
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 4–April 2016 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                     Page 79 

The Evaluation of Just-In-Time Hypermedia 

Engine  
 

Zong Chen
1
, Li Zhang

2 
1
(School of Computer Sciences and Engineering, Fairleigh Dickinson University, USA) 

2
(Computer Science Department, New Jersey Institute of Technology, USA) 

 

 ABSTRACT: Just-in-time Hypermedia Engine 

generates documents and displays screens in 

response to user queries “dynamically”. This 

paper implements and evaluates the JHE engine 

performance. 

Keywords - Just-in-time, Hypermedia 

1. INTRODUCTION 

Many analytical applications, especially legacy 

systems, create documents and display screens in 

response to user queries ―dynamically‖ or in ―real 

time‖. These documents and displays do not exist 

in advance, and thus hypermedia must be generated 

―just in time‖—automatically and dynamically. 

This paper implements a Just-in-time 

Hypermedia Engine based on the design proposed 

in [1]. Figure 1 shows the JHE architecture. 

  

 
 

Figure 1. JHE Architecture. 

 

JHE is a Web server that can integrate many 

external applications and supply hypermedia 

functionality for them. JHE uses Apache Tomcat 

Web server (http://jakarta.apache.org/tomcat/) and 

Java language to do programming. Most JHE 

modules are programmed in Java to run together 

with the Apache package. JHE uses JavaScript 

language to program on user interface design, 

which is part of the User Interface Module. The 

Selection Manager also uses some JavaScript 

functions to get selections from window.    

The User Interface Wrapper (UIW) contains 

several User Interface (UI) menus to allow users to 

add bookmarks, comments and links to a virtual 

document. The Selection Manger (SM) generates 

anchor information. The Document Manager (DM) 

finds all anchors related to a virtual document, and 

find the exact positions of the anchors, and re-

identify the anchor content. The Hypermedia 

Service Module (HSM) stores and retrieves 

bookmark, comment and link information into 

database. The Regeneration Engine (RE) 

revalidates the document. The Application 

Wrapper (AW) intercepts the application document 

and parses the document into an XML document. 

 

2. JHE Implementation 

2.1 User Interface Wrapper 

The user interface is composed of four parts: 

application list, main window, menu list, and menu 

window as in Figure 2. The upper left screen shows 

the application list that JHE supports. Currently 

JHE only supports the NSSDC application, but will 

support more applications in the future. The upper 

right screen shows the virtual document from 

applications. The lower left screen shows the 

hypermedia functionality that JHE supports, this 

include bookmark list, add new bookmark, add new 

comment, and add new link menu. The lower right 

screen shows the menu content, which allows users 

to enter some information or select some 

information from menu. The UIW contains 

Bookmark Service Menu, Link Service Menu and 

Comment Service Menu. Each service menu is an 

HTML page containing some input parameters and 

JavaScript functions. 

www.internationaljournalssrg.org


SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 4–April 2016 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                 Page 80 

  
 

Figure 2. JHE Main Menu. 

When a user wants to add a bookmark, he clicks 

the ―add bookmark‖ button on the screen, then the 

bookmark service menu will appear at the right 

corner of the window. The Bookmark Service 

Menu is an HTML page with a ―form‖ to allow 

users to input parameters from screen, such as the 

bookmark name and revalidation criteria.  

When a user wants to add a link, he clicks the ―add 

link‖ button on the screen, then the link service 

menu will appear at the right corner of the window. 

The Link Service Menu is an HTML page with a 

―form‖ to allow users to input parameters from 

screen, such as the link name and link destination. 

When the user clicks the ―submit‖ button, UIW 

packs the information and sends it to Gateway. A 

link destination could be a URL entered by the 

user, an anchor or a bookmark.  When UIW 

composes the Link Service Menu, it retrieves all 

anchors and bookmarks and lists them in the menu. 

If a user wants to add a link to a bookmark or an 

anchor that has not existed, he should create it first 

and then makes a link to it.  

When a user wants to add a comment, he clicks the 

―add comment‖ button on the screen, and then the 

comment service menu will appear at the right 

corner of the window. The Comment Service Menu 

is an HTML page with a ―form‖ to allow users to 

input parameters from screen, such as the comment 

name and content.  

2.2 Document Translator 

The Document Translator transforms the XML 

document into a displayable HTML format. In 

JHE, the HTML file also includes displayable parts 

(source document from application) and non-

displayable parts. The non-displayable parts 

include system data (e.g. document identifiers and 

bookmark information list) and script functions.    

The script functions implement some of user 

interface functions. The Document Translator is a 

Java class running on the JHE server. 

2.3 Selection Manager 

When a user selects some texts from screen, then 

clicks a button, the Selection Manager will 

generate an XPointer expression and then sends it 

to the Gateway. The Selection Manager is 

implemented by Mozilla’s XPointer Lib 

(http://xpointerlib.mozdev.org/). 

2.4 Hypermedia Service Module 

The Hypermedia Service Module stores and 

retrieves hypermedia construct information into the 

JHE database. There are three hypermedia 

functionality menus displayed on the UI. They are 

the Bookmark Menu, Comment Menu and Link 

Menu.  These Menus are parts of the UIW. They 

are HTML pages that allow users to enter 

parameters and submit the information to the 

Gateway. The Gateway forwards the hypermedia 

functionality command and parameters to the 

HSM. HSM parses the command and stores the 

hypermedia construct information into the JHE 

database. When the user clicks the hypermedia 

construct icons on the screen, the HSM receives the 

hypermedia functionality command and parameters 

from the Gateway. The HSM retrieves the 

hypermedia construct information from the JHE 

database and then sends it to the Gateway. The 

UIW receives the information from Gateway and 

displays the information on the UI. 

2.5 Regeneration Engine 

The Regeneration Engine performs the following 

steps to regenerate a virtual document: (1) get 

query command and parameters from database by 

the unique document identifier; (2) send a request 

to the AW and then get document back;(3) validate 

the virtual document by different criteria. 

RE receives the source document, then 

revalidates for different criteria.  

Criteria 0: Exact copy.  This means it needs to do 

byte comparison between the new document and 

the stored document. 

Criteria 1: Values can change.  This means it 

needs to compare the document structure. 

Criteria 2: All related queries.  This means do 

not need to compare with history information. 

When the user creates a bookmark, the ―content‖ 

value in the bookmark record is the file name. If 

the ―Criteria‖ is ―0‖, RE retrieves the file name 

from database, and reads the original document 

from the specific directory that stores documents. 

Then it compares the original document with the 

new document byte by byte. If the ―Criteria‖ is ―1‖, 

RE calls the AW to parses the regenerated 

document according to a stored document template. 

If the ―Criteria‖ is ―2‖, then RE does not compare 

anything. 

If revalidation is successful, then the Document 

../../../Users/Home/Downloads/www.internationaljournalssrg.org


SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 4–April 2016 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                 Page 81 

Manager will do relocation and re-identification for 

all related anchors for the virtual documents, 

otherwise it will give warning messages to users.   

2.6 Document Manager 

The Document Manager gets all related anchors 

from the JHE database, then relocates and re-

identifies anchors according to different criteria. 

The Document Manager performs the following 

steps: 

(1) Get an anchor list from JHE database. This 

includes all global anchors and other local or 

specific anchors that have the same document 

identifier with this virtual document. 

(2) Evaluate each of these anchors according 

to the criteria. First, the Document Manager finds 

the anchor location according to document 

structure. Then, it compares the element value with 

the history information if the criterion does not 

allow element value to change; it does not compare 

the element value if the criterion allows element 

value to change. The Document Manager uses 

Apache’s XPath tool (which is a Java class package 

that evaluates XPath expressions in a JDOM 

document) to find the anchor locations.   

(3) The Document Manager finds all related 

hypermedia constructs for each anchor (comment, 

links, etc.), then it attach hypermedia objects to this 

document by inserting icons at the side of the 

elements. 

2.7 Application Wrapper 

The Application Wrapper (AW) intercepts the 

application commands and catches the source 

documents from applications. Then it parses the 

source document and translates it into a well-

structured XML document.  

When a user clicks the button, the UIW will send 

the command ―/jhe/sc‖ together with the 

parameters to the JHE Gateway, and then the 

Gateway forwards it to the destination Application 

Wrapper (AW). The AW parses the query result, 

maps the JHE destination and command to the real 

application destination and command. Then the 

AW sends an HTTP request to the destination 

application with parameters (the real URL of the 

application). The real application executes the 

command and parameters and sends back the 

document to the AW. After the AW parses the 

source document and gets elements’ values, the 

document is restructured and translated into an 

XML document based on the document structure.  

While the current instantiation of a document is 

parsed automatically, usually the document 

structure is analyzed manually in advance. 

3. JHE EVALUATION 

In this paper, NASA’s National Space Science 

Data Center (NSSDC) Web system is used to 

integrate with JHE for evaluation purpose. T96 

model is one of NSSDC models for earth magnetic 

field calculation.  

3.1 Dynamic Regeneration 

When user selects the ―T96 Model‖ command 

(which is read from the system setting file when 

JHE starts up) from the UI menu, it gives users the 

T96 homepage, which has the query table. This 

allows users to enter in parameters. Before the user 

creates a new bookmark, he needs to enter and 

submit parameters to JHE to create a new 

calculation result. After he adds a new bookmark 

for the result, he will not need to enter parameters 

again. JHE will do regeneration automatically. 

Figure 3 shows the T96 application module 

integrated into JHE. Figure 4 shows the calculation 

result after the user enters some parameters. When 

the user selects the ―add bookmark‖ command 

from the menu at the right corner of the window, 

the Bookmark Service Menu will prompt the user 

to enter in bookmark information, such as name 

(―exact copy‖ in the example) and criteria (―Only 

this query result‖). Then after the user clicks 

―submit‖, a new bookmark named ―exact copy‖ is 

added into database. 

When the user revisits the bookmark, he can 

select the bookmark from the list (in left corner of 

the window).  The JHE would then regenerate the 

result without asking the user to reenter parameters. 

Figure 5 shows the regenerated document and the 

message shows the regeneration is successful. 

 

 
Figure 3. T96 home page integrated into JHE 

 

../../../Users/Home/Downloads/www.internationaljournalssrg.org


SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 4–April 2016 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                 Page 82 

 
       Figure 4. Add a bookmark. 

 

 
Figure 5. Regenerated document with criterion 0. 

 

Compare the JHE generated virtual documents 

with the original virtual documents generated by 

the application. JHE integrates applications into the 

hypermedia system and it intercepts the source 

documents from applications. Since the original 

virtual document is translated into a well-structured 

document, it is important that data from application 

be the same as the original. For example, the 

calculation result should be exactly the same as the 

original although the format may be a little 

different. Also, users are expecting to get a similar 

layout document, such as font size, line width, and 

background. JHE translates the original document 

into an XML document, and then generates some 

style file for this document to have a similar layout 

as the original. 

When doing regeneration, there is a question 

whether the re-generated document is the same as 

the original. Depending on the dynamics of the 

application systems, a virtual document could 

change frequently or rarely. The revalidation 

process gives users some information about the 

comparisons between the newly generated 

document and the original. The three levels of 

revalidation give users flexibility to perform 

hypermedia functionality on a virtual document. If 

the revalidation is not successful, this does not 

mean the virtual document is wrong.  It just gives 

some warning message to the user that the newly-

generated virtual document has changed according 

to the user’s criterion. It may remind the user that 

the data is out-of-date, and he may need some 

changes. Unlike a traditional bookmark, which just 

remembers the address of the document, it does not 

have any history information about it. By doing this 

kind of revalidation, it can help the user to compare 

the regenerated virtual document with the original 

and remind him to do some changes, which is 

really better than traditional bookmark. 

3.2 User Declared Comment 

User can create a comment by following steps: (1) 

click the ―add comment‖ button; (2) select some 

texts from screen; (3) specify granularity; (4) edit 

comment content; (5) edit comment title; (6) click 

―submit‖ button.  

After the user clicks ―submit‖ button, JHE stores 

comment information into database. When the user 

revisits the virtual document, JHE finds marked 

anchors in the document and re-identifies the 

anchors according to different criteria, and then 

inserts an icon at the side of the element. In Figure 

6, the anchor ―year=2005‖ is relocated and re-

identified after regeneration. When the user clicks 

on the (H) icon, it pops up a window shows a list of 

hypermedia constructs, such as comments and 

links, show in Figure 7 (there are two comments 

and one link). When the user clicks on the 

comment, the window will display corresponding 

comment contents, shown in Figure 8. 

 

 
Figure 6. Regenerated virtual document with 

hypermedia constructs attached. 

 

 
Figure 7. List of comments and links. 

../../../Users/Home/Downloads/www.internationaljournalssrg.org


SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 4–April 2016 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                 Page 83 

 

 
Figure 8. Displaying the comment contents. 

3.3 Manual Link 

A user selects some texts from screen then enters 

parameters in the Link Service Menu and submits 

the request to JHE. JHE adds a link into database. 

Next time the user clicks the link title in the 

hypermedia constructs window to traverse a link.  

Creating a manual link has following steps: (1) 

click the ―add link‖ button; (2) select some texts 

from screen; (3) select destination; (4) specify 

granularity; (5) edit link title; (6) click ―submit‖ 

button.  

There are three types of link destinations: a 

URL, an anchor, and a virtual document in JHE. 

An anchor is a selected anchor in a JHE supported 

virtual document. A virtual document is a JHE 

supported virtual document that can be generated 

by JHE integrated applications. Depending on 

different types of link destination, the link traversal 

is different. For a link that has a specific URL, 

clicking on the link will take the user to another 

Web page. For an anchor, clicking on the link will 

take the user to the virtual document which JHE 

regenerates, and the destination anchor is 

highlighted. For a virtual document, clicking on the 

link will take the user to the virtual document 

which requires JHE to do regeneration. Also, for 

the destination document, hypermedia objects are 

attached on it. 

 

 
Figure 9. Add a link whose destination is a 

bookmark. 

3.4 Relocation and Re-identification 

Relocation means to find the location of the anchor 

when the byte offset of the anchor has changed. 

The anchor menu is part of the Comment Service 

Menu (when the user adds a comment) or the Link 

Service Menu (when the user adds a link). The 

anchor menu allows users to specify anchor 

granularity and re-identification criteria. Relocation 

is based on the anchor location and the granularity. 

There are three types of anchor granularity: 

global, local and specific. ―Global‖ means the 

anchor can appear in any document that has the 

same element. ―Local‖ means the anchor can 

appear in the same element anywhere in a 

particular document. ―Specific‖ means the anchor 

can only appear at a particular location in a 

particular document.      

Figure 10 shows how to create a ―local‖ anchor 

on the selection  ―degree‖ in the document entitled 

―value change‖ when the user adds a comment on 

the anchor. The ―degree‖ element is a sub element 

under element ―Internal Geom. Field‖. It appears 

twice in this document. Figure 11 shows revisiting 

the document entitled ―value change‖ by clicking 

on the ―value change‖ bookmark. Since it is a 

―local‖ anchor, all ―degree‖ elements in this 

document are attached with hypermedia constructs. 

By clicking on the icons besides same elements, 

users can see the same comment content. 

 

 
Figure 10. Create a ―local‖ anchor. 

 

 
Figure 11. Relocate ―local‖ anchors. 

 

After finding the anchor’s location, JHE needs to 

../../../Users/Home/Downloads/www.internationaljournalssrg.org


SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – volume 3 Issue 4–April 2016 

ISSN: 2348 – 8387          www.internationaljournalssrg.org                                 Page 84 

identify that the relocated anchor is the same one as 

the originally marked one. There are two criteria 

for re-identification: element’s value can change; 

element’s value can not change. 

Figure 12 shows an anchor’s re-identification 

criteria is ―value can not change‖. Figure 13 shows 

revisiting the document. Since the original value is 

―2‖, the new value is ―0‖, they are not same. JHE 

gives a warning message by adding a pink icon at 

the side of the element. For those valid elements, 

the icons attached are blue. 

 

 
Figure 12. Add a ―no value change‖ anchor. 

 

 
Figure 13. Revalidate anchors. 

4. CONCLUSION 

Hypermedia engines differ in how applications 

integrate with hypermedia systems; what kind of 

hypermedia functionality the hypermedia engine 

can supply, and how applications communicate 

with the hypermedia engine. Notable projects 

include Microcosm’s Universal Viewer [2], 

Freckles [3], the OO-Navigator [4], WebVise [5], 

SFX [6], InfiniTe [7], and Dynamic Hypermedia 

Engine (DHE) [8]. Microcosm’s Universal Viewer 

handles all communications without modification 

to application’s source codes; WebVise and DHE 

use application wrappers to integrate with 

hypermedia systems. Early hypermedia engines 

(Microcosm and Freckles) only support first-

generation hypermedia functionality (such as links 

and nodes); while WebVise and InfiniTe supports 

more hypermedia functionality and are Web-based.  

Many hypermedia engines communicate with 

applications by message passing using existing 

protocols (e.g, WebVise uses OHP); some use 

operating system specific tools to handle 

communications (such as Freckles uses window 

event manager). 

The above hypermedia engines have many 

characteristics in common, such as integration with 

viewers, integration with information systems, 

support for identifiers of objects, internal document 

addressing and hypermedia functionality.  None of 

them supports virtual documents, except DHE and 

SFX. DHE and SFX can analyze the underlying 

relationships based on the application information, 

then parse the source documents and insert links to 

these documents. Links are dynamic and 

automatically generated. However, they do not 

support regeneration, re-location and re-

identification.  

The Just-in-time Hypermedia Engine (JHE) is 

implemented in this paper. The Just-in-time 

Hypermedia Engine (JHE) executes as a 

middleware between an application and its user 

interface, providing additional hypermedia 

navigational, structural and annotation 

functionality, with minimal modification to the 

application. 

The future work may include: (1) implementing 

more hypermedia functionality for the JHE system 

such as automatic linking and guided tours, (2) 

supporting virtual documents with binary formats 

such as images in web pages. 

 

REFERENCES 
[1] Z. Chen, L. Zhang, ―The Just-In-Time Hypermedia 

Engine‖, SSRG International Journal of Computer Science 
and Engineering, volume1 issue10: 50-55, 2014. 

[2] H. C. Davis, S. Knight, and W. Hall, ―Light Hypermedia 

Link Services: A Study of Third Party Application 
Integration.‖ Proceedings of the 1994 European 

Conference on Hypermedia Technology, 1994 

[3] C. Kacmar, ―A Process Approach for Providing 
Hypermedia Services to Existing Non-hypermedia 

Applications‖, Journal of Electronic Publishing: 

Organization, Dissemination and Design. Vol. 8(1), 31–48, 
1995 

[4] A. Garrido, G. Rossi. ―A Framework for Extending 

Object-Oriented Applications with Hypermedia 
Functionality.‖ The New Review of Hypermedia and 

Multimedia. Vol.2: 25-41, 1996. 

[5] K. Grønbæk, L. Sloth, and P. Qrbek. ―WebVise: Browser 

and Proxy Support for Open Hypermedia Structuring 

Mechanisms on the WWW.‖ Proceedings of the 8th 

International World Wide Web Conference: 232-267, 
1999. 

[6] H. Van de Sompel, and P. Hochstenbach. ―Reference 

Linking in a Hybrid Library Environment, Part 2: SFX, a 
Generic Linking Solution.‖ D-Lib Magazine. April, 1999 

[7] K.M. Anderson, R.M. Taylor, and Jr. E.J. Whitehead. 

―Chimera: Hypertext for Heterogeneous Software 
Environments.‖ Proceedings of the ACM Conference on 

hypertext: 94-107, 1994. 
[8] R. Galnares, ―Augmenting Applications with Hypermedia 

Functionality and Metainformation.‖ Ph.D. Dissertation, 

New Jersey Institute of Technology, 2001. 
 

 

../../../Users/Home/Downloads/www.internationaljournalssrg.org

