
International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 2- February 2018

ISSN: 2231-8387 http://www.internationaljournalssrg.org Page 1

An Efficient Cluster Based Searching Process

for Finding Keyword Query Related

Documents

Putchakayala Mahesh Reddy 1, Mula Sudhakar 2
Final M.Tech Student1, Asst.professor2

 1,2Dept of CSE, Sarada Institute of Science, Technology and Management (SISTAM), Srikakulam,

Andhra Pradesh

Abstract

 Now a day’s to analyse an efficient query

related document has not been work the difficulties

of queries over database. So many researches are

proposed many methods for predicting query related

text documents. By implementing these techniques

are not given an efficient keyword query related

documents. By overcome those types of problems we

are implementing a keyword query related interface

is used to assign each query term to schema element

in the database. So that the test result type must be

desired and also get query related text documents.

Some of the existing methods are not empirical to

show direct adaptation of ineffective for structured

data. By overcome those problems in this paper we

are proposed an efficient keyword query related

process for getting efficient search result. By

implementing efficient keyword query related

process we can perform the best search process on a

text documents. In the efficient keyword query

related process mainly contains four concepts i.e.

text pre-processing, build mvs matrix, clustering of

text document and performing searching process. By

implementing those concepts we can get the efficient

query related text document.

 Keywords

 Searching techniques, Prediction,

Keyword, query, K Means Clustering Algorithm,

Distance, Frequency, Local Frequency, global

Frequency.

I. INTRODUCTION

 As the amount of electronic data continues

to grow, the availability of effective information

retrieval systems is essential. Despite a continuing

increase in the average performance of information

retrieval systems, the ability of search systems to

find useful answers for individual queries still shows

a great deal of variation [1]. An analysis of the chief

causes of failure of current information retrieval (IR)

systems concluded that, if a search system could

identify in advance the problem associated with a

particular search request, then the selective

application of different retrieval technologies should

be able to improve results for the majority of

problem searches [2]. The ability to predict the

performance of a query in advance would enable

search systems to respond more intelligently to user

requests. For example, if a user query is predicted to

perform poorly, the user could be asked to supply

additional information to improve the current search

request. Alternatively, a search system could

selectively apply different techniques in response to

difficult and easy queries, for example the selective

application of different retrieval models, or

automatic relevance feedback. Query performance

prediction is the problem of trying to identify,

without user intervention, whether a search request

is likely to return a useful set of answers. The

importance of the query difficulty prediction

problem has been highlighted in the IR community

in recent years; the Text REtrieval Conference

(TREC) Robust tracks in 2004 and 2005 included an

explicit query difficulty prediction task [1], and

prediction has been the 3ubject of specific

workshops [4]. Despite this recent growth in

attention, the prediction of query difficulty is an

open research problem.

We present several predictors of query

performance. The predictors are concerned with pre-

retrieval prediction. The information required by

such prediction is obtained from various collection,

document and term occurrence statistics. These are

all obtained at indexing time, and can be efficiently

fetched from inverted index structures that are

widely used in information retrieval [4]. The

computation of these predictors can therefore be

carried out prior to query evaluation. This has

significant advantages in terms of simplicity and

efficiency, factors whose importance increases as the

size of collections continues to grow. We propose

two broad classes of pre-retrieval predictors: first,

predictors that are based on the similarity between

queries and the collection; and second, predictors

that are based on the variability of how query terms

are distributed in the collection, by exploring the in-

document statistics for the input queries.

International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 2- February 2018

ISSN: 2231-8387 http://www.internationaljournalssrg.org Page 2

II. RELATED WORK

Many different approaches for the prediction of

query performance have been proposed. These can

be divided into three broad categories: pre-retrieval

predictors, post-retrieval predictors, and learning

predictors. In this paper we focus on pre-retrieval

predictors; the background section therefore

concentrates on previous work in this area. We also

provide brief descriptions of the other families of

predictors for completeness. Pre-retrieval predictors

can be calculated from features of the query or

collection, without requiring the search system to

evaluate the query itself. The information that these

predictors use is available at indexing-time; they are

therefore efficient, and impose a minimal overhead

on the retrieval system. Pre-retrieval predictors

generally make use of evidence based on term

distribution statistics such as the inverse document

frequency, inverse collection term frequency, or the

length of a query. A range of pre-retrieval predictors

were proposed and evaluated by He and Ounis [5].

Their experimental results showed the two best-

performing predictors to be the average inverse

collection term frequency (AvICTF), and the

simplified clarity score (SCS). In their approach, the

SCS is obtained by calculating the Kullback-Leibler

divergence between a query model and a collection

model. We use AvICTF and SCS as baselines in our

experiments, and these approaches are explained in

detail in Section 4. Scholer et al. [6] describe results

based on using the inverse document frequency (IDF)

to predict query performance. They find that using

the maximum IDF of any term in a query gives the

best correlation on the TREC web data. We present

results using the maximum IDF (MaxIDF) as a

baseline in our experiments. Post-retrieval predictors

use evidence that is obtained from the actual

evaluation of the underlying search query. These

predictors can leverage information about the

cohesiveness of search results, and can therefore

show high levels of effectiveness. However, for the

same reason they are less efficient: the search system

must first process the query and generate an answer

set, and the answer set itself is then usually the

subject of further analysis, which may involve

fetching and processing individual documents. This

can impose a substantial overhead on a retrieval

system. Cronen-Townsend et al. [7] proposed a post-

retrieval predictor based on language models: they

calculate the divergence between a statistical model

of the language used in the overall collection and a

model of the language used in the query, to obtain an

estimate of the ambiguity of the query. Unlike the

simplified clarity score pre-retrieval predictor

discussed previously, this approach estimates the

query language model from the documents that are

returned in the answer set of a retrieval system. The

approach was demonstrated to be highly effective on

newswire data. Post-retrieval predictors for web data

were developed by Zhou and Croft [8], who use a

weighted information gain approach that shows a

high correlation with system performance for both

navigational and informational web search tasks.

Other post-retrieval predictors have considered

factors such as the variability of similarity scores;

for example, Kwok et al. divide a search results list

into groups of adjacent documents and compare the

similarity among these [9]. Zhou and Croft [10]

introduced ranking robustness scores to predict

query performance, by proposing noise channel from

information theory. This approach has shown higher

effectiveness than the clarity score.

III. PROPOSED SYSTEM

The main objective of proposed system is to

perform the efficient query search and reduce the

time complexity of in the searching process. In this

paper we are proposed an efficient query searching

process i.e. topic based cluster search algorithm. By

implementing this algorithm we can get efficient

search result and also reduce time for searching the

query. Before performing the search the query we

can take sample document and search query in that

documents. The implementation procedure of topic

based cluster algorithm is as follows.

A) Text Pre-processing:

 In the text pre-processing we can get only

text formatted data for searching query. Before

performing search operations we can get all

documents and reduce all tag in that document. After

getting each document text we can find out relative

frequency (Rfreq) of each document. Before finding

relative frequency we also find local and global

frequency of each word in the document. The local

frequency (Lfreq)of each can be calculated by number

of occurrence of each word in the document. After

finding local frequency of each word in the

document we can find out global frequency(Gfreq) .

Using both frequencies we can find out relative

frequency of each document by using following

formula.

 Rfreq =Lfreq + Gfreq /2.0

After finding relative frequency we can calculate

document weight of each document by using

following formula.

 N=size of each document

 Lfreq= Local frequency of each word in the

document

 Gfreq =Global Freqency of each document

 Weight (W)=Lfreq * Math.Log(N/Gfreq) +0.01

International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 2- February 2018

ISSN: 2231-8387 http://www.internationaljournalssrg.org Page 3

By using that formula we can calculate each

document weight. After we can create MVS Matrix

of each document to other documents.

B) Build MVS Matrix:

 In the generation of MVS matrix we can calculate

cosine similarity each document to other document.

Based on MVS matrix we can perform the

clusterization of documents. The cosine similarity of

any two document can be find by using following

equation.

 d1= Total number of words in first document

 d2= total number of words in second document

 dprd= d1*d2

 d1sqr = d1*d1

 d2sqr d2*d2

 dsqrprd =d1sqr * d2sqr

sim=dprd/dsqrprd

By using those formulas we find out each document

cosine similarity and also we generate matrix

formatted data. likewise we can calculate cosine

similarity of each document to other document and

arranged in the form matrix.

k means clustering algorithm for grouping related

documents:

 By calculating of MVS matrix we can

perform the clusterization process. By performing

clusterization process we can grouping all relating

document into single group. Before performing

clusterization we get all cosine similarity of each

document to other document. Based on cosine

similarity of each document we can perform

clusterization process. The step of clusterization

process is as follows.

1. Enter the number of cluster for performing

clustering of document.

2. After that finding number of documents are

available in the database.

3. Randomly choose the centroid of document

based on number of clusters we want.

4. After finding centroid document we can get

cosine similarity of each centroid document.

5. After that we can also get remaining

document of cosine similarity.

6. Find out distance of each centroid to other

document based on cosine similarity by using

following formula

for (int i=0;i<docs.size();i++)

 {

 int minInd =0;

 double mindis=0;

 for (int j=0;j<k;j++)

 {

 double dis =

cosSim(docs.get(i),getCentriod(clusturs[j]));

 if(j==0 || mindis>dis)

 {

 minInd=j;

 mindis=dis;

 }

 }

 clusturs[minInd].add(docs.get(i));

 }.

 By using that code we can find out related

documents in a group. After grouping all related

document into group perform the searching

operation in those groups and get only query

matched document.

C) Topic based searching process:

 In this module we perform the searching

operation of query in the document. In this we can

get each cluster document and convert into text

format. After that we can search each word in that

cluster and find out the word id existing in that

group or not. So that if the word is existing in the

that cluster we display that document in the cluster.

Likewise we can search all cluster document and get

only the query related cluster document. By

implementing those concepts we can get more

effective search result and also time complexity for

performing search operation.

IV. CONCLUSIONS

 In this paper we are proposed a novel

problem for performing effective searching

operation in documents. By implementing this

concept we can improve more efficiency of

searching operation and also reduce time complexity.

In this paper we are proposed topic based cluster

searching algorithm for finding related document of

query search. In this algorithm we can find out each

document cosine similarity and also find out

distance of centroid document to other documents.

After finding distance we can perform clusterization

process by using k means clustering algorithm. After

performing clustering process we can perform the

searching process for query. By performing query

search we can get all query related documents of

clusters can be display. By implementing those

concepts we can improve efficiency in the searching

operation.

International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 5 Issue 2- February 2018

ISSN: 2231-8387 http://www.internationaljournalssrg.org Page 4

REFERENCES

[1] Voorhees, E.M.: Overview of the TREC, robust retrieval

track. In: The Fourteenth Text REtrieval Conference (TREC

2005), Gaithersburg, MD, 2006. National Institute of

Standards and Technology Special Publication 500-266

(2005).

[2] Harman, D., Buckley, C.: The NRRC reliable information

access (RIA) workshop. In: Proceedings of the ACM SIGIR

International Conference on Research and Development in

Information Retrieval, Sheffield, United Kingdom, pp. 528–

529 (2004).

[3] Carmel, D., Yom-Tov, E., Soboroff, I.: SIGIR workshop

report: predicting query difficulty - methods and

applications. SIGIR Forum 39(2), 25–28 (2005)

[4] Zobel, J., Moffat, A.: Inverted files for text search engines.

ACM Computing Surveys 38(2) (2006).

[5] He, B., Ounis, I.: Query performance prediction.

Information System 31(7), 585–594 (2006).

[6] Scholer, F., Williams, H.E., Turpin, A.: Query association

surrogates for web search. Journal of the American Society

for Information Science and Technology 55(7), 637–650

(2004).

[7] Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting

query performance. In: Proceedings of the ACM SIGIR

International Conference on Research and Development in

Information Retrieval, Tampere, Finland, pp. 299–306

(2005).

[8] Zhou, Y., Croft, W.B.: Query performance prediction in

web search environments. In: Proceedings of the ACM

SIGIR International Conference on Research and

Development in Information Retrieval, Amsterdam, The

Netherlands, pp. 543–550 (2007).

[9] Kwok, K.L.: An attempt to identify weakest and strongest

queries. In: Predicting Query Difficulty, SIGIR 2005

Workshop (2005).

[10] Zhou, Y., Croft, W.B.: Ranking robustness: a novel

framework to predict query performance. In: Proceedings of

the ACM SIGIR International Conference on Research and

Development in Information Retrieval, Arlington, Virginia,

pp. 567–574 (2006)

