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Abstract—A Multi-objective problems occurs 

wherever optimal solution necessary to be taken in the 

presence of tradeoffs between more than one 

conflicting objectives. Usually the population’s values 

of MOPSO algorithm are random which leads to 

random search quality. Particle Swarm Optimization 

Based on Multi Objective Functions with Uniform 

Design (MOPSO-UD), is proposed to enhance the 

accuracy of the particles convergence and keep the 

versatility of the Pareto optimal solutions and used the 

Uniform design to resolve the randomize search 

problem of the original MOPSO algorithm also the 

execution time of MOPSO-UD is faster compared with 

multi-objective particle swarm optimization algorithm 

(MOPSO). 
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I. INTRODUCTION 

Over the last few years, new technologies provided 

a Swarm Intelligence (SI), which it is a set of 

stochastic methods based on the collective behaviour 

of self-organizing, distributed, flexible, autonomous 

and dynamic systems. These systems have a 

population of simple computational parameters that 

able to understand and modify their local environment. 

This capability makes possible communication among 

the parameters, which pick up the changes in the 

environment that generated by the behaviour of their 

neighbours. There is no centralized control structure to 

establish how the parameters should behave local 

interactions among the parameters generally result to 

give a global behaviour, also without an express 

model of the environment. Particle Swarm 

Optimization Algorithm is swarm intelligence 

optimization algorithm [1]; it is a random searching 

algorithm [2]. The main objective idea of PSO 

algorithm is originated from sharing and updating the 

information among the particles in the process of 

space searching. Each individual particle can benefit 

from discovery and flight experience of the others. In 

PSO algorithms, the particles swarm randomly 

initialized in the searching space and each particle has 

initial position and its own velocity. The path of 

particle is updated through particle best position and 

the path of swarm is updated via global best location 

of the particles swarm. This makes particles move to 

the optimal solution [1]. The parameter results 

identification influenced directly by the Initial 

population and the initial value of the algorithm 

parameters in PSO method. Generally, covered the 

searching space is uncertain. If the initial space 

population does not contain the information of global 

optimal solution, in the process of iteration, the 

searching space face difficult to extend to the region 

where the solution of global optimal in the finite times. 

The premature convergence problem may happen [3]. 

Uniform Design can be the solution of the randomness 

problem. Its aim to scatter design points uniformly on 

an experimental region [4]. UD get the most 

information via smallest number of tests, and reduce 

the direct influence of the initial population and the 

initial value of algorithm parameters on the results of 

parameter identification greatly. In the reference [2], 

PSO algorithm based on uniform design (UD-PSO) is 

proposed by used combining the UD and PSO 

algorithm. This algorithm thinks about the uniformity 

of the particle swarm distribution and the memory 

characteristic of particles. In the reference [1], is 

proposed a novel algorithm, parallel multi-swarm PSO 

based on k-medoids and uniform design. During the 

last decade a new technique has become a promising 

research area as many optimization problems of the 

real world fall into this category it is called multi-

objective optimization [5]. A lot of practical 

optimization problems often include the simultaneous 

satisfaction of more than one objective function which 

are usually in opposes. The real difficulty very often 

resides with the multiple conflicting objectives 

simultaneous optimization. Which no one single 

solution can to be an optimal solution. That means 

they have two or more of trade-off solutions rather 

than a single one to satisfy all opposing objectives [6]. 

Inspired by various backgrounds, an increasing the 

multi-objective optimization algorithms number [7]; 

however, the optimal solutions can be a set of 

solutions with a trade-off of the objectives [8]. The 

optimal set of the trade-off solutions is known as the 
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Pareto-optimal set from which solution for an 

application can be picked using a decision maker. The 

MOO is proverbially based on three approaches, i.e., a 

priori, interactive and a posteriori [5]. A priori 

approach is a preference-based strategy, which 

comprising of comparative preferences of the different 

objectives is used. However, it is a tough task to 

devise like a preference-based strategy without any 

knowing of the likely trade-off solutions. A priori 

approach examples are: goal programming, weighting 

method, lexicographic ordering, etc. The DM in the 

interactive approach explains its preference during the 

optimization process and converts the search direction 

to the sits preferred area where it intends to have the 

solution. Without knowing all the Pareto-optimal 

solutions it is very difficult for the DM to prefer the 

solution. In the third approach (posteriori approach), 

the optimization designed to obtain all the Pareto-

optimal solutions from that the DM picks one. Many 

MOO algorithms from this approach as there are no 

need to know any prior knowledge about the relative 

objectives. 

There are two techniques used for solving the 

MOO problems, the first one is classical search 

algorithm and the second one is evolutionary 

algorithm. CS algorithm is a point-by-point search 

method where just one solution is evaluated and 

updated to get a better solution at every iteration.The 

outcome of these techniques is a single solution. In 

EA, the candidate solutions improvement in 

successive iterations is basically done by using point-

to-point search working method utilizing mass 

experiences from a set or neighbourhood, since EA 

uses the potential candidate solutions. Thus, it 

produces in its final population multiple near-optimal 

solutions. The multi-point search ability to get 

multiple solutions in a simulation operation makes 

EAs unique to solve MOO problems. There are many 

types of EAs, like Genetic Algorithm (GA), Ant 

Colony Optimization (ACO), Artificial Immune 

System (AIS), Tabu Search (TS) and Particle Swarm 

Optimization (PSO). GA has mostly used for the 

MOO. The latest literature surveys refer the PSO to be 

a competitor of the GA [9-12].  PSO has many 

advantages, like effective memory use, easy 

implementation, and solutions diversity maintenance 

[11,12]. Multi objective PSO (MOPSO) is aims to 

reach a better convergence and better diversity among 

the solutions [13]. Thus, the most researches on 

MOPSO are aimed to attainment of these two goals. 

The first goal (better convergence) can be achieved by 

determine a suitable guide in the particle swarm for 

each particle. Unlike a very preliminary work [14], all 

other works [15-24], follow the selection mechanism 

of local/neighbourhood best guide. The various types 

of selection mechanisms of local guide are: Sigma 

method [17,18], dynamic neighbourhood method 

[15,25], random selection and roulette wheel selection 

[20,26], non-dominated sorting PSO [16], and sub-

swarm based method [19,23,24]. The second goal of 

MOPSO (better diversity among the solutions) can be 

achieved by using additional operators of EA, i.e., 

mutation/ turbulence operator [17,23,26], or by proper 

archiving of the group of elite/non-dominated 

solutions in sequential iterations. There are different 

archiving techniques, like, niche count [16], crowding 

distance assignment [16], A-dominance [18], and 

clustering technique [19,24]. However, the use of 

special archive techniques or additional EA operators 

poses additional computational strain. 

The simultaneous optimization of the MOO can be 

done in many ways, like, lexicographic ordering [13], 

Pareto-dominance based approach [27], aggregating 

approach [28], and non-Pareto based approach [29]. 

Most of the MOO algorithms are based on the Pareto-

dominance principle [13,29].  

In this paper, a Particle Swarm Optimization Based 

on Multi Objective Functions with Uniform Design, 

the Pareto-based approach is used and we proposed a 

new modified on PSO algorithm where used Multi 

Objective Functions to decrease the execution time to 

get the optimal solution from more than one solution 

and used the Uniform Design to solve the randomize 

search problem. This paper used three techniques 

(PSO, MOO and UD) to get a new optimization 

algorithm which called (MOPSO-UD). 

The organization of this paper is as follows; 

Section 2 is related works. Preliminaries are described 

in Section 3. In Section 4, we present the proposed 

method. Experimental results are given in Section 5. 

Section 6 is the conclusion. The appendix consists of 

the list of abbreviations and principal symbols used in 

this paper. 

II. RELATED WORKS 

This section gives some of related literatures for 

this paper. Literature [30] was the first effort to extend 

PSO algorithm to solve MOO problem. In their 

algorithm used Pareto dominance to generate the 

leaders list that guides the search. Literature [31] 

proposed multiple objective particle swarm 

optimization proposal which uses a geographically 

based approach and an external memory to maintain 

diversity. They were made the first comparisons 

between MOPSO with multi-objective evolutionary 

algorithms. After these works, a many PSO algorithms 

types to handle MOO problems have been developed 

[32]. Literature [33] used roulette wheel selection to 

select the global best particle from the trade-off 

solutions. Literature [34] select the global best particle 

by utilized a tournament niche method, and used 

Pareto dominance to update the local best particle. 

Literature [35] was rank all the particles by developed 

a preference order and thus to identified the global 

best particle. Literature [36] combined PSO with EA 

algorithm and used a tournament selection to select 

the global best particle from the external archive and 

select the individual best particle as the one with 

minimum strength Pareto fitness. Literature [37] 

introduced a multi-objective PSO algorithm enhanced 
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with a fuzzy logic-based controller. The authors 

evaluate search spaces by used a number of fuzzy 

rules further dynamic membership functions.  

To prevent PSO algorithms from getting caught 

into local optimal, usually employed the diversity 

preserving techniques. A considerable technique being 

conducted to maintain the swarm variety in PSO, 

multi-swarm technique has attracted more attention. In 

latest years, many multiple swarms PSO algorithms 

have been developed for MOO. Literature [26] 

adopted different clustering techniques to divide the 

particles population into several swarms, aimed to 

maintain a better diversity. Literature [38] used k-

means approach for clustering the particles into sets 

and developed a multi-swam PSO for molecular 

docking problem. Literature [39] developed a strategy 

of dynamic population and integrated it with the multi 

swarm PSO to form an efficient algorithm for MOO. 

Many scams, like estimation of cell-based rank 

density, population growing and declining, also 

adjustment the local search, are aimed to improve the 

algorithmic performance. Literature [40] developed a 

cooperative multi-objective PSO algorithm. The 

algorithm composed of multiple sub-swarms which 

associate of each other with the ring topology. 

Literature [41] proposed a dynamic multi-swarm PSO 

for MOO. This divided the population dynamically 

into several small sized swarms and reassembly 

randomly every other a few generations. Literature [42] 

also applied dynamic multi-swarm PSO algorithm to 

large-scale portfolio optimization problem and 

obtained competitive performances. Literature [43] 

proposed a cooperative PSO algorithm which employs 

multi sub-swarms to solve the routing recovery 

problem. Literature [44] developed an archive based 

multi-swarm algorithm for many-objective problems. 

In this algorithm, different swarms have different 

achieving methods and contact with each other using 

the ring topology. Literature [45] proposed a hybrid 

competent multi-swarm approach for MOO. In their 

algorithm, the distribution algorithm estimation is 

combined with multi-swarm PSO. 

III. PRELIMINARIES 

A. PSO algorithm 

In 1995 Dr. Eberhart and Dr. Kennedy developed 

an evolutionary computation technique that inspired 

from the social behaviour of birds [9]. PSO is 

initialized with a population of random solutions, 

called particles [46]. These particles are flying around 

the searching space with a velocity that is dynamically 

adjusted. These dynamical adjustments are dependent 

on the historical behaviours of itself and other 

particles in the population. ,  

represents the  particle, the best individual solution 

of is . The best solution of all 

particles is , 

  is the velocity of particle i [47], the 

velocity changes are calculated as Eq.(1), for 

particle dimension: 

 ,  (1) 

The position of a particle is calculated as 

following equation: 

,                   (2) 

The first term among the three component terms in 

Eq.(1), is referred to habit or momentum, i.e., the 

propensity of a particle to keep the same direction 

which it has been traveling. The second term, which is 

scaled by the learning constant and the random 

number , is referred to as guidance by self-

knowledge. The third term, which is scaled by the 

learning constants  and the random number , is 

referred to as guidance by group knowledge [12]. The 

fitness of a particle is identifying by a predefined 

objective function. A particle’s  Serves as a 

directory and the best neighbour is sentenced by the 

fitness evaluation. PSO is executed iteratively till 

attained the specified termination criterion, i.e., certain 

desired particle fitness or a specified maximum 

number of iterations. Several basic PSO modifications 

have been reported [10, 11, 12]. Between them, an 

efficient modification is that of a linearly decreasing 

inertia weight  to balance global and local search 

[10]. Lower inertia facilitates local search and a higher 

inertia represents a global search by increase the 

weights on the previous experience. In this inertia 

model, the velocity of the particle is updated by using 

Eq.(3). The inertia weight is multiplied with the 

particle velocity of the previous iteration. 

 

(3) 

The PSO performance depends on the sharing the 

information among the particles, using various 

neighbourhood topologies. The common types of 

neighbourhood are the local best and global best 

topologies [11]. In the local topology, a particle shares 

its experience just with its immediate neighbours. In 

the global topology, the particles shares information 

immediately results in initial faster convergence, with 

a great being trapped possibility in local minima.  

The pseudo code of PSO algorithm is given below. 

Particle Swarm  Optimization Algorithm 

1. // initialize all particles. 

2. for each particle i do 

3.      for each dimension d in D do 

4.        //initialize the position and velocity of all 

particle’s 

5. =  

6.      end for 
7.      //initialize Particle best position 

8. =  

9.      //update the global best position 
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10.      If < then 

11. =  

12.      end if 

13. end for 

14. repeat 
15.      for each particle i do 

16.        //update the particle’s best position 

17.        If < f( ) then 

18. =  

19.        end if 
20.        //update the global best position 

21.        If < then 

22. =  

23.        end if 

24.      end for 
25.      //update particles velocity and position 

26.      for each particle i do 

27.        for each dimension d do 

28.          calculate the velocity and position 

29.        end for 

30.      end for 
31.      //advance iteration 

32.  

33. until  

 

B. Multi-Objective Optimization 

The problems of the real-world involve 

simultaneous optimization of multi objective functions. 

Generally, these functions conflict and compete with 

themselves [48]. Usually the real empirical scheduling 

decisions involve not only look at more than one 

objective at a same time, but also prevent the 

conflicting objectives [49]. MOO with conflicting 

objective functions provides a set of optimal solutions 

is called (Pareto-optimal), instead of one optimal 

solution so that no other solution is better than with 

respect to every objective functions. A multi-objective 

minimization problem with p decision variables and q 

objectives is given below to define the concept of 

Pareto optimality [48], 

 

,                        (4) 

where ,  

 

Definition1.1. A solution n is said to dominate 

solution m if and only if: 

 

,(5) 

 

The solutions that do not dominate themselves but 

dominate the other solutions are called non-dominate 

solutions. 

Definition1.2. A solution n is said to be a Pareto 

optimal solution if solution m does not exist such that 

m dominates n. The set including all Pareto optimal 

solutions is also called the efficient set, or Pareto 

optimal set. 

 

 

C. Uniform Design 

Briefly in this section, we describe one of the 

important experimental design methods called 

Uniform Design. It was proposed in 1981 by Professor 

Kaitai Fang and Yuan Wang [50,51]. The Uniform 

design has been successfully used in many fields, such 

as computer sciences, natural sciences, system 

engineering and survey design pharmaceutics etc. The 

main objective idea of UD is to sample a small group 

of points from a given group of points, such that 

sampled points are uniformly distributed. Suppose  

factors and q levels per factor. The UD selects  

combinations out of qn possible combinations after n 

and q are given. Selected q combinations are given by 

a uniform array .where level of 

the factor in the combination, which can be 

calculated by the following formula: 

 

 ,                                   (6) 

 

where, the parameter σ should be chosen by the 

user [50,51]. 

IV. PROPOSED METHOD 

In this paper, A Particle Swarm Optimization 

Based on Multi Objective Functions with Uniform 

Design, we proposed MOPSO-UD algorithm to 

decrease the running time of original MOPSO 

algorithm and employee the uniform design in multi 

objective swarm optimization to develop the work of 

multi objective PSO algorithm and resolve the 

randomize searching problem. The MOPSO-UD 

algorithm steps are the following: 

Step1: Initialize swarm, velocities and best positions 

of each particle in the swarm and empty external 

archive . 

Step2: For each particle  

Step2.1: Select archive members. 

Step2.2: Update velocity and position. 

Step2.3: Evaluate new position. 

Step2.4: Update best position and archive . 

Step3: If stopping conditions not be satisfied repeat 

step (2). 

The first step is to initialize the population of the 

swarm which the first values of the particles velocities 

and positions are random and the external archive set 

 is empty. Next step is selecting the archive 

members; then update the velocities according to Eq. 

(7).  
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 (7) 

where, the new velocity is and the old velocity 

is , where the parameter of inertia weight 

coefficient is , which points out the particle's 

ability to maintain the previous speed. and  

are acceleration coefficients used to represent the 

degree of tracking solitary optimal and over all 

optimal respectively. is the current position of the 

particle , the parameters and are the best 

particle  position and the leader position of each 

particle  respectively. The velocity update equation 

consists of three components, including components 

of the previous velocity, a cognitive and a social. They 

are mainly controlled by the inertia weight parameter 

and two acceleration coefficients. Uniform parameters 

are given in Eqs. (8) and (9) 

                   (8) 

 

,  (9) 

where, is the particle and the parameter is 

maximum iterations ,  ,  are same as the 

parameters of Eq. (7) and  is detected by the user. 

To update the positions of each particles follow Eq. 

(2). then evaluate the new positions of the particles, 

after that update both of best positions and the archive, 

updating operation of the best position of the 

individual particle is by compare the current best 

position with the new position if the new position is 

better then will change current position by new 

position otherwise the particle keep the current 

position and updating the archive using non-dominate 

solutions that explained in definition 1.1 to update the 

members. Finally, terminate the search process when 

the stopping conditions are satisfaction. 

V. RESULTS 

The performance of MOPSO-UD algorithm has 

been compared with the original version of MOPSO 

algorithm. The experiments are given in this section. 

 

A. Experimental setting 

In this section, the performance of MOPSO-UD 

algorithm is examined and implemented in Matlab 

[R2013b]. During the numerical experiments, both the 

Particle Swarm Optimization Based on Multi 

Objective Functions with Uniform Design and the 

original version of MOPSO algorithm were run with 

random initial population values and repeated for ten 

times and the running trials implemented with two 

hundred particles. The inertia weight  is 0.7 and 

the inertia weight damping rate equal to one. The 

acceleration coefficients and  set to two.  

They are the parameters of cognition and social model 

of MOPSO-UD and MOPSO respectively. Deap-

benchmarks test multi objective functions used to test 

both of the algorithms. The multi objective test 

functions that used are ZDT1, ZDT2, ZDT3, ZDT4 

and ZDT6. The formulates are shown in Table 1, 

 
TABLE I 

Deap-benchmarks test multi objective functions 

 

Test 

functions 

name 

Formula 

ZDT1 
 

 

 
 

 

ZDT2 
 

 

 
 

 

ZDT3 
 

 

 
 

 

ZDT4 
 

 

 
 

 

ZDT6 
 

 

 
 

 

Particle Swarm Optimization Based on Multi 

Objective Functions with Uniform Design is applied 

to decrease the execution time of MOPSO algorithm. 

 

B. Experimental results 

As we mentioned in Section one, a Particle Swarm 

Optimization Based on Multi Objective Functions 

with Uniform Designis proposed a new modified on 

PSO algorithm where used Multi Objective Functions 

to decrease the execution time to get the optimal 

solution from more than one solution.In this paper we 

reduced the execution time of anoriginalMOPSO. The 

experimental results are shown in Table 2, which 

gives the average of the execution time of MOPSO-

UDand Original MOPSOalgorithms, which Table 2 is 

comparative of the execution time between the 

proposed and original version method. 
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TABLE II 

Execution times 

Test 

function 

name 

Algorithm name Execution 

time per 

second 

ZDT1 MOPSO-UD 4.0375148 

Original MOPSO 4.694884 

ZDT2 MOPSO-UD 4.998229 

Original MOPSO 5.15654552 

ZDT3 MOPSO-UD 8.8446537 

Original MOPSO 13.0585575 

ZDT4 MOPSO-UD 5.22179 

Original MOPSO 11.0553391 

ZDT6 MOPSO-UD 7.4859806 

Original MOPSO 8.2031009 

 

According to the proposed algorithm, and as 

mentioned in Eqs. (7), (8) and (9) the execution time 

has been decreased compare with previous method. 

From Table 2, the obtained results by 

applying ’’particle swarm optimization based on multi 

objective functions with uniform design’’ for all 

Deap-benchmarks test multi objective functions that 

used in this paper considerably shows the speed is 

faster than the original version of MOPSO algorithm, 

which the executions time is less than original version 

of MOPSO algorithm. 

VI. CONCLUSIONS 

Multi-objective function is more convenient to 

deal with the real problems of the life because most of 

these problems involve at least two objectives. In this 

paper, A Particle Swarm Optimization Based on Multi 

Objective Functions with Uniform Design, we 

proposed MOPSO-UD algorithm to employee the 

uniform design in multi objective swarm optimization 

to develop the work of multi objective PSO algorithm 

for resolving the randomize searching problem and 

this decreased the run-time of the algorithm as shown 

in Table 2, 

UD distributes the experimental points uniformly in 

the whole test domain. Simulation results show 

MOPSO-UD has a better stability and global 

convergence; which it is the most important 

conclusion. 

Appendix 
This appendix consists of the list of abbreviations 

used in this paper.  

 

List of abbreviations: 

PSO: particle swarm optimization. 

PSO-MOUD: particle swarm optimization based on 

multi objective functions with uniform design. 

MOPSO: multi objective particle swarm 

optimization. 

SI: swarm intelligence. 

UD: uniform design. 

UD-PSO: particle swarm optimization algorithm 

based on uniform design. 

MOO: multi objective optimization. 

DM: decision maker. 

EA: evolutionary algorithm. 

CS: classical search. 
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