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ABSTRACT-- We study the resource allocation 

problem in an OFDMA based cooperative cognitive 

radio network, where secondary users relay data for 

primary users in order to gain access to the spectrum. 

In light of user and channel diversity, we first propose 

FLEC, a novel flexible channel cooperation scheme. 

It allows secondary users to freely optimize the use of 

channels for transmitting primary data along with 

their own, in order to maximize performance. Further, 

we formulate a unifying optimization framework 

based on Nash bargaining solutions to fairly and 

efficiently allocate resources between primary and 

secondary networks, in both decentralized and 

centralized settings. We present an optimal 

distributed algorithm and a sub-optimal centralized 

heuristic, and verify their effectiveness via realistic 

simulations. Under the same framework, we also 

study conventional identical channel cooperation as 

the performance benchmark, and propose algorithms 

to solve the corresponding optimization problems. 
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1. INTRODUCTION 

A new paradigm where primary users (PUs) 

can leverage secondary users (SUs) for their own 

transmissions, termed cooperative cognitive radio 

networks (CCRN). In CCRN, SUs cooperatively relay 

data for PUs in order to access the spectrum. 

Assuming that SUs have better channel conditions and 

also gain opportunities to access the spectrum, 

resulting in a ―win-win‖ situation. 

A single channel network with only one PU has 

been considered in [1], [2]. We consider multi-channel 

cellular networks based on OFDMA, e.g. for the 

primary network, with multiple SUs assisting multiple 

PUs on the uplink[3]. Multi-channel networks impose 

unique challenges of realizing the cooperative 

paradigm The first contribution in this paper is a new 

design for cooperation among SUs and PUs, termed 

Flexible Channel Cooperation (FLEC), that opens up 

all dimensions of resource allocation for SUs. It takes 

advantage of channel and allows SUs to freelyoptimize 

its use of resources, including channels and time slots 

leased by PUs. 

PUs transmit in the first slot to SUs, and SUs transmit 

in the second to the primary base station (BS) and to 

their own access point (AP). A SU strategically 

optimizes its use of the leased resources. The intuition 

is that, if sub channel 1 has superior conditions on the 

SUBS link but poor conditions on the SU-AP link, it is 

much more efficient using sub channel 1 to relay data 

from both sub channels. Such channel swapping or 

shuffling results in boosted SU throughput, as well as 

larger relay capacity for PU, since the overall spectral 

efficiency is improved. The spectral efficiency gain 

can in turn be translated into more cooperation 

opportunities, as well as increased network capacity 

and better performance. 

 
 

Fig. 1. The motivating scenario for FlexibleChannel 

Cooperation (FLEC).Thesecond contribution is a 

novel unifying optimization framework that jointly 

considers relay and sub channel assignment, relay 

strategy optimization, and 

power control. PUs and SUs agree to jointly optimize 

a social cost function, known as the Nash product, 

which is essentially the product of utility functions of 

the cooperating PUs and SUs. The solution concept, 

known as the Nash bargaining solution (NBS), is a 

unique Nash equilibrium point that is guaranteed to 

provide Pareto efficiency.We consider both 

decentralized and centralized FLEC. 
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2. AN OPTIMIZATION FRAMEWORK 

 

2.1 System Model 

Consider the uplink of a single-cell OFDMA 

network. A number of SUs are located in the cell and 

perform cooperative transmission for PUs to access 

the primary spectrum. Cooperative transmissions take 

place on an OFDMAsub channel basis, and 

transmissions in different sub channels do not 

interfere with each other. Decode-and-forward multi-

hopping [4] is used when SUs relay primary data. 

Note that our results are readily applicable when other 

relaying scheme is used. Moreover, higher rates are 

achievable with more sophisticated coding/decoding 

schemes. Here we focus on decode-and-forward 

multi-hopping only for simplicity of presentation. Our 

analysis and algorithms are readily applicable to 

scenarios with other relaying and coding/decoding 

schemes.We model the fading environment by large 

scale path loss and shadowing along with small scale 

frequency-selective Rayleigh fading. 

 

2.2 Basics of Nash bargaining solutions 

We present the salient concepts and results 

from Nash bargaining solutions in this section, which 

are used in the sequel. For details we refer readers to 

[5]. 

The basic setting is as follows: Let N be the set of 

players, including PUs and SUs. Let Sbe a closed and 

convex subset of R
N 

to represent the set of feasible 

payoff allocations that players can get if they all work 

together. Let Rn
min

be the minimal payoff that the n-th 

player would expect; otherwise, he will not cooperate. 

Suppose {Rn∈S|Rn≥ Rn
min

,∀n ∈ N} is a nonempty 

bounded set. Define R
min

= (R1
min

,...,RN
min

), then the 

pair (S,R
min

) is called a N-person bargaining problem. 

Within the feasible set S, we first define the notion 

of Pareto optimality as a selection criterion in a typical 

game setting. 

Definition :The point (R1,...,RN) is said to be Pareto 

optimal if and only if there is no other allocationthat 

leads to superior performance for some user without 

inferior performance for some other user. 

Independence of Linear transformations: For any 
linear scale transformation  

φ(ψ(S),ψ(R
min

)). 

Symmetry: If S is invariant under all exchanges of 

players, then . 

 

2.3 An Optimization Framework Based on NBS 

Each user, being primary or secondary, has 

R¯n, the average total throughput summed across all 

sub channels, as its objective function. It is bounded 

above and has a non-empty, closed, and convex 

support. R
¯min

is an N-dimensional vector that 

represents the minimal average performance 

requirements.For PUs, the minimal requirement will 

be the optimal average throughput they could obtain 

should they choose not to cooperate with SUs, given 

by a multi-user uplink scheduling algorithm. For SUs, 

their minimal requirement that can be obtained 

without cooperation is clearly zero. S is the feasible 

set of resource allocation that satisfies 

R¯n>R¯n
min

,∀n.The problem, then, is to find the NBS, 

i.e., to solve the optimization problem with R
¯
nand 

R
¯
n

min
.  

For the scheduling and resource allocation problem, 

it has to be solved in each scheduling epoch because 

channel conditions change over time. It has been 

shown that maximizing the aggregate marginal utility 

at each epoch exactly achieves long-term utility 

maximization. Therefore, separating the terms for PUs 

and SUs, the basic resource allocation framework for 

OFDMA cooperative cognitive radio networks at each 

epoch is Ri,R¯i,Rj,R¯jdenote the instantaneous and 

average throughput for PU i and SU j at current 

epoch, respectively. Both R¯iand R¯jcan be readily 

obtained by applying the exponential moving 

averaging technique. Ri
min

,R
¯
i
min

are the instantaneous 

and average throughput requirement respectively, 

which can be obtained by running a multi-user 

scheduling algorithm at each epoch and using 

exponential moving averaging technique. 

A final remark is that our optimization framework 

maximizes throughput gains without considering QoS 

requirements for both PUs and SUs for reasons of both 

tractability and conciseness. QoS requirements, such 

as minimum delay, bit error rate, etc., are usually 

specific to multimedia applications such as mobile 

video streaming, and is not addressed in this work that 

targets a general data transmission application. They 

can be incorporated as additional constraints into the 

optimization framework, and new algorithms can be 

developed as a possible direction of future work. 

3 OPTIMAL DISTRIBUTED ALGORITHM 

 

3.1 Problem Formulation 

We first consider a decentralized setting 

where the secondary network is independent from the 

primary network, and cannot be controlled by the 

primary BS. Thus, BS allocates resources to PUs a 

priori to any cooperative transmission, and SUs have 

to ―negotiate‖ distributively with PUs in order to have 

cooperation taking place.This may correspond to the 

most immediate implementation scenario of CCRN 

that does not call for any change in the existing 

primary infrastructure, and therefore is of practical 

interest. 

In this case, PU channel assignment is done 
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separately by the BS, and is not part of the 

optimization. The resource allocation problem, 

including relay assignment, SU sub channel 

assignment, SU relay strategy optimization using 

FLEC, and PU-SU power control within the basic 

framework in Sec. 2.3 can be expressed succinctly  

asR ,where p
max

= [p
max

1 

,...,p
max

N]
T 

is the power constraint vector. Since only 

one PU and one SU can be active on each sub channel, 

the column vector has at most two non-zero entries, 

and it also specifies relay and sub channel 

assignments. 

3.2 Dual Decomposition 

The decentralized problem (9) is essentially a 

mixed integer program, with the objective function 

being neither convex nor concave. However, in an 

OFDMA system with many narrow subchannels, the 

optimal solution is always a convex function of pmax, 

because if two sets of throughputs using two different 

sets of P and α are achievable individually, their linear 

combination is also achievable by a frequency-

division multiplexing of the two sets of strategies. In 

particular, using the duality theory of [22], the 

following is true: 

Proposition 1: The decentralized resource 

allocation problem (9) has zero duality gap in the limit 

as the number of OFDM subchannels goes to infinity, 

even though the discrete selection of subchannels, SUs 

and relay strategies are involved. 

This proposition allows us to solve non-convex 

problems in their dual domain. Note that although the 

proposition requires the number of subchannels to go 

to infinity, in reality the duality gap is very close to 

zero as long as the number of subchannels is large 

[13]. 

Introduce Lagrangian multiplier vectors λ,μ,ν to the 

power, individual rationality, and flow conservation 

constraints.  

 

 

 

 

 

 

 

 

 

 

The Lagrangian becomes 

 

The dual function becomes 

  (11) 

 s.t. Eq. (1)–(4) 

3.3 Solving the Per-Sub channel Problem 

The main idea is to consider p
c
nas the 

optimizing variable and express Ri,j
c
,Rj

c
,Rj,P

c
in terms of 

p
c
i,p

c
j. The persub channel problem is essentially a 

joint optimization of transmission strategy, relay 

assignment, and relay strategy. For each sub channelc, 

its PU i needs to decide whether to use direct or 

cooperative transmission, which SU to cooperate with, 

while the chosen SU j needs to optimize its relay 

strategy denoted by the time sharing parameter αj
c∈ 

{0,1}. Therefore, the exhaustive search is performed 

over a finite set defined by 

• PU transmission strategies: {direct, cooperative} 

• SU relay assignment: j,j∈ NS 

• SU relaying strategies: {primary data only (αj
c
= 

0), its own data only (αj
c
= 1)} 

We derive optimal solutions  under direct or 

cooperative transmission modes for any combination 

of sub channelc with its PU i and the SU j. 

 3.3.1 Direct Transmission 

If PU i chooses direct transmission, the problem 

becomes 

 

3.3.2 Cooperative Transmission 

Substituting the rate formulas and regrouping 

the terms, the objective becomes 

 

To summarize, the per-sub channel problem can be 

efficiently solved via exhaustive search over a finite 

set defined by the transmission strategies, SUs, and 

SU relay strategies with FLEC as discussed above. 

The size of this discrete set is very limited, making it 

feasible for a practical network.  

 

3.4  An Optimal Distributed Algorithm 

We have shown that the dual function can be 

decomposed into K per-sub channel problems, the 

optimal solutions of which can be obtained efficiently 

through exhaustive search. Then, the primal problem 

can be optimally solved by minimizing the dual 

objective. Because of the dual decomposition, dual 

optimization by sub gradient method can be done in a 

distributed fashion. First, in each iteration, the per-sub 

channel problems [6].It can be solved simultaneously 

by the PU of the sub channel exchanging information 

with neighboring SUs as in Subroutine 1, though the 
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objective jointly involves PU’s and SU’s benefits. 

Second, sub gradient updates can also be distributive 

performed by each primary and secondary users. The 

algorithm can be perceived as an iterative bargaining 

process. The dual variable νjis exchanged between 

PUs and SUs and serves as a relay price signal to 

coordinate the level of cooperation.When the relay 

traffic demand  from PUs exceeds the 

supply  from j, i.e. PUs over-exploit j, j 

increases its relay price νjfor the next round of 

bargaining to suppress the excessive demand. 

Similarly, if j has redundant relay capacity 

, it will decrease the relay 

price νjto attract more relay traffic and therefore obtain 

more channels to use. The process continues until it 

converges to the optimal resource allocation. 

The interpretation of other dual variables λnand μiis 

also worth mentioning. For each user, λnis easily 

understood as a price signal to regulate its power 

consumption. μifor each PU is used to ensure that the 

resource allocation is individual rational, i.e. it is 

beneficial for each PU in that the total throughput 

obtained from cooperation Riis larger than Ri
min

. When 

Ri<Ri
min

, μiwill be increased, and so will p˜
c
i. 

Therefore, Ri
c
will be larger in the next iteration. Both 

dual variables are kept privately and updated 

independently with only local information. 

1. The primary BS runs a multiuser scheduling 

algorithm to determine Ri
min

for PUs without 

cooperation. 

2. Each primary user initializes λ
(0)

i ,μ
(0)

i . Each 

secondary user initializes both power and relay 

prices λ
(0)

j ,νj
(0)

. 

3. Given λ
(l)

,μ
(l)

,ν
(l)

, each PU i coordinates with each 

neighboring SU j concurrently to solve the per-

sub channelresource allocation problem using 

Subroutine. 

4. Return to step 3 until convergence. 

5. Every user updates 
R¯

nfrom its total throughput 

Rnin this epoch. Every PU i updates R
¯
i
min

from 

Ri
min

in Step 1. They will be used for resource 

allocation in next epoch. 

Analyze the amount of message exchanges and 

complexity here. For a pair of PU-SU, two messages 

νj,˜bj(i,λj,νj) need to be exchanged for each c. They can 

easily be piggybacked in the probing packets from SU 

to PU to measure the channel gain, resulting in zero 

message exchange overhead. The complexity of 

solving K per-sub channel problems by exhaustive 

search is O(KNS)[7]. The complexity of the 

subgradient update is polynomial in the dimension of 

the dual problem, which is K. Therefore, the complete 

algorithm has complexity polynomial in KNS. While 

this may render it infeasible for real-time scheduling 

within 5–10 ms when the network scales, the 

distributed nature of the algorithm makes it possible 

for each PU to concurrently solve the persub channel 

problem, reducing the complexity to only O(NS). Also, 

each user can update their own prices as dual 

variables independently. Further, in reality, only a few 

SUs residing in the neighborhood of the PU can 

potentially help and thus have to be considered. 

Therefore from the network point of view, each round 

of bargaining has complexity O. 

 
4. CENTRALIZED HEURISTIC ALGORITHM 

 

We now proceed to the centralized setting. 

Recall that in the decentralized setting, the subchannel 

assignment to PUs is done by the BS without 

considering the possibility of cooperative 

transmission, and thus is not part of the optimization. 

This enables efficient development of distributed 

algorithms, but is sub-optimal in general. Here we 

consider the scenario where the SU cooperative 

transmission becomes an integral part of primary BS 

scheduling, and SUs abide by the scheduling 

decisions, provided that the resource allocation is fair 

as reflected by the NBS fairness. With centralized 

FLEC, we have an additional dimension to optimize: 

global subchannel assignment for both PU and SU. 

 

4.1 Motivation for Developing Heuristics 

The problem can be formulated in a similar 

way as the decentralized problem, and optimally 

solved via dual decomposition and update. Compared 

to the decentralized version [8]. There are additional 

variables  to optimize, which represents the 

global sub channel assignment. Specifically, i is the 

PU assigned to use c and j is its helping SU, while jis 

the SU assigned to use  is the PU whose data is 

relayed by j. Note that i (j) needs not to be equal to 

). The solution of this problem thus has to 

exhaustively search all possible combinations of PU-

SU pairs for each subchannel, which has a complexity 

of O(KNP
2 

NS
2
) since distributed concurrent 

optimization is not possible.Moreover, because of the 

global impact of centralized subchannel assignment, 

the speed of convergence of dual variables λ,μ ,νscales 

up with the size of the dual problem which scales 

quadratically with NP and NS, instead of being 

independent of the dual problem size as in the 

decentralized case. Note that although the 

convergence of  method is guaranteed, the speed of 

convergence is not, and often depends heavily on 

problem conditioning and scaling [9].Given that 
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complexity has been significantly increased, we focus 

on developing efficient heuristics in this section, 

which reduce the complexity while maintaining good 

performance.. 

 

4.2 Overview of the Heuristic Algorithm 

To make the problem more tractable, we 

decouple it to three orthogonal dimensions: relay 

assignment, subchannel assignment, and power 

control. First, we derive optimal relay assignment 

using bipartite matching, assuming that each SU is 

only able to help one distinct PU and one PU can 

only be matched to one SU. This simplification is 

reasonable as it ensures a certain level of fairness. 

Then we assume that power is equally distributed, 

and derive an subchannel assignment algorithm. 

Even with optimal relay and equal power 

assignment, this turns out to be an NP-hard problem. 

We propose a suboptimal algorithm based on 

randomized rounding and prove its approximation 

ratio. Finally, power allocation is solved to 

maximize performance with the given subchannel 

assignment. Be reminded that as an initialization 

step, the BS first performs a multi-user scheduling 

[10] to determine Ri
min

,R
¯

i
min

for PUs before the three 

component algorithms run. The entire heuristic 

algorithm is called CentralizedHeuristicforFLEC 

hereafter. 

We do not claim that our heuristic design is the 

only choice here. In fact other heuristic designs are 

entirely possible. For example, one may choose to 

solve the subchannel assignment first, then relay 

assignment, and finally power control. It is also 

possible to jointly solve two of the three orthogonal 

dimensions. For example one may choose to solve 

the joint problem of relay and subchannel 

assignment and then compute the power allocation 

based on the solution of the joint problem. These 

possibilities are beyond the scope of this paper and 

left as future research, since they have different 

formulations and require different solutions. We do 

not claim that our heuristic design is the best, 

although simulation studies. It improves 

performance significantly compared to the 

conventional identical channel cooperation. 

4.3 Relay Assignment 

 Here, we model each user n as having an 

imaginary channel with a normalized channel gain 

to noise ratio and power p
max

n. Then the optimal 

FLEC strategy reduces to simple time-sharing on 

this channel. Assuming each SU can only help one 

distinct PU and one PU can only be matched to one 

SU. 

 

 

Fig. 2. Weighted bipartite matching for optimal 

relay assignment. 

The above relay assignment is a weighted bipartite 

matching problem that can be optimally solved.The 

edge set E corresponds to NP(NS + 1) edges connecting 

all possible pairs of users in the two vertex sets. Each 

edge (i,j) carries a weight, wi,j,  

For edges connecting PUs to the void SU that we 

patched, the edge weights have captured the maximum 

marginal utility given by direct transmission. 

 

4.4 Subchannel Assignment 

For PUs using direct transmission as 

determined by optimal relay assignment, they do not 

share resources with SUs, and as such cannot benefit 

from SU cooperation.For each PU i and its unique 

helping SU j(i), we assume they will use 

powerrespectively on each subchannel, such an equal 

power assumption is widely used and leads to 

subchannel assignment algorithms with near-optimal 

performance. 

The subchannel assignment problem under the 

above IP formulation is NP-hard. 

Proof: The problem can be reduced from type-

dependent multiple knapsack problems (MKP), where 

each set of knapsacks (users) belongs to a different 

type (time slot and primary/secondary). The profit of 

allocating an item (subchannel) depends not only on 

the knapsacks but also the type of them. The one-type 

MKP is known to be NP-hard and even hard to 

approximate [11]. Therefore our problem is NP-hard.  

Given the hardness of the problem, we present a 

rounding based algorithm to solve it as shown in 

Algorithm 1. It ensures that each subchannel is 

assigned to at most one user for both slots. We now 

capture the performance of the algorithm. 

Algorithm 1 provides an approximation ratio with 

high probability. 

Therefore, its performance becomes better when 

there is a larger magnitude of available subchannels to 

users in the system. Since the number of subchannels 

in a practical OFDMA system is much bigger than that 

of users, Algorithm 1can be expected to provide good 

performance. 

 

 

. . . 

. . . 
. . . 

. . . 

V 1 V 2 

( 
w i,j 
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4.5 Power Control 

For PUs with cooperative transmission, optimal 

power allocation is performed on a per-pair basis with 

their unique helping SUs. With sub channels allocated 

and their use on an SU determined, power allocation 

on each pair of PU-SU is a standard convex 

optimization problem and can be readily solved by 

KKT conditions. 

 

Algorithm 1Rounding-based Sub channelAssignment 

Formulate the problem using the IP above. Solve 

its LP relaxation with x
c
i
1
,yi

c2
,yj

c2
being relaxed to 

[0,1]. Let the 

LP solutions be xˆ
c
i
1
,yˆi

c2
,yˆj

c2 
and aˆi,

ˆ
bj. 

Adopt the following procedure to round the 

fractional solutions, to integral values, , where 

n ∈ {i . 

• For every c2, round  to 1 ( ) with 

probability yˆn
c2

. If n˜ is the user to whom c2 

is assigned, then 

 ∀ . 

• Update , 

where δ is a constant derived in the 

Appendix. Run the LP again on x
c
i
1 

only. Let 

x¯
c
i
1 
be the solutions of the new LP. 

• For c1, round x
c
i
1 

to 1 (x˜
c
i
1
) with probability 

x¯
c
i
1
. If 

˜i is the PU c1 is assigned to, 

then . 

 

5. IDENTICAL CHANNEL COOPERATION 

 

The present solutions for resource allocation 

with conventional identical channel cooperation (CC), 

which makes our analysis complete. The motivation to 

study CC here is that it can serve as the performance 

benchmark for our flexible channel cooperative 

scheme. Also, due to implementation and complexity 

considerations, FLEC may not be feasible in certain 

scenarios, whereas CC is comparatively easier to 

implement due to its simplicity. Similar to FLEC, we 

also consider both decentralized and centralized CC. 

5.1  Decentralized CC 

5.1.1  Problem Formulation 

Scheduling and resource allocation of 

decentralized CC can be similarly formulated as that 

of FLEC. The key difference is that, the per-

subchannel flow conservation constraints need to be 

satisfied for each subchannel, instead of only total 

flow conservation for FLEC. 

From an intuition level, CC has more flexible time 

sharing strategy, but requires the relay transmission to 

be on the identical subchannel. FLEC is more flexible 

in terms of channel sharing strategy for cooperative 

transmission, but the time sharing strategy is 

restricted. From an optimization point of view, CC has 

NSK per-subchannel flow conservation constraints, 

while FLEC only has NS total flow conservation 

constraints, where NS is the number of SUs and K the 

number of subchannels. Given that K is typically on 

the order of hundreds in a practical OFDMA system, 

CC formulation has far more constraints than FLEC. 

Because these flow conservation constraints directly 

impact SU’s throughput for relay and its own 

transmission they are active constraints that directly 

impact the optimization objective. Thus, it is not a 

surprise that FLEC outperforms CC in both 

decentralized and centralized settings. 

 

5.1.2  Dual Decomposition 

The dual variable updates can be understood 

as coordinating these constraints such that, when 

combined together, they are satisfied at the end of the 

process. In the decentralized resource allocation 

problem of CC, the flow constraint is already in the 

decoupled form to be satisfied for each subchannel. 

Thus, we only need to relax the total power and 

individual rationality constraints., 

By expanding the term Ri,Rj, ignoring 

constant terms, and realizing that each subchannel is 

already assigned to a PU, the per-subchannel problem 

can be written as 

 

5.1.3 Solutions to the Per-subchannel Problem 

Exhaustive search can also be used to solve the per-

subchannel problem. As we have seen, to enable such 

search we need to derive optimal solutions  

under direct and cooperative transmission modes for 

any combination of subchannel c with its PU i and the 

SU j. Readily we can see that for direct transmission, 

the optimal solution p˜
c
iis the same as in[12]. 

However, for cooperative transmission, the 

derivations are different from the previous analysis. 

The first observation is that, maximization of the 

problem is achieved with the inequality of the flow 

conservation constraint achieved as equality. This can 

be easily verified by observing that increasing Rj,P
c
any 

further beyond Ri,j
c
will not increase the utility of PU i. 

On the other hand, it will decrease the utility of SU j 

in the objective function, since j will inevitably have 

fewer resources to improve its own throughput.  
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Essentially, this is a constrained non-linear 

maximization with respect to two variables with 

standard solution methods. But it turns out quite 

difficult to obtain a closed form solution. We resort to 

numerical methods to obtain solutions efficiently. 

 

Algorithm 2 Distributed Bargaining for CC 

1. The primary BS runs a multiuser scheduling 

algorithm to determine Ri
min 

for PUs without 

cooperation. 

2. Each user initializes its power price λ
(0)

n . Each PU 

initializes the dual variable μ
(0)

i . 

3. Given λ
(l)

, each PU i solves the per-subchannel 

resource allocation problem 

4. Each user n bargains by performing a  update for 

the price λn. Each PU i also updates μi. 

5. Return to step 3 until convergence. 

6. Every user updates 
R¯

nfrom its total 

throughput Rnin this epoch. Every PU i updates 

R
¯

i
min

from Ri
min

in Step 1. They will be used for 

resource allocation in next epoch. 

 

 

5.2 Centralized CC 

Finally we consider resource allocation of 

centralized CC, which takes into account subchannel 

assignment to PUs and SUs. By the same 

argument.our focus is on developing efficient 

heuristics with short running time. We follow the 

same approach in developing Centralized Heuristics 

for FLEC and divide the problem into three 

dimensions, i.e. relay assignment, subchannel 

assignment, and power control. Readily we can see 

that the same relay assignment algorithm based on 

maximum weighted bipartite matching can be used 

here, since we would have an exactly the same 

problem formulation with only total flow conservation 

constraints, when all the channels are combined to 

form an imaginary channel. It is also straightforward 

that optimal power allocation follows the famous 

water-filling solution, given the relay and subchannel 

assignment. The only difference then lies in solving 

the subchannel assignment, which turns out to be 

much easier. The entire algorithm is referred to as 

Centralized Heuristics for CC thereafter. 

 

5.2.1 Subchannel Assignment 

Consider the set of PUs NP
R 

that are 

assigned with an unique helping SU each. Their 

allocated subchannels K
R 

in the initialization step is 

re-assigned by the channel assignment algorithm. 

The same assumptions are inherited, that each PU i 

and its unique helping SU j(i) usemaxequal 

powerrespectively on each subchannel, where Ki is 

the number of subchannels allocated to i in the 

initialization step. 

From the per-subchannel flow conservation 

constraint, optimal time sharing α¯j
c
(i) can be uniquely 

determined under equal power allocation p¯i,p¯j(i) on 

each subchannel. The subchannel assignment problem 

can be casted as: 

 

   

The constraint is such that each subchannel is only 

allocated to one pair of PU-SU. This can be easily 

solved by assigning each subchannel c to a PU i that 

has the largest u
c
i,j(i). That is, ˜ic= 

argmaxi∈NPRuci,j(i). 

 

6. RELATED WORK 

 

In networking literature,first proposes the idea of 

cooperative cognitive radio network, where the 

secondary users can earn spectrum access in exchange 

for cooperation with the primary user. A Stackelberg 

game is formulated where the primary user acts as the 

leader and determines the optimal time sharing 

strategy in maximizing its transmission rate. [13] 

consider a slightly different setting where the traffic 

demand of primary user is taken into account, and the 

utility function includes a revenue component from 

secondary users. Consider the game of one PU and 

multiple SUs in which the PU decides the portion of 

access time and the SU decide the relay power level. 

In a priority queuing system model is developed, and 

in a credit-based spectrum sharing scheme is studied 

for cooperative cognitive radio network. These works 

adopt a single shared channel setting with a single 

primary user and an ad-hoc network of secondary 

users[14]. On contrary, in this paper we consider a 

multi-channel setting where the OFDMA based 

primary and secondary networks co-locate, which 

represents a more practical network scenario and has 

not been considered before. 

Resource allocation with cooperative diversity has 

been extensively studied in general wireless networks. 

Specifically, our paper is more related to work in 

cognitive radio or cooperative OFDMA networks. For 

the former, most work consider maximizing SUs’ 

throughput with constrained interference to PUs. In 

other words, they all consider the underlay paradigm. 

For the latter, most related to our work are  addresses 
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the problem with a joint consideration of relay 

assignment, channel allocation, relay strategy 

optimization, and power control. Our previous work 

[15]considers the problem with a novel network 

coding based cooperation strategy, and proposes 

approximation algorithms with performance 

guarantees. Compare to these work, we consider the 

performance of primary and secondary users jointly, 

and apply the concept of Nash bargaining solutions  to 

ensure both parities benefit from cooperation fairly. 

 

7 .CONCLUSION 

This work represents an early attempt to 

study OFDMA cooperative cognitive radio networks. 

The central question addressed is how to effectively 

exploit secondary user cooperation when conventional 

cooperation method becomes inefficient in this 

scenario, which has not yet been explored. We 

propose FLEC, a flexible channel cooperation design 

to allow SUs to customize the use of leased resources 

in order to maximize performance. We develop a 

unifying optimization framework based on Nash 

bargaining solutions to address the resource allocation 

problem with FLEC, where relay assignment, sub 

channel assignment, relay strategy optimization and 

power control intricately interplay with one another. 

An optimal distributed algorithm as well as an 

efficient centralized heuristic with near-optimal 

performance are proposed. We also extend our 

framework to consider resource allocation with 

conventional cooperation. 
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