for the replica with the highest version

number and also checks its dirty bit. A value one in

the dirty field represents that the data is dirty and a

value zero represents that the data is valid and is

the latest written value. Hence, replica consistency

is maintained from the viewpoint of client.

3.1 ALGORITHM

1: while Storage server is active do

2: if Write request received then

3: [version]=request id;

4: conduct write operation on the

primary copy

5: update the fields in the list;

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 15

6: set dirty =0 &&

version<-request id;

7: broadcast update list request

8: endif

9: if Read request received then

10: check if dirty=0

11: conduct read operation

12: else

13: select other replica

14: goto step 10

15: if update List request received then

16: perform update and send back

ACK

17: set dirty=0;

18: break;

19: endif

20:End while

Whenever a write request comes, the value of

request id is stored in the version number field and

the write operation is carried out on the primary

copy. Fields in the list are also updated like dirty

bit is marked as zero to show that the given data is

a valid data and is the result of the latest write

operation. Dirty bit of all other replica are marked

as one to indicate that the data is inconsistent. If a

read request comes, it checks the dirty bit in the

list, if the dirty bit is marked zero, then the read

operation will be carried out on that replica,

otherwise, it will continue to search a replica in

which value of dirty bit is equal to zero. This

technique achieves consistency from the viewpoint

of client i.e. though the updated data is not copied

to every replica, then also client will always get an

updated copy on every request. Whenever any

update list request comes, the entire lists are

updated and acknowledgement is sent to the

requestor.

3.2 TABLES USED

4 TABLE 1. FILESTATUS TABLE

TABLE 2. FILESDETAILS TABLE

The table 1 shown above comprises of

various fields that stores various attributes of the

file like filename, fileid, filesize, ver, etc. the table

2 comprises of detailed file attributes like

requestcount, replication threshold, dirty bit, etc.

Here we are maintaining three replicas. Changes at

one will immediately reflect on other two replicas.

When a node selects a file of its interest from

number of files, it is copied into the primary copy

first and any changes on existing file or document

causes the same changes to be propagated to other

two replicas also. Versioning concept is used here

in order to identify the most recent copy of the

replica. With every modification of the file replica,

a notification of the update is sent to all other nodes

that have the replica of the file that has been

updated and with that the version number is

automatically incremented. Every modification is

done on primary server to reduce unnecessary write

operation and asynchronous replication is done at a

later point of time, when the threshold is reached.

Upon failure of the primary server, one of the other

replica server act as primary server to satisfy the

ATTRIBUTE

NAME

ATTRIBUTE

TYPE

DESCRIPTION

Username VARCHAR Stores username

Fileid INT Unique Id of file

Filename VARCHAR Name of file that is replicated

Filepath VARCHAR Location of file

Filesize INT Size of file in bytes

Date Date Date of recent modification

Ver INT Version number

ATTRIBUTE

NAME

ATTRIBUTE

TYPE

DESCRIPTION

Fileid INT Unique Id of file

Requestcount INT Number of requests for a

particular file

Replication

Threshold

INT Maximum number of

requests for a particular file,

after which file will be

replicated on other servers.

Dirty INT Flag bit

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 16

read/write request. This technique ensures replica

consistency from the viewpoint of client.

4 CONCLUSION

The paper presents a replica

synchronization mechanism using asynchronous

replication mechanism. Once the file has been

replicated on „n‟ replica servers, the issue is to

maintain consistency among them. Here the replica

is propagated based on the threshold, i.e. when the

threshold is reached, all other replicas are made

consistent. Every read request is given to the server

with highest version number for the requested file

and with dirty bit marked 0. This avoids

unnecessary replication and also achieves

consistency from the viewpoint of clients.

References

[1] Jianwei Liao, Li Li, Huaidong Chen, Xiaoyan Liu,

“Adaptive Replica Synchronization for Distributed File

Systems”, IEEE System Journal, 2014.

[2] D Jianwei Liao, Yutaka Ishikawa, “Partial Replication of

Metadata to Achieve High Metadata Availability in

Parallel File Systems,” in Proc. 41st ICPP, 2012.

[3] Wolfson, O., Jajodia, S. and Huang, Y. 1997. An adaptive

data replication algorithm. ACM Transactions on Database

Systems, 22(2):255–314.

[4] Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti,

John Ousterhout and Mendel Rosenblum, “Copysets:

Reducing the frequency of data loss in cloud storage,” in

Proc. USENIX Conf. ATC, 2013.

[5] Clarke, I., Sandberg, O., Wiley, B. and Hong, T. 2000.

Freenet: A distributed anonymous information storage and

retrieval system.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung, “The Google File System,” SOSP‟03, October

1S9–22, 2003, Bolton Landing.

