Abstract: This project addresses content-based image retrieval in general, and in particular, focuses on developing a hidden class detection methodology to address effective semantics-intensive image retrieval. In our approach, each image in the database is segmented into classes and contains classified images. We explore the query adaptive ranking to retrieve images. With this representation, model based on hash code of the image database is obtained, to analyze semantic concepts in the database. The semantic similarity is measured through sum rates for detecting images, to the discovered semantic signatures. And also implement the Hamming distance techniques to retrieve the relevant images from databases. The proposed schemes were compared with a conventional CBIR scheme employing image classification. Our experimental results are providing good retrieval on re-ranking precisions compared with the state-of-the-art methods.

Keywords: CBIR, Semantic signatures, Re-ranking, Image classification

I. INTRODUCTION

Content-based image retrieval (CBIR), also known as query by image content (QBIC) and content-based visual information retrieval (CBVIR) is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this survey[1] for a recent scientific overview of the CBIR field). Content-based image retrieval is opposed to traditional concept-based approaches (see Concept based image indexing). "Content-based" means that the search analyzes the contents of the image rather than the metadata such as keywords, tags, or descriptions associated with the image. The term "content" in this context might refer to colors, shapes, textures, or any other information that can be derived from the image itself. CBIR is desirable because searches that rely purely on metadata are dependent on annotation quality and completeness. Having humans manually annotate images by entering keywords or metadata in a large database can be time consuming and may not capture the keywords desired to describe the image. The evaluation of the effectiveness of keyword image search is subjective and has not been well-defined. In the same regard, CBIR systems have similar challenges in defining success. An image retrieval system is a computer system for browsing, searching and retrieving images from a large database of digital images. Most traditional and common methods of image retrieval utilize some method of adding metadata such as captioning', keywords, or descriptions to the images so that retrieval can be performed over the annotation words. Manual image annotation is time-consuming, laborious and expensive; to address this, there has been a large amount of research done on automatic image annotation. Additionally, the increase in social web applications and the semantic web have inspired the development of several web-based image annotation tools.
II. Related work

World wide web resources increasing every day and the growth of the web resources makes the information retrieval as a challenging task. Particularly the image retrieval in the web becomes more complicated due to the growth of the web resources. There exists few techniques for content based image retrieval, but suffers with the efficiency of providing better and appropriate results. For example, Google provides image search as a content based one and also it provides lots of irrelevant results.

For a content based system to be successful, it need to minimize the gap between analysts model of visual patterns and computers representation of information. Content based system enables the user to easily access to image databases using query methods similar to reasoning. Researches that use semantic methods proved to better mimic knowledge that represent visual patterns. Fonseca at al.[1] proposes an ontology-driven aerial-information system for classifying content based system that uses complex-query methods such as shape, multi object relationships and semantics.

In this paper, we propose a image retrieval technique that uses content and concept based methods and association rules to link visual semantics to the concepts.

We provide the query by example and query by concepts for the efficient retrieval of images. We deal with shapes, the only information usually available is the underlying geometry. Appropriate features are chosen to encode this geometry as richly as possible, without compromising on robustness. Quite clearly, the set of useful features varies depending on the particular application at hand. For example, invariance to articulations of part structures is very important in applications like gait-based human identification whereas the same feature is not desired for applications like retrieval based on human pose. Our goal here is to develop a system that supports fast retrieval of shapes without needing any costly correspondence step during matching. To this end, we use (or propose) features that address most challenges faced by shape matching tasks including invariance to object translation, rotation, scale, articulations, etc. In the proposed indexing framework, a given shape is represented using a collection of feature vectors, each characterizing a geometrical relationship between a pair of landmark points. The features should be easily computable for the matching algorithm to be efficient and to be able to scale up to large database sizes. For each landmark pair, depending on the application, all or a subset of the following geometrical characteristics are encoded in the corresponding feature vector.

III. Background Work

An image retrieval system is a computer system for browsing, searching and retrieving images from a large database of digital images. Most traditional and common methods of image retrieval utilize some method of adding metadata such as captioning, keywords, or descriptions to the images so that retrieval can be performed over the annotation words. The query-adaptive bitwise weights ought to be computed in real-time. To this end, it harnesses a group of semantic conception classes that cover several semantic aspects of image content (e.g., scenes and objects). Bitwise weights for every of the semantic classes are learned offline employing a novel formulation that not solely maximizes intra-class sample similarities however additionally preserves inter-class relationships. It shows that the optimum weights may be computed by iteratively solving quadratic programming issues. An efficient search mechanism is critical since existing image features are
mostly of high dimensions and current image databases are huge, on top of which exhaustively comparing a query with every database sample is computationally prohibitive. Many people adopted simple features such as color and texture in systems developed in the early years, while more effective features such as GIST and SIFT have been popular recently. In this work, we choose the popular bag-of-visual-words (BoW) representation grounded on the local invariant SIFT features.

IV. METHODOLOGY AND ALGORITHM

Content-based image retrieval (CBIR), also known as query by image content (QBIC) and content-based visual information retrieval (CBVIR) is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases. Content-based image retrieval is opposed to concept-based approaches. In this paper, we proposed semantic signature approach and hashing scheme. Semantic signature approach is used to collect visual and key features from images. Binary hashing has been widely used for efficient similarity search due to its query and storage efficiency. In most existing binary hashing methods, the high-dimensional data are embedded into Hamming space and the distance or similarity of two points are approximated by the Hamming distance between their binary codes. The Hamming distance calculation is efficient, however, in practice, there are often lots of results sharing the same Hamming distance to a query, which makes this distance measure ambiguous and poses a critical issue for similarity search where ranking is important.

IV. EXPERIMENTS

Image Acquisition: Image retrieval is the process of browsing, searching and retrieving images from a large database of digital images. The collection of images in the web are growing larger and becoming more diverse. Retrieving images from such large collections is a challenging problem. One of the main problems highlighted was the difficulty of locating a desired image in a large and varied collection. While it is perfectly possible to identify a desired image from a small collection simply by browsing, more effective techniques are needed with collections containing thousands of items. To search for images, a user may provide query terms such as keyword, image file/link, or click on some image, and the system will return images "similar" to the query. The user interface generally consists of a query formulation part and a result presentation part. Specification of that image to retrieve from the database is often done in many ways. One method is to browse through the database one by one.

Semantic Signatures: The query-specific visual semantic spaces can more accurately model the images to be re-ranked, since they have removed other potentially unlimited number of non-relevant concepts, which serve only as noise and deteriorate the performance of re-ranking in terms of both accuracy and computational cost. The visual features of images are then projected into their related visual semantic spaces to get semantic signatures. Images are re-ranked by comparing their semantic signatures obtained from the visual semantic space of the query image. Given M reference classes for keyword q and their training images automatically retrieved, a multi-class classifier on the visual features of images is trained and it outputs an M-dimensional vector p, indicating the probabilities of a new image I belonging to different reference classes. Then p is used as semantic signature of I. The distance between two images I_a and I_b are measured as the L1-distance between their semantic signatures P_a and P_b.

Hamming distances:

Hamming distance, an integer value attained by counting the number of bits at that the binary values be different. In large scale applications, the dimension of Hamming space is typically set as a little
The number (e.g., less than a hundred) to cut back memory cost and avoid low recall

Query adaptive ranking:

The query-adaptive bitwise weights ought to be computed in real-time. To this end, it harnesses a group of semantic conception classes that cover several semantic aspects of image content (e.g., scenes and objects). Bitwise weights for every of the semantic classes are learned offline employing a novel formulation that not solely maximizes intra-class sample similarities however additionally preserves inter-class relationships. It shows that the optimum weights may be computed by iteratively solving quadratic programming issues.

Search results:

Finally, weighted Hamming distance is applied to evaluate similarities between the query and images in a target database. It name this weighted distance as query-adaptive Hamming distance, as against the query independent Hamming distance wide employed in existing works. Notice that in online search it’s surplus to calculate the weighted Hamming distance based on real valued vectors (weights imposed on the hash codes). Given a query image, similarity retrieval involves searching the database for similar color distributions as the input query. Since the number of representative colors is small, one can first search the database for each of the representative colors separately, and then combine the results. Calculating Euclidian distance in a color space can do searching for individual colors very efficiently.

![F-Score value](image)

Fig 2: Performance measurement

V. CONCLUSION

The commercial version is typically less advanced, and shows additional standard looking out capabilities. For example, a research version of Amore exhibits sketching and additional fancy result visualization than is shown within the Arthur application system. It is difficult to evaluate how successful content based image retrieval systems are, in terms of effectiveness, efficiency, and flexibility. Of course there are the notions of exactness (the ratio of relevant images to the total number of images retrieved) and recall (the percentage of relevant images among all attainable relevant images). Several existing system regarding systems give figures concerning precision and recall. Most of them are good, however hard to verify. One reason is that several hyperlinks on the Web aren’t active any longer, a design flaw of the Web. However, there are also considerations intrinsic to retrieval systems. It is well known that the majority current content based image retrieval systems work with low level features (color, texture, shape), which next generation systems ought to operate at a higher semantic level. One way to attain this can be to let the system acknowledge objects and scenes. Although this can be difficult generally, it ought to be possible for specific domains.

References:

