
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 40

Secure Collaborative Privacy in Cloud Data

with Advanced Symmetric Key Block

Algorithm
Twinkle Graf.F

1
, Mrs.Prema.P

2

1
(M.E- CSE, Dhanalakshmi College of Engineering, Chennai, India)

2
(Asst. Professor – CSE, Dhanalakshmi College of Engineering, Chennai, India)

ABSTRACT: Developments in cloud computing has

led uploading large amount of data in the cloud.

Many users can be facilitated through this. But in

such cases security issues are more vulnerable.

Clients can download data from cloud and reuse

them for their research purposes. They can

collaborate actively online for learning purposes.

When the data is arbitrarily partitioned between two

parties, both parties want to grab the data but they

do not want that the other party should learn

anything about their own data. The final weights are

learned by the parties. There lacks a solution that

allows two or more parties, to collaboratively

conduct the updation. In our proposed approach, the

parties encrypt their arbitrarily partitioned data and

upload the cipher texts to the cloud .The cloud can

execute most operations pertaining with the

symmetric key block algorithm implemented in

proposed scheme. Each updation is independent to

the number of parties that is multiparty collaboration

can be performed. Access to stored information on

computer databases has increased greatly. So the

main idea of our proposed scheme is to implement a

privacy preserving algorithm for the cloud database.

Keywords:

Symmetric blocks, Trust Agent, Cloud

Service provider, Cipher blocks.

1 INTRODUCTION:

With the development in cloud storage

servers and internet technologies most of the data are

stored in the cloud. As cloud computing is a pay for

use model, it attracts large number of users. With

cloud services providing and storing data, users can

easily modify and share data as a group. To ensure

data integrity, data can be audited publicly; users

need to compute signatures on each and every byte in

the shared data. Different blocks of data are signed

by different users due modifications in the data

performed by different users. For security reasons,

once a user is revoked from the group, the blocks,

which were previously signed by this removed user

must be re-signed by an existing user. The normal

method, in which an existing user will resign to

download the data which allows an existing user to

download the corresponding data content is

somewhat inefficient when data size is large i.e.

metadata cases.

The paper proposes a novel public verifying

mechanism for the integrity of shared data with

efficient user identification. By utilizing signatures,

we allow the cloud to re-sign blocks on behalf of

existing users during user revocation. In addition, a

public verifier is always able to verify the integrity of

shared data without retrieving the entire data from the

cloud.

2 MODELS AND ASSUMPTIONS

2.1 SYSTEM MODEL

With data storage and sharing services, such

as Google Drive, provided by the cloud, people can

easily work together as a group by sharing data with

each other. Moreover people can upload their own

datasets or data and also other users can also make

use of them. Some websites also allow appending or

changing the information as known by the user. The

user may be one or the participating parties in much

number should verify whether the information is

updated by the authenticated user or someone else.

More specifically, once a user creates shared data in

the cloud, every user in the group is able to not only

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 41

access and modify shared data, but also share the

latest version of the shared data with the rest of the

group. Although cloud providers promise a more

secure and reliable environment to the users, the

integrity of data in the cloud may still be

compromised, due to the existence of

hardware/software failures and human errors .In these

mechanisms, a signature is attached to each block in

data, and the integrity of data relies on the

correctness of these signatures. One of the most

significant and common features of these

mechanisms is their ability to allow not only the data

owner, but also a public verifier, such as a third party

auditor (TPA) also may be a Trust Agent (TA), to

check data integrity in the cloud without

downloading the entire data, referred to as public

auditing. Different from these works, our recent work

focuses on how to preserve identity privacy from the

TPA or TA when auditing the integrity of shared

data.

2.2 CONTRIBUTION TO THE STUDY:

The main contributions of this paper are :

We propose an efficient method for

encoding the data or information to be stored in the

cloud. We ensure that a trust agent TA will be

responsible for key generation and verification. The

use of symmetric block key based cryptographic

algorithm is used.

2.3 REQUIREMENT

Now a days database management in the

earlier period has become upgraded with data mining

tools thus the vast amount of data available n the

cloud are managed mechanically. All data are

processed through machinated activities. The

enormous amount of data stored in the cloud is easily

being hacked and viewed. For instance, a bank

transaction report which has been managed by a DB

manager can be viewed to learn the tactics of DB

management by any other DB manager. But in such a

case the report should only be read by the other

person. It should not allow write property to the other

user. It will lead to security issues.

2.4 ASSUMPTIONS

In this paper, we assume that the scheme

supports secure and efficient dynamic operations on

data blocks, including: update, delete and append.

3 PROPOSED SCHEME

To enhance the security in cloud

environment where data is shared and stored and

transferred we propose a secure algorithm through

which collaborative learning is performed. For

instance PHI (protected Health Information) are all

needed to be kept secure according to Health

Insurance Probability and Accountability Act

(HIPAA).For this purpose.

3.1 ENTITIES

The proposed system has three important entities:

Fig 3.1.1 Entities

1) (Participating) Users or Parties: May be

an individual or organization.

2) Cloud Service Provider (CSP): CSP

contains resources and expertise in building

and managing distributed cloud storage

servers, owns and operates and leases the

live Cloud computing systems.

3) Trust Agent (TA),Third Party Authority

(TPA)

TA has expertise and capabilities that users

may not have, is trusted to assess, audit and

expose risk of cloud storage services on

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 42

behalf of the users upon request from the

users.

Fig 3.1.2 Trust Agent

Here we can adapt the symmetric key block

encryption algorithm where the datasets or data is

being separated as blocks or KEYBLOCKS(KB) as

referred in this paper.

Fig 3.1.3 Cipher Block Encryption

First an encryption key or Encryption

number is being generated which is the initial (init)

key. In this block based method a proposed

KEYBLOCK(KB) will contain all the possible words

which can be denoted as n number of characters. This

may include all characters of ASCII code from 0 to

255 (totally 256 characters). The key size could be

512 bit key size. After this key is generated by the

TA , it stores this key for encoding and decoding.

The key generation can be proposed as:

3.2 Proposed Key finding Steps:

1. Select any private key of Size 256 X 2 bits .

2. Size of selected key will be varying from

128 bits to 512 bits or 16 to 64 characters.

3. Any character from 0 to 255 ASCII code can

be chosen.

4. Divide 64 bytes into 4 blocks of 16 bytes

likes KEYBLOCKS KB1, KB 2, KB 3, and

KB 4.

5. XOR operation between Block1 and Block3

can be stored in new KB 13.

6. XOR operation between Block2 and

Block13 can be stored in new KB 213.

7. Apply XOR operation between KB213 and

KB 4 can be stored in new KB4213.

8. Repeat Step 7, 8, 9 till we get random

number / 4.

9. Exit

Fig 3.2 Keyblocks Division

A user or a participating party needs to

verify his/her data content he/she has to find this key

and keep. The initialization step is having the plain

text value and hence the real owner of the data can

only generate the key. If such a real owner of the data

needs to ensure that his/her data is secure he/she

needs to send a verify request to the CSP Cloud

Service Provider. The signature value generated and

the user’s pre computed value, if both are same, then

the data is disclosed to that user.

3.3 Steps of proposed Algorithm:

1. Initially select plane text of 16 bytes (or we

can vary from 16 to 64 depend on

requirement).

2. Initially insert key of size 16 bytes depend

on the input plane text value.

3. XOR operation performed between key

(KB4213) and plain text block (Text Block)

will have the result stored in Cipher Block

CB1.

4. Applying a right circular shift with 3 values

will have the result stored in new CB2.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 43

5. Applying XOR operation between CB2 and

KB will have the stored value in new CB3.

6. Applying XOR operation between CB3 and

KB4 will have the result stored in CB4.

7. CB4 is the output of the next round as a

plane text block.

8. Repeat Step 1 to 7 till we get random

number / 4.

9. Exit

3.4 Verify Token Creation:

The main idea is - when a file is distributed

to the cloud, the user pre-computes a certain number

of short verification tokens on individual vector F(j)

(j {1, . . . , n}), each token covering a random subset

of data blocks that would be distributed to the

different cloud servers. Later, when the user wants to

make sure the storage correctness for the data in the

cloud, he sends the verify request to the cloud servers

with a set of randomly generated block indices. Upon

receiving verify, each cloud server (CS) computes a

short “signature value” over the specified blocks and

returns them to the user. The values of these

signatures should match the corresponding tokens

pre-computed by the user. Suppose if the user wants

to verify the cloud server t times to ensure the

correctness of data storage, the user must pre-

compute x verification tokens for each F(j) (j {1, . . . ,

n}), a verification key kverify and a permutation key

Kperm. To generate the ith token for server j, the user

acts as follows,

1. Derive a verification key kverify and a

permutation key K(i) perm based on KPRP.

2. Compute the set of r randomly-chosen

indices.

3. Calculate the token v(j)i using the random

verification value .

After token generation, the user has the choice of

either keeping the pre-computed tokens locally or

storing them in encrypted form on the cloud servers.

3.5 Correctness Verification

The response values from servers for each

verification determines the correctness of the

distributed storage. The procedure of the ith verify-

response for verification over the d servers is

described as follows:

Fig 3.5.1 Token Verification

 The user shows the permutation key to each

server.

 The server storage vector F(j) aggregates

those k rows.

 Upon receiving linear combination from all

the servers, the user verifies whether the

received values remains as a valid

codeword d.

4 SCHEME OVERVIEW:

To achieve the above goals, the main

idea of our proposed scheme is to implement a

privacy preserving equivalence for each step of the

original algorithm. Our proposed scheme lets each

party encrypt her/his input data set and upload the

encrypted data to the cloud, allowing the cloud

servers to perform most of the operations, i.e.,

additions and scalar products.

To support these operations over cipher

texts, we adopt homomorphism encryption. It

supports one step multiplication over cipher text, the

intermediate results, for example, the intermediate

products or scalar products, shall be first securely

decrypted and then encrypted to support consecutive

multiplication operations. For privacy preservation,

however, the decrypted results known to each party

cannot be the actual intermediate values. We design a

secret sharing algorithm that allows the parties to

decrypt only the random shares of the intermediate

values. The random shares allow the parties to

collaboratively execute the following steps without

knowing the actual intermediate values. Data privacy

is thus well protected. The overall algorithm is

described in the parties jointly establish a neural

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 2 February 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 44

network representing the whole data set without

disclosing any private data to each other Secure

Scalar Product and Addition.

4.1 Encryption:
Given a message M, encrypt it as:

The message being securely separated into blocks

and applying XOR between the respective blocks

and finding cipher blocks will encrypt the data.

4.2 Scalar product:
F(j) (j {1, . . . , n}) for each input file F

being divided into blocks.

4.3 Secure Addition:
After obtaining the cipherblocks all the

valuable codewords are added for every

M1;M2; . . .;Mn, the cloud computes their sum as:

Cosum Ci =CB1+CB2 . .CB(F(j(1. . .n))

4.4 Decryption:
We just demonstrate the decryption of

Cosum as follows:

The cloud broadcasts Cosum to each party.

On receiving the cipherblock , each party P computes

Colums and returns the result to the cloud. With the

results from all the parties, the cloud computes:

QCosum = decrypt (CB (F(j(1. . .n))) after decrypting

the XOR blocks.

4.5 Key Verification:
Despite all the promises of cloud computing

such as flexibility, pay as u go model etc., however, it

has one unsolvable problem which is the security in

cloud data. Data security in cloud data storage is very

essential in a global distributed storage system. An

effective and useful distributed block scheme is

proposed to ensure the correctness of users' data in

the cloud servers. If this correctness verification is

too much resource consuming on the user’s side, the

task can be delegated to the third party auditor and

the pre-computed tokens could be either in the user’s

local device or cloud server in encrypted format.

Fig 4.5 Distributed Block Scheme

5 CONCLUSION
Since the data in cloud can be viewed not

only by authenticated users, there is a need to ensure

security for all data. Privacy for such data in cloud

can be preserved and write property is given to only

those users whose pre computed code will be equal to

the signature value generated by the server.

6 REFERENCES

[1] Sakshi Sanjay Deshmukh, Dr.G.R.Bamnote, Access to

Encrypted Data in Cloud Database, International Journal on

Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 3 Issue: 1 347 - 350
[2] Cong Wang, Student Member, IEEE, Sherman S.M.

Chow, Qian Wang, Student Member, IEEE,Kui Ren, Member,

IEEE, and Wenjing Lou, Member, IEEE. Privacy-Preserving

Public Auditing for Secure Cloud Storage, IEEE TRANSACTIONS

[3] Jiawei Yuan and Shucheng Yu, Member, IEEE

“Privacy Preserving Back-Propagation Neural Network Learning

Made
Practical with Cloud Computing”. IEEE Transactions on Parallel

and Distributed Systems, (Volume:25 , Issue: 1)

[4] Vishwa gupta, Gajendra Singh,Ravindra Gupta.

“Advance cryptography algorithm for improving data security”

Volume 2, Issue 1, January 2012 ISSN: 2277 128X International

Journal of Advanced Research in Computer Science and Software

Engineering

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6674937

