
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 5

Usefulness of Agile Technique on Support

Teams
Charles Edeki, Ph.D

1
, Amanda Prince

2

1
Bronx Community College, City University of New York

Department of Business and Information System

2155 University Avenue, Bronx, New York 10453.
2
School of Science and Technology, Department of Information Technology

American Public University

111 W. Congress Street, Charles Town, WV 25414

Abstract
Can Agile be used on support teams? The Agile software

development methodology has become increasingly

popular for building applications by software development

project teams. Many companies are moving from the

traditional waterfall approach to the faster agile approach

for their software development projects. Support teams

have a lot of on their plate dealing with production issues

as well as bug fixes and enhancements. This study

examined the possibility of using Agile on support teams to

help manage these development tasks while still ensuring

that production issues are handled as they come up.

Keywords: Agile, waterfall model, software

development, software bug.

Introduction

Production support teams have several things they are

responsible for. First and foremost, they must keep

production systems and/or applications up and

running 24/7. In addition to that, they work on bug

fixes and sometimes small enhancements.

This study considered what the agile

development methodology is about and the

challenges that support teams facing to accomplish

software development tasks without a development

methodology in place. Several approaches to

incorporating agile development tasks in the software

projects were described. The goal of these

approaches was to allow support team members time

to focus on development tasks to be able to get them

completed and not be constantly distracted by

production issues. Agile development methods are

used by many companies and many development

projects are seeing lots of success when using it.

Support teams need something to help with the

challenges they face regarding development tasks.

The study looked into these challenges to research

the question of can agile be used on support teams.

The Problem

Support teams are getting more and more projects

transitioned over to them to support. The rate to

which they are getting new applications to support is

possibly due to many projects moving to agile which

allows projects to be completed more quickly.

Support teams may benefit from adopting similar

agile practices to aid in the growing number of bug

fixes and enhancements due to the increase of

applications. Development teams have been using

agile for some time, but can agile also be used on

support teams?

Production support teams are generally

responsible for making bug fixes, small

enhancements requested by customers, and dealing

with production issues. There is a lot of

responsibility to manage a 24/7 production

environment. Speediness, precision, reaction time

and problem-solving are crucial and usually the

support team is working on code they didn’t create.

That can cause many challenges to a team trying to

accomplish other tasks at the same time such as

enhancements. McLaughlin (2008) wrote that, the

struggle typically comes in the form of pulling people

away from development tasks to make whatever hot

fixes are necessary. This is clearly disruptive to the

development efforts. Oftentimes, a team member is

being pulled away to work on something that’s very

unpredictable. This disrupts their rhythm and

velocity. It makes planning difficult. Context

switching makes developers less productive.

 With all the distractions of production

issues, it is difficult to make much headway on

development efforts. As production issues arise, the

development efforts are pushed to the side over and

over, and typically, not a lot of progress is made.

This leads to customer frustration with not getting

their requests completed, as well as, team member

frustration where they feel like they do not get things

accomplished.

Agile Software Development Methodology

Incremental software development methods have

been tracked back to 1957 at IBM (Nicholson, 2013).

Since the mid 1990’s, agile software development

has become increasingly popular. Dennis & Wixom

& Tegarden (2012) describe agile as:

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 6

―Focusing on streamlining the system-development

process by eliminating much of the modeling and

documentation overhead and the time spent on those

tasks. Instead, projects emphasize simple, iterative

application development. All agile development

methodologies follow a simple cycle through the

traditional phases of the system development process

(p. 14).‖

One of the biggest benefits to agile development is

that it provides opportunities to assess the direction

throughout the development lifecycle. This is done

through iterations where the teams must present a

potentially shippable project at the end of each

increment. Agile Methodology (2015) states:

―by focusing on the repetition of abbreviated work

cycles as well as the functional product they yield,

agile methodology is described as ―iterative‖ and

―incremental‖. In waterfall, development teams only

have one chance to get each aspect of a project right.

In an agile paradigm, every aspect of development —

requirements, design, etc. — is continually revisited.

When a team stops and re-evaluates the direction of a

project every two weeks, there’s time to steer it in

another direction. This ―inspect-and-adapt‖ approach

to development greatly reduces development costs

and time to market. Because teams can develop

software at the same time they’re gathering

requirements, ―analysis paralysis‖ is less likely to

impede a team from making progress. And because a

team’s work cycle is limited to two weeks,

stakeholders have recurring opportunities to calibrate

releases for success in the real world. Agile

development helps companies build the right product.

Instead of committing to market a piece of software

that hasn’t been written yet, agile empowers teams to

continuously re-plan their release to optimize its

value throughout development, allowing them to be

as competitive as possible in the marketplace. Agile

development preserves a product’s critical market

relevance and ensures a team’s work doesn’t wind up

on a shelf, never released.‖

Figure 1. : Agile Methodology– Agile Process Flow

Steps

Agile Benefits and Challenges for Support Teams

While these are some overall benefits to using agile,

there are some benefits that could directly help

support teams. Most support teams have a backlog of

bugs and enhancements. Part of incorporating agile

would entail reviewing the entire list and assigning

points based on their complexity. Unlike taking bugs

as they come or as the team fixes them, this approach

enables the team to review the bugs in a structured

way (Darbha, 2012).

Another specific benefit to support teams is

that a sprint is time-bound and shouldn’t last longer

than three or four weeks, but can be as short as one

day. Agile requires that bugs be fixed and verified

within the sprint so they don’t spill over. This may

help bring a sense of urgency and goal-setting that

otherwise can be difficult in the support scenario

(Darbha, 2012).

It’s even more important in support than in

development to remember that the goal is to deliver

working code at the end of each time box. Bird

(2011) states that if some code is not working, or

you’re not sure if it is working, then extend the

deadline, back some of the changes out, or pull the

plug on this release and start over. Don’t risk a

production failure in order to hit an arbitrary

deadline. If the team is having problems fitting work

into time boxes, then stop and figure out what you’re

doing wrong – the team is trying to do too much too

fast, or the code is too unstable, or people don’t

understand the code enough – and fix it and move on.

 Visibility is another benefit that agile can

bring to support teams. Sometimes support teams do

not get a lot of visibility unless issues are escalated.

Because senior management is involved in the sprint

planning and meetings, management is able to focus

on the team’s successes.

It is harder to introduce agile practices into a

support team because there are a lot of technical

requirements and some cultural changes that need to

be made. But most maintenance teams have little to

lose and lots to gain from borrowing from what agile

development teams are doing. Agile methods are

designed to help small teams deal with a lot of

change and uncertainty, and to deliver software

quickly – all things that are at least as important in

maintenance as they are in development (Bird, 2011).

On support teams, it’s not easy to see how

big changes can be broken down into small steps that

can be fit into short time boxes. Bird (2011) says, it

is harder for support because you have to be more

careful in understanding and untangling dependencies

before you make changes, and you have to be more

careful not to break things. The code and design will

sometimes fight the kinds of changes that you need to

make, because you need to do something that was

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 7

never anticipated in the original design, or whatever

design there was has been lost over time and any kind

of change is hard to make.

Sometimes work doesn’t fit into short time

boxes. Short iterations might work for bug fixes and

small enhancements, but sometimes you need to

make bigger changes that have lots of dependencies.

While Agile teams building new systems can stub out

incomplete work and keep going in steps,

maintenance teams have to get everything working

all at once – it’s all or nothing. You can use tools to

figure out how much of a dependency mess you have

in the code and what kind of changes you need to

make to get out of this mess. If you are going to

spend ―weeks, months, or even years‖ to make

changes to a system, then it makes sense to take time

upfront to understand and break down build

dependencies and isolate run-time dependencies, and

put in test scaffolding and tests to protect the team

from making mistakes as they go along. All of this

can be done in time boxed steps. Changing data in a

production system, especially data shared with other

systems, isn’t easy either. You need to plan out API

changes and data structure changes as carefully as

possible, but you can still make data and database

changes in small, structured steps.

Agile development teams follow incremental design

and development to help them discover an optimal

solution through trial-and-error. Support teams work

this way for a different reason – to manage technical

risks by breaking big changes down and making

small bets instead of big ones.

Working this way means that you have to put in

scaffolding (and remember to take it out afterwards)

and plan out intermediate steps and review and test

everything as you make each change. Sometimes it

might feel like you are running in place, that it is

taking longer and costing more. But getting there in

small steps is much safer, and gives you a lot more

control.

Teams working on large legacy code bases and old

technology platforms will have a harder time taking

on these ideas and succeeding with them.

Agile development is not without some

challenges. One major criticism is that if it is not

carefully managed, the project may never actually

complete. It could just become a never ending cycle

of iterations that keeps changing the application.

Another criticism is the lack of actual documentation

up front could lead to a lack of documentation when

the project is completed. These challenges can be

overcome with proper guidance and leadership.

Possible Approaches to Incorporating

Agile

Agile development is best suited for small

projects. Typically, a support team only works on

bug fixes and small enhancements. Because they

don’t usually work on large projects, agile

development is definitely something to consider. The

current, most common approach, to development by

support teams is as time is allowed, or when there are

not production issues. But as discussed earlier, this

can lead to things not getting accomplished very

quickly. In an effort to try to get more tasks

completed, using agile development methods by

support teams could be considered by using several

different approaches. Cottmeyer (2009) describes

three approaches:

Approach One: Alternate the teams between support

iterations and new development iterations. The team

would establish a steady velocity (every other week)

based on their new development work and that steady

velocity could be measured against the remaining

backlog to balance the scope and end date. If the

team is not 100% consumed with support during a

given sprint, they can use the extra time to get ahead

of the game on their upcoming development sprints.

Approach Two: Assuming there is some historical

data on how much time is spent doing support,

allocate a fixed amount of bandwidth to support

activities each sprint. For example, each team would

allocate 30% of their time to support activities and

velocity would emerge based on the time they have

remaining to do new development.

Approach Three: Have one team responsible for

development and one team that is responsible for

support. That would allow the development team to

get into a groove writing new code and the support

team to establish patterns for how much and how

quickly they can get through support tickets. Team

members could rotate in and out of the support team

and back onto the new development team to allow

everyone time doing both aspects.

Davies (2001) has another approach:

One person is allocated permanently to a

Client Support role and each day a developer pairs

with that person to provide technical assistance. This

developer is ―exposed‖: this means interruptible for

customer and client support questions. The exposed

developer may need to ask another developer for help

but they will have a better understanding of who is

the best person to ask.

There are several approaches that could be

tried to incorporate agile into a support team. As

with any development team working on any agile

project, the methodology can be adjusted to fit the

situation. Not all approaches would work for all

teams and all type of projects.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 2 issue 7 July 2015

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 8

Conclusion
In conclusion, agile development methods

can be used on support teams in several ways. Using

one of the described approaches, support teams could

find time to work on small pieces of the enhancement

or bug fix within each iteration. Some of the

approaches even dedicate a team member’s time

completely to development tasks instead of being

pulled between production issues and development.

While it may not be easy to move a support team to

agile, there are a lot of benefits. The biggest

challenge for support teams is finding that dedicated

time to work on development. If they are able to find

an approach to get the time needed, they could make

progress within each iteration and get the

development tasks completed. This benefits the

customer because they get their enhancements and

bug fixes completed and it also helps the team

members feel like they are getting things

accomplished.

References
1) Agile Methodology. Retrieved January 4, 2015 from

http://agilemethodology.org/.
2) Bird, Jim. (2011, October 12). You Can’t be Agile in

Maintenance. Building Real Software, Retrieved from

http://swreflections.blogspot.com/2011/10/you-cant-be-agile-
in-maintenance.html.

3) Cottmeyer, Mike. (2009, February). Handling Support On

Agile Teams. Leading Agile, Retrieved from
http://www.leadingagile.com/2009/02/handling-support-on-

agile-teams/.

4) Darbha, Shweta. (2012, February 22). Can Support and

Maintenance Teams Become Agile? Scrum Alliance,

Retrieved from

https://www.scrumalliance.org/community/articles/2012/febr
uary/can-support-and-maintenance-become-agile.

5) Davies, Rachel. (2001, May 3). Extreme Support, Retrieved

from
http://cf.agilealliance.org/articles/system/article/file/1253/file

.pdf.

6) Dennis, A., & Wixom, B.H., & Tegarden, D. (2012).
Systems Analysis & Design. John Wiley & Sons, Inc.

7) Linders, Ben. (2010, Winter). Process improvement, The

Agile Way! Methods and Tools, Retrieved from
http://www.methodsandtools.com/archive/archive.php?id=11

5.

8) McLaughlin, Mike. (2008, September 23). The Agile Coach
on Production Support. Agile Exectuive Blog, Retrieved

from

http://blogs.versionone.com/agile_management/2014/04/08/t
he-agile-coach-on-production-support/.

9) Nicholson, Laurence. (2013, April). Agile in Project

Management: A Brief Overview. PM World Journal, 2:4.

a. http://pmworldjournal.net/wp-
content/uploads/2013/04/pmwj9-apr2013-nicholson-agile-

project-management-brief-history-commentary.pdf

http://agilemethodology.org/

