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Abstract 
In this work a structure that generates 

memory address sequences for built-in memory self 

tests is proposed. The idea is to significantly expand 

the set of address sequences. The structure consists of 

three components, namely the base address sequence 

generator, a device for generating and storing a 

matrix of binary vectors, and a device to calculate 

the address values. The idea behind this structure is 

to significantly expand the set ofdifferent address 

sequences including the standard well known and 

extensively used sequences for memory testing. 
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I. INTRODUCTION 

 For recent integrated circuits designs, a 

Built-in Self-Test (BIST) for the memory  is 

becoming more abd more important, especially for 

embedded memory, which is a most significant part 

of System on Chip (SoC) designs, occupying more 

than 70% of the area overhead and is expected to rise 

up to 95% (!) [1, 2]. Because of this, Memory Built-
In Self-Tests (MBIST) have become a much more 

common field of research and are now seen more and 

more often in the industry  [2, 3, 4]. For high 

embedded memory quality, regardless of their 

architecture, size and levels, the fault detection 

capability of the BIMST plays a significant and 

crucial role. BIMST can offer some benefits, the 

most significant is at-speed testing and therefore high 

fault coverage [5]. Traditionally, MBIST based on 

March test algorithms consists of a set of March 

elements with the desired memory address order. The 

memory accesses speed and area overhead of the 
MBIST mainly depends on the address sequence 

(AS) generator, which is the most critical part of a 

goodMBIST.  AS generator designs are very different 

and the area requirement for their implementation is 

varying between 26 and 33% of MBIST [3]. Mainly 

binary counters and Linear Feedback Shift Register 

(LFSR) are used to generate ASs, which can be 

succeedingly applied to the memory core to form a 

test. Linear feedback shift registers are an efficient 

way of describing ASs and generating them in 

hardware implementations. An LFSR reduces the 
amount of required logic (area overhead), minimizes 

routing complexity and increase testing speed. Binary 

LFSR have been studied for more than half a century 

[6]. The maximum-length sequence generated by the 

LFSR, called M-sequences (maximum length 
sequence) or pseudo-random number (PN) 

sequences, are the best-known and most thoroughly 

studied special case of binary sequences [6, 7]. There 

are numerous LFSR applications in different areas, 

for example digital circuit testing, spread spectrum 

communications, cryptographic stream  cipher, PN 

number generation, and many others [7, 8, 9]. In 

modern MBIST s, LFSRs are playing an important 

role as address generators [3, 12, 13]. The address 

sequences properties and implementation aspects of 

several mostly used ASs have been considered in [3]. 
As the result a novel, very systematic, high speed, 

low-power and low-overhead implementation, based 

on an Up-counter and a set of multiplexors have been 

presented and analyzed. The proposed solution [3] is 

concentrated on the restricted set of address 

sequences. The paper [12] provides a direct 

comparison between a fast binary counter, built using 

a hierarchical Manchester carry chain, and a counter 

built using a LFSR. The investigation is focused on 

speed, power consumption and area overhead. It was 

demonstrated the main benefits of using of LFSRs as 
an alternative to conventional binary counters. Multi-

stage LFSR counter with reduced decoding logic for 

large-scale array applications was considered in [13]. 

As have been shown in the paper LFSR counter to be 

well suited to applications required large arrays of 

counters. In the papers [14, 15], papers there are 

approaches of developing the architectures of address 

generators with low-transition. It has been proven 

and validated that efficient implementation of the AS 

generator has cut-down the switching activity of 

MBIST sufficiently [15]. The proposed approaches 

based on specifically modified LFSRs structures and 
that is why allowed to generate the restricted sets of 

the address sequences belong to the M- sequences 

family. The reducing of power consumption during 

the memory core testing of System on a Chip is one 

of the most important issues. To reduce the power 

consumption of MBIST the design proposed in [16] 

concentrated on just only three types of the ASs, 

namely LFSR based, Linear and Gray Code ASs. The 

comparison with the standard solutions in terms of 

the area overhead and consumed power have been 

presented and analyzed. For only one LFSR based 
AS the same power reducing issue was investigated 

in [17]. In order to detect complex and speed-related 

memory faults the address sequences implemented in 

MBIST should cover a wide range of different 

varieties of such sequences should be extended and 
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flexible [3]. At the same time the area overhead as 

well as address generation speed also are very 

important characteristics for the address sequence 

generator. 

II. GENERAL MATHMATICAL MODEL 

 Consider the m-dimensional binary vectors 
in binary space of 2m binary vectorsto be the address 

sequence A(n) = am(n) am–1(n) am–2(n) … a2(n) a1(n), 

where ai(n){0,1}, I {1, 2, …, m},and n{0, 1, 2,  
…, 2m–1}. Then the problem of generating the desire 

address sequence can be seen as the generation of m-

dimensional binary B(n) = bm(n)bm–1(n) bm–2(n) … 

b2(n) b1(n);bi(n){0,1}, i{1, 2, …, m}in this 
relation forman entire set of 2m binary vectors. Then 

the vector space A(n) formed according to (1) is of 

dimension m and consists of 2m vectors, this is why 

vectors A(n) can be used as an address sequence [18].  

To simplify further investigations, the binary 

value of B(n) will take the value of an integer n, 

representing a binary notation of decimal numbers. 

For example in a case of m = 4 and n = 5, B(5) = 
b4(5) b3(5) b2(5) b1(5) = 0101. The key elements of 

this approach (1) to generate address sequences is 

basis {v1 , v2 , …, vm}, which formed the generating 

binary m by m matrix V. The only restricting factor 

for such amatrix V is it's maximal rank. A matrix V 

has a maximal rank if it consists out of a set of 

linearly independent vectors vi [18]. For the same 

value of m = 4, four binary vectors v1 = 1001, v2 = 

0100 v3 = 0001 v4 = 0010 are independent. That is 

why can be considered as the basis of binary space. 

For this basis, the linear combination to binary 
coefficients A(5) = a4(5) a3(5) a2(5) a1(5) = v1×b1(5) 

 v2×b2(5) v3×b3(5) v4×b4(5) = v1  v3 =1001  
0001 = 1000. 

 The linear vector combination (1) based on 

generating a m by m matrix V of linear independent 

vectors vi= vi1vi2 … vim, vij∈  {0,1} the can be 

considered as the matrix VT: 
 

𝐴 𝑛 =   

𝑎1 𝑛 

𝑎2 𝑛 
⋯

𝑎𝑚 𝑛 

  =   

𝑣11 𝑣21 ⋯ 𝑣𝑚1

𝑣12 𝑣22 ⋯ 𝑣𝑚2

⋯ ⋯ ⋯ ⋯
𝑣1𝑚 𝑣2𝑚 ⋯ 𝑣𝑚𝑚

⥂   

×    

𝑏1 𝑛 

𝑏2 𝑛 
⋯

𝑏𝑚 𝑛 

  . 

 

 It should be noted that matrix VT is the 
transposed matrix V and all bit ai(n) ∈  {0,1}, I ∈  {1, 

2, …, m} of the address sequence A(n) area linear 

combination of the corresponding vectors vi bit 

 

𝑎𝑖 𝑛 = 𝑣1𝑖 × 𝑏1 𝑛 ⊕ 𝑣2𝑖 × 𝑏2 𝑛 ⊕ 𝑣3𝑖
× 𝑏3 𝑛 ⊕ …⊕ 𝑣𝑚𝑖 × 𝑏𝑚  𝑛 . 

(3) 

 Relations (2) and (3) can be used as a 
mathematical model for an address sequence 

generator, which consists of three components, 

namely the base address sequence generator B(n), a 

device for generating and storing a matrix of binary 

vectors VT, and a device for actually calculating the 

address values A(n). Let´s review the individual 

componentsofthegenerator. 

III. ADRESS GENERATOR 

IMPLEMENTATION 

The goal of the proposed address sequence 

generator is to significantlyexpand the set of different 

address sequences for MBIST including the well 

known and extensively used sequences for MBIST. 

The first block of the address sequence 

generator is used for the base address sequence B(n) 

generation. Binary counters and LFSR are mainly 

used to generate memory addresses that can be 

seuccessively applied to the memory core under test. 

That is why a binary counter and a LFSR can be 
chosen as base sequence B(n) generators. Binary 

counters generally use flip-flops, half adders, and a 

high-speed carry chain. The high-speed counter in the 

most applications uses a hierarchical Manchester 

carry chain for carry propagation [12]. The delay 

associated with a binary counter depends on the 

number of bits in the adder/carry chain circuit. In 

contrast, LFSR counters use only flip-flops and XOR 

gates [12]. The delay of LFSR with internal XOR 

gates is independent of the number of bits in the 

counter. The only problem with LFSR is the absence 
ofthe zero code in their output and thus it cannot 

generate all zero addresses. To overcome this 

restriction the de Bruijn sequences generator for 

addresses generation can be used. For the primitive 

polynomial (x) = 1 ⊕ x3 ⊕ x4 the structural scheme 
of the de Bruijn generator is shown in Fig. 1. 

Like the standard LFSR with internal XOR 

gates, the above presented generator consists of 

successively connected D-type flip-flops and two-

input XORs according to the used primitive 

polynomial. Additional (m−1) inputs of the NOR gate 

allow to generate the whole zero code [7].  

 All memory tests use two kinds of chosen 

address sequences A(n), namely, up-sequence ⇑A(n) 

and down-sequence ⇓A(n) which is the sequence with 

reverse addresses order. Then the generator of the 

base sequence should operate in two modes: up and 

down. This slightly increase the complexity of the 

first block. For example in a case of the de Bruijn 

generator the shift register have to perform shifts in 

both sides and additional XOR gates are needed.  

 

Fig. 1. De Bruijn sequence generator 
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 The second, and as already noted the main 

block of the address generator is a memory device 

consisting of m cells, each consisting of m bits. This 

allows to store mm-bit binary vectors vi= vi1vi2 … vim, 

vij∈  {0,1}. The contents of this device, which are the 
vectors vi of the generating matrix V  determine the 

form of the address sequence A(n) (2). Matrix VT is 

transposed matrix V, and vice-versa,V is transposed 

matrix VT and both matricesmust consist of linear 

independent vectors. That is why the main problem is 

to generate and store this kind of vectors.  

 To drastically reduce the complexity of the 

memory device for generation and storing the values 

of mm-bit linearly independent binary vectors vi, we 

proposed to use a LFSR based structure described by 

the primitive polynomial ϕ(x) with degϕ(x) = m. The 

main idea behind this proposal is the fact that any 
consecutive mm-bit LFSR states represent the set of 

linear independent vectors vi [7]. The initial state of 

the LFSR determines all m binary vectors that can be 

generated based on 2m−1 D-type flip-flops or m flip-

flops and additional XOR gates. Fig. 2 shows the 

example of the memory device for mm-bit binary 

linearly independent vectors vi generation and storing 

for the case of primitive polynomial ϕ(x) = 1 ⊕ x1 ⊕ 

x4. 

 
Fig. 2. Example of Memory device implementation 

For the general case, the memory device (see 

Fig. 2) consists of m-bit shift register and additional 

XOR gates. The shift register is used tostore the first 

non-zero binary vector v1 = v11v12 … v1m, v1j∈  {0,1}

. This vector sequentially is loaded into the 
register bit by bit, applying the current bit to the input 

In and clock signals to the input Clk. For example in 

a case is shown in Fig. 2 v1 = v11v12v13v14 = w4w3w2w1. 

The second vector v2 is composed of the first m − 1 

bits of v1 and one additional bit that is obtained 

according to the chosen primitive polynomial ϕ(x). 

For polynomial ϕ(x) = 1 ⊕  x1 ⊕ x4 this bit w5 is w5 = 

w4 ⊕ w1, and then v2 = v21v22v23v24 = w5w4w3w2. The 

rest of the binary vectors vi= vi1vi2 … vim for i = 3, 4, 

…, m − 1 are obtained the same way as vector v2, 

where in our case v3 = w6w5w4w3 and v4 = w7w6w5w4. 
Then the equation for address sequences generation 

(2) has the form (4). 
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(4) 

It should be noted that proposed memory 

device is very easy to implement on hardware, see 
example Fig. 2. The hardware overhead depends only 

on the chosen primitive polynomial ϕ(x) and inmost 

cases consists of mD-type flip-flops and m − 1 two 

inputs XOR gates. The only variations in hardware 

overhead can be additional XOR gates. For the 

general case, the new memory device allows to get 

the m by m matrix V of linear independent vectors vi 

for structures like the memory device, implemented 

as a LFSR in Fig. 2. The primitive polynomial 

guarantees the linear independents for m consecutive 

states of the LFSR, and that is why it allows to avoid 
linear dependences for vectors vi in the matrix V. In 

the case of de-Bruijn generator, the only restriction is 

the all zero state that reduces the number of possible 

generating matrix Vto  2m − m. A little bit 

complicated preparation procedure is for 2m−1 shift 

register serving as memory device. The problem is 

that the first m bits of the register initial state wm… 

w3 w2 w1 can be chosen arbitrarily except for the 

zero code but the next bits can lead to linear 

dependencies between the vectors vi. That is why 

ananalyses of linear dependency should be done. 

Nevertheless, for both structures of the memory 
device, LFSR based (see Fig. 2) and 2m−1 shift 

register the following, so called Toeplitz matrix or 

diagonal-constant generating matrix (5) [18] will be 

obtained. 
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The third and the last block of the proposed 

structure of the memory addresses generator is 

required for implementing the equation (3). This 

block consists of m m-input XOR gates and m2 two-

input AND gates. At the XOR gates outputs the 

corresponding bits ai(n) from sequencesA(n) are 

obtained and two-inputs AND gates are used for m-

bit binary vector multiplication (3). 

Examples of such a type of AS, generated 

according to (4) are shown in Table 1 for the case of 
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memory device shown in Fig. 2 and the base address 

sequence B(n) generation by de Bruijn generator (see 

Fig. 1) and Up-counter. The first address A(1) = 

a4(1)a3(1)a2(1)a1(1) = 0111 have been obtained based 

on the de Bruijn sequence code B(1) = b4(1) b3(1) 

b2(1) b1(1) = 1100 and matrix V1 according to (4), 
where a1(1) = w4 × b1(1) ⊕ w3 × b2(1) ⊕ w2 × b3(1) 

⊕ w1 × b4(1) = 1 × 0 ⊕ 0 × 0 ⊕ 1 × 1 ⊕  0 × 1 = 1; 

a2(1) = w5 × b1(1) ⊕ w4 × b2(1) ⊕ w3 × b3(1) ⊕ w2 × 

b4(1) = 1 × 0 ⊕ 1× 0 ⊕ 0 × 1 ⊕ 1× 1 = 1; a3(1) = w6 

× b1(1) ⊕ w5 × b2(1) ⊕ w4 × b3(1) ⊕ w3 × b4(1) = 

1×0 ⊕ 1×0 ⊕ 1×1 ⊕ 0×1 = 1;  a4(1) = w7× b1(1) ⊕ 

w6 × b2(1) ⊕ w5× b3(1) ⊕ w4 × b4(1) = 1 × 0 ⊕ 1 × 0 

⊕ 1× 1 ⊕ 1× 1 = 0.  As can be seen from the Table 

1, the output address sequences depends on the base 

address sequence, as well as the particular generating 

matrix V. For both matrixes V1 and V2 and both base 

addressing the different address sequences A(n) have 
been obtained. 

 
Table 1. Address sequences 

 
 The chosen construction of the shift register 

(LFSR) used in memory device shown in Fig. 2 
allows to generate only 2m − 4 different matricesV 

composed of m m-bit linear independent vectors. For 

every matrix Va new address sequence A(n) for 

constant base B(n) sequence will be obtained. In the 

case of primitive polynomial (x) = 1 ⊕ x1 ⊕ x4 with 
degree m = 4 and counter base B(n) sequence 

generator there are 12 different output sequences 

A(n). 

The sufficient increasing of possible 

generating matrix V can be generated by the memory 

device design as the ordinal shift register with 2m − 1 

bits, what allow to get more different sequences A(n). 

This register, as mentioned earlier, serves as a 
memory device for storing matrix V. The most 

common and most widely used in MBISTaddress 

sequences A(n) [3] generatedwiththe proposed 

generatorare shown in Table 2. 

 
Table 2. Mos commonly used address sequence 

generation 

 
Up-counter (Linear) sequence, also called 

the counting address sequence is the first one in the 

set of the address sequence family [3]. For the 

generation of up-counter sequences formed by binary 

counting circuits (counters), it is necessary to form a 

generating matrix V with the all zeros, except forthe 

main diagonal, like it is shown in Table 2. 

To minimize stresses during memory testing, 
sequences with minimal switching activity are used, 

mainly the set of Gray Code sequences [3]. An 

example of such a type of  sequence is shown in 

Table 2. 

 

Based on the proposed mathematical model 

a FPGA implementation was made. On Fig.3 

simulation for address sequences from table 1. Fig.4 

shows the result of it’sRTL synthesis. 

 

Fig. 3. 

 
 

Fig 4 

 
 

n 
B(n) 

De Bruijn 

B(n) 

Up-counter

 

1111

0111

1011

0101

1
V

 
0001

1000

0100

0010

2
V

 

A(n)        
De Bruijn

 

A(n)        
Up-counter

 

A(n)        
De Bruijn

 

A(n)        
Up-counter

 

0 0  0  0  0 0  0  0  0 0  0  0  0 0  0  0  0 0  0  0  0 0  0  0  0 

1 1  1  0  0 0  0  0  1 0  1  1  1 1  1  1  1 1  0  0  1 0  0  1  0 

2 0  1  1  0 0  0  1  0 0  0  1  1 1  1  1  0 1  1  0  0 0  1  0  0 

3 0  0  1  1 0  0  1  1 0  0  0  1 0  0  0  1 0  1  1  0 0  1  1  0 

4 1  1  0  1 0  1  0  0 1  0  0  0 1  1  0  1 1  0  1  1   1  0  0  0   

5 1  0  1  0 0  1  0  1 0  1  0  0 0  0  1  0 0  1  0  1 1  0  1  0 

6 0  1  0  1 0  1  1  0 0  0  1  0 0  0  1  1 1  0  1  0 1  1  0  0 

7 1  1  1  0 0  1  1  1   1  0  0  1 1  1  0  1 1  1  0  1 1  1  1  0 

8 0  1  1  1 1  0  0  0 1  1  0  0 1  0  1  1 1  1  1  0 0  0  0  1 

9 1  1  1  1   1  0  0  1   0  1  1  0 0  1  0  1 0  0  0  0 0  0  1  1 

10 1  0  1  1 1  0  1  0 1  0  1  1   0  1  0  0   0  1  1  1 0  1  0  1 

11 1  0  0  1 1  0  1  1 0  1  0  1 1  0  1  1 0  0  1  1 0  1  1  1 

12 1  0  0  0 1  1  0  0 1  0  1  0 0  1  1  1 0  0  0  1 1  0  0  1 

13 0  1  0  0 1  1  0  1 1  1  0  1 1  0  0  0 1  0  0  0 1  0  1  1 

14 0  0  1  0 1  1  1  0 1  1  1  0 1  0  1  1 0  1  0  0 1  1  0  1 

15 0  0  0  1 1  1  1  1 1  1  1  1 0  1  1  0 1  0  0  0 1  1  1  1 
 

 

n 
B(n) 

Up-counter

 

Up-counter

1000

0100

0010

0001

 

Gray Code 

1000

1100

0110

0011

 

Random

1000

1100

1110

1111

 

0 0  0  0  0 0  0  0  0 0  0  0  0 0  0  0  0 

1 0  0  0  1 0  0  0  1 0  0  0  1 0  0  0  1 

2 0  0  1  0 0  0  1  0 0  0  1  1 0  0  1  1 

3 0  0  1  1 0  0  1  1 0  0  1  0 0  0  1  0 

4 0  1  0  0 0  1  0  0 0  1  1  0 0  1  1  1 

5 0  1  0  1 0  1  0  1 0  1  1  1 0  1  1  0 

6 0  1  1  0 0  1  1  0 0  1  0  1 0  1  0  0 

7 0  1  1  1   0  1  1  1 0  1  0  0 0  1  0  1 

8 1  0  0  0 1  0  0  0 1  1  0  0 1  1  1  1 

9 1  0  0  1   1  0  0  1 1  1  0  1 1  1  1  0 

10 1  0  1  0 1  0  1  0   1  1  1  1 1  1  0  0   

11 1  0  1  1 1  0  1  1 1  1  1  0 1  1  0  1 

12 1  1  0  0 1  1  0  0 1  0  1  0 1  0  0  0 

13 1  1  0  1 1  1  0  1 1  0  1  1 1  0  0  1 

14 1  1  1  0 1  1  1  0 1  0  0  1 1  0  1  1 

15 1  1  1  1 1  1  1  1 1  0  0  0 1  0  1  0 
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IV. CONCLUSION 

Though this work, a new architecture for an 

address generator which occupies major part of 

modern BIMSThas been introduced. The main goal 

behind the proposed address sequence generation 

method is the significant expansion of the set of 

different address sequences including the standard 

well known and extensively used sequences for 

MBIST. The lower bound of number of address 

sequences can be estimated by the value 2m − m, 

andthe upper bound does not exceed 22m−1. The 

peculiar properties of the generation of theToeplitz 
matrix (5), allows to obtain address sequences with 

different characteristics and properties. 
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