
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 55

Address Sequence Generator for Memory

BIST
Mikalai Shauchenka

Student of the Lichtenbergschule Darmstadt, Ludwigshöhstraße 105, 64285 Darmstadt, Germany

Abstract
In this work a structure that generates

memory address sequences for built-in memory self

tests is proposed. The idea is to significantly expand

the set of address sequences. The structure consists of

three components, namely the base address sequence

generator, a device for generating and storing a

matrix of binary vectors, and a device to calculate

the address values. The idea behind this structure is

to significantly expand the set ofdifferent address

sequences including the standard well known and

extensively used sequences for memory testing.

Keywords — MBIST, Built in memory self-test,

pseudo-random numbers, pseudo-random sequences.

I. INTRODUCTION

 For recent integrated circuits designs, a

Built-in Self-Test (BIST) for the memory is

becoming more abd more important, especially for

embedded memory, which is a most significant part

of System on Chip (SoC) designs, occupying more

than 70% of the area overhead and is expected to rise

up to 95% (!) [1, 2]. Because of this, Memory Built-
In Self-Tests (MBIST) have become a much more

common field of research and are now seen more and

more often in the industry [2, 3, 4]. For high

embedded memory quality, regardless of their

architecture, size and levels, the fault detection

capability of the BIMST plays a significant and

crucial role. BIMST can offer some benefits, the

most significant is at-speed testing and therefore high

fault coverage [5]. Traditionally, MBIST based on

March test algorithms consists of a set of March

elements with the desired memory address order. The

memory accesses speed and area overhead of the
MBIST mainly depends on the address sequence

(AS) generator, which is the most critical part of a

goodMBIST. AS generator designs are very different

and the area requirement for their implementation is

varying between 26 and 33% of MBIST [3]. Mainly

binary counters and Linear Feedback Shift Register

(LFSR) are used to generate ASs, which can be

succeedingly applied to the memory core to form a

test. Linear feedback shift registers are an efficient

way of describing ASs and generating them in

hardware implementations. An LFSR reduces the
amount of required logic (area overhead), minimizes

routing complexity and increase testing speed. Binary

LFSR have been studied for more than half a century

[6]. The maximum-length sequence generated by the

LFSR, called M-sequences (maximum length
sequence) or pseudo-random number (PN)

sequences, are the best-known and most thoroughly

studied special case of binary sequences [6, 7]. There

are numerous LFSR applications in different areas,

for example digital circuit testing, spread spectrum

communications, cryptographic stream cipher, PN

number generation, and many others [7, 8, 9]. In

modern MBIST s, LFSRs are playing an important

role as address generators [3, 12, 13]. The address

sequences properties and implementation aspects of

several mostly used ASs have been considered in [3].
As the result a novel, very systematic, high speed,

low-power and low-overhead implementation, based

on an Up-counter and a set of multiplexors have been

presented and analyzed. The proposed solution [3] is

concentrated on the restricted set of address

sequences. The paper [12] provides a direct

comparison between a fast binary counter, built using

a hierarchical Manchester carry chain, and a counter

built using a LFSR. The investigation is focused on

speed, power consumption and area overhead. It was

demonstrated the main benefits of using of LFSRs as
an alternative to conventional binary counters. Multi-

stage LFSR counter with reduced decoding logic for

large-scale array applications was considered in [13].

As have been shown in the paper LFSR counter to be

well suited to applications required large arrays of

counters. In the papers [14, 15], papers there are

approaches of developing the architectures of address

generators with low-transition. It has been proven

and validated that efficient implementation of the AS

generator has cut-down the switching activity of

MBIST sufficiently [15]. The proposed approaches

based on specifically modified LFSRs structures and
that is why allowed to generate the restricted sets of

the address sequences belong to the M- sequences

family. The reducing of power consumption during

the memory core testing of System on a Chip is one

of the most important issues. To reduce the power

consumption of MBIST the design proposed in [16]

concentrated on just only three types of the ASs,

namely LFSR based, Linear and Gray Code ASs. The

comparison with the standard solutions in terms of

the area overhead and consumed power have been

presented and analyzed. For only one LFSR based
AS the same power reducing issue was investigated

in [17]. In order to detect complex and speed-related

memory faults the address sequences implemented in

MBIST should cover a wide range of different

varieties of such sequences should be extended and

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 56

flexible [3]. At the same time the area overhead as

well as address generation speed also are very

important characteristics for the address sequence

generator.

II. GENERAL MATHMATICAL MODEL

 Consider the m-dimensional binary vectors
in binary space of 2m binary vectorsto be the address

sequence A(n) = am(n) am–1(n) am–2(n) … a2(n) a1(n),

where ai(n){0,1}, I {1, 2, …, m},and n{0, 1, 2,
…, 2m–1}. Then the problem of generating the desire

address sequence can be seen as the generation of m-

dimensional binary B(n) = bm(n)bm–1(n) bm–2(n) …

b2(n) b1(n);bi(n){0,1}, i{1, 2, …, m}in this
relation forman entire set of 2m binary vectors. Then

the vector space A(n) formed according to (1) is of

dimension m and consists of 2m vectors, this is why

vectors A(n) can be used as an address sequence [18].

To simplify further investigations, the binary

value of B(n) will take the value of an integer n,

representing a binary notation of decimal numbers.

For example in a case of m = 4 and n = 5, B(5) =
b4(5) b3(5) b2(5) b1(5) = 0101. The key elements of

this approach (1) to generate address sequences is

basis {v1 , v2 , …, vm}, which formed the generating

binary m by m matrix V. The only restricting factor

for such amatrix V is it's maximal rank. A matrix V

has a maximal rank if it consists out of a set of

linearly independent vectors vi [18]. For the same

value of m = 4, four binary vectors v1 = 1001, v2 =

0100 v3 = 0001 v4 = 0010 are independent. That is

why can be considered as the basis of binary space.

For this basis, the linear combination to binary
coefficients A(5) = a4(5) a3(5) a2(5) a1(5) = v1×b1(5)

 v2×b2(5) v3×b3(5) v4×b4(5) = v1 v3 =1001
0001 = 1000.

 The linear vector combination (1) based on

generating a m by m matrix V of linear independent

vectors vi= vi1vi2 … vim, vij∈ {0,1} the can be

considered as the matrix VT:

𝐴 𝑛 =  

𝑎1 𝑛

𝑎2 𝑛
⋯

𝑎𝑚 𝑛

  =  

𝑣11 𝑣21 ⋯ 𝑣𝑚1

𝑣12 𝑣22 ⋯ 𝑣𝑚2

⋯ ⋯ ⋯ ⋯
𝑣1𝑚 𝑣2𝑚 ⋯ 𝑣𝑚𝑚

⥂   

×  

𝑏1 𝑛

𝑏2 𝑛
⋯

𝑏𝑚 𝑛

  .

 It should be noted that matrix VT is the
transposed matrix V and all bit ai(n) ∈ {0,1}, I ∈ {1,

2, …, m} of the address sequence A(n) area linear

combination of the corresponding vectors vi bit

𝑎𝑖 𝑛 = 𝑣1𝑖 × 𝑏1 𝑛 ⊕ 𝑣2𝑖 × 𝑏2 𝑛 ⊕ 𝑣3𝑖
× 𝑏3 𝑛 ⊕ …⊕ 𝑣𝑚𝑖 × 𝑏𝑚 𝑛 .

(3)

 Relations (2) and (3) can be used as a
mathematical model for an address sequence

generator, which consists of three components,

namely the base address sequence generator B(n), a

device for generating and storing a matrix of binary

vectors VT, and a device for actually calculating the

address values A(n). Let´s review the individual

componentsofthegenerator.

III. ADRESS GENERATOR

IMPLEMENTATION

The goal of the proposed address sequence

generator is to significantlyexpand the set of different

address sequences for MBIST including the well

known and extensively used sequences for MBIST.

The first block of the address sequence

generator is used for the base address sequence B(n)

generation. Binary counters and LFSR are mainly

used to generate memory addresses that can be

seuccessively applied to the memory core under test.

That is why a binary counter and a LFSR can be
chosen as base sequence B(n) generators. Binary

counters generally use flip-flops, half adders, and a

high-speed carry chain. The high-speed counter in the

most applications uses a hierarchical Manchester

carry chain for carry propagation [12]. The delay

associated with a binary counter depends on the

number of bits in the adder/carry chain circuit. In

contrast, LFSR counters use only flip-flops and XOR

gates [12]. The delay of LFSR with internal XOR

gates is independent of the number of bits in the

counter. The only problem with LFSR is the absence
ofthe zero code in their output and thus it cannot

generate all zero addresses. To overcome this

restriction the de Bruijn sequences generator for

addresses generation can be used. For the primitive

polynomial (x) = 1 ⊕ x3 ⊕ x4 the structural scheme
of the de Bruijn generator is shown in Fig. 1.

Like the standard LFSR with internal XOR

gates, the above presented generator consists of

successively connected D-type flip-flops and two-

input XORs according to the used primitive

polynomial. Additional (m−1) inputs of the NOR gate

allow to generate the whole zero code [7].

 All memory tests use two kinds of chosen

address sequences A(n), namely, up-sequence ⇑A(n)

and down-sequence ⇓A(n) which is the sequence with

reverse addresses order. Then the generator of the

base sequence should operate in two modes: up and

down. This slightly increase the complexity of the

first block. For example in a case of the de Bruijn

generator the shift register have to perform shifts in

both sides and additional XOR gates are needed.

Fig. 1. De Bruijn sequence generator

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 57

 The second, and as already noted the main

block of the address generator is a memory device

consisting of m cells, each consisting of m bits. This

allows to store mm-bit binary vectors vi= vi1vi2 … vim,

vij∈ {0,1}. The contents of this device, which are the
vectors vi of the generating matrix V determine the

form of the address sequence A(n) (2). Matrix VT is

transposed matrix V, and vice-versa,V is transposed

matrix VT and both matricesmust consist of linear

independent vectors. That is why the main problem is

to generate and store this kind of vectors.

 To drastically reduce the complexity of the

memory device for generation and storing the values

of mm-bit linearly independent binary vectors vi, we

proposed to use a LFSR based structure described by

the primitive polynomial ϕ(x) with degϕ(x) = m. The

main idea behind this proposal is the fact that any
consecutive mm-bit LFSR states represent the set of

linear independent vectors vi [7]. The initial state of

the LFSR determines all m binary vectors that can be

generated based on 2m−1 D-type flip-flops or m flip-

flops and additional XOR gates. Fig. 2 shows the

example of the memory device for mm-bit binary

linearly independent vectors vi generation and storing

for the case of primitive polynomial ϕ(x) = 1 ⊕ x1 ⊕

x4.

Fig. 2. Example of Memory device implementation

For the general case, the memory device (see

Fig. 2) consists of m-bit shift register and additional

XOR gates. The shift register is used tostore the first

non-zero binary vector v1 = v11v12 … v1m, v1j∈ {0,1}

. This vector sequentially is loaded into the
register bit by bit, applying the current bit to the input

In and clock signals to the input Clk. For example in

a case is shown in Fig. 2 v1 = v11v12v13v14 = w4w3w2w1.

The second vector v2 is composed of the first m − 1

bits of v1 and one additional bit that is obtained

according to the chosen primitive polynomial ϕ(x).

For polynomial ϕ(x) = 1 ⊕ x1 ⊕ x4 this bit w5 is w5 =

w4 ⊕ w1, and then v2 = v21v22v23v24 = w5w4w3w2. The

rest of the binary vectors vi= vi1vi2 … vim for i = 3, 4,

…, m − 1 are obtained the same way as vector v2,

where in our case v3 = w6w5w4w3 and v4 = w7w6w5w4.
Then the equation for address sequences generation

(2) has the form (4).

.

)(

)(

)(

)(

)(

)(

)(

)(

)(

4

3

2

1

4567

3456

2345

1234

4

3

2

1

nb

nb

nb

nb

wwww

wwww

wwww

wwww

na

na

na

na

nA

(4)

It should be noted that proposed memory

device is very easy to implement on hardware, see
example Fig. 2. The hardware overhead depends only

on the chosen primitive polynomial ϕ(x) and inmost

cases consists of mD-type flip-flops and m − 1 two

inputs XOR gates. The only variations in hardware

overhead can be additional XOR gates. For the

general case, the new memory device allows to get

the m by m matrix V of linear independent vectors vi

for structures like the memory device, implemented

as a LFSR in Fig. 2. The primitive polynomial

guarantees the linear independents for m consecutive

states of the LFSR, and that is why it allows to avoid
linear dependences for vectors vi in the matrix V. In

the case of de-Bruijn generator, the only restriction is

the all zero state that reduces the number of possible

generating matrix Vto 2m − m. A little bit

complicated preparation procedure is for 2m−1 shift

register serving as memory device. The problem is

that the first m bits of the register initial state wm…

w3 w2 w1 can be chosen arbitrarily except for the

zero code but the next bits can lead to linear

dependencies between the vectors vi. That is why

ananalyses of linear dependency should be done.

Nevertheless, for both structures of the memory
device, LFSR based (see Fig. 2) and 2m−1 shift

register the following, so called Toeplitz matrix or

diagonal-constant generating matrix (5) [18] will be

obtained.

.

1212

3452

2341

123

mmmm

m

m

m

wwww

wwww

wwww

wwww

V

 (5)

The third and the last block of the proposed

structure of the memory addresses generator is

required for implementing the equation (3). This

block consists of m m-input XOR gates and m2 two-

input AND gates. At the XOR gates outputs the

corresponding bits ai(n) from sequencesA(n) are

obtained and two-inputs AND gates are used for m-

bit binary vector multiplication (3).

Examples of such a type of AS, generated

according to (4) are shown in Table 1 for the case of

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 58

memory device shown in Fig. 2 and the base address

sequence B(n) generation by de Bruijn generator (see

Fig. 1) and Up-counter. The first address A(1) =

a4(1)a3(1)a2(1)a1(1) = 0111 have been obtained based

on the de Bruijn sequence code B(1) = b4(1) b3(1)

b2(1) b1(1) = 1100 and matrix V1 according to (4),
where a1(1) = w4 × b1(1) ⊕ w3 × b2(1) ⊕ w2 × b3(1)

⊕ w1 × b4(1) = 1 × 0 ⊕ 0 × 0 ⊕ 1 × 1 ⊕ 0 × 1 = 1;

a2(1) = w5 × b1(1) ⊕ w4 × b2(1) ⊕ w3 × b3(1) ⊕ w2 ×

b4(1) = 1 × 0 ⊕ 1× 0 ⊕ 0 × 1 ⊕ 1× 1 = 1; a3(1) = w6

× b1(1) ⊕ w5 × b2(1) ⊕ w4 × b3(1) ⊕ w3 × b4(1) =

1×0 ⊕ 1×0 ⊕ 1×1 ⊕ 0×1 = 1; a4(1) = w7× b1(1) ⊕

w6 × b2(1) ⊕ w5× b3(1) ⊕ w4 × b4(1) = 1 × 0 ⊕ 1 × 0

⊕ 1× 1 ⊕ 1× 1 = 0. As can be seen from the Table

1, the output address sequences depends on the base

address sequence, as well as the particular generating

matrix V. For both matrixes V1 and V2 and both base

addressing the different address sequences A(n) have
been obtained.

Table 1. Address sequences

 The chosen construction of the shift register

(LFSR) used in memory device shown in Fig. 2
allows to generate only 2m − 4 different matricesV

composed of m m-bit linear independent vectors. For

every matrix Va new address sequence A(n) for

constant base B(n) sequence will be obtained. In the

case of primitive polynomial (x) = 1 ⊕ x1 ⊕ x4 with
degree m = 4 and counter base B(n) sequence

generator there are 12 different output sequences

A(n).

The sufficient increasing of possible

generating matrix V can be generated by the memory

device design as the ordinal shift register with 2m − 1

bits, what allow to get more different sequences A(n).

This register, as mentioned earlier, serves as a
memory device for storing matrix V. The most

common and most widely used in MBISTaddress

sequences A(n) [3] generatedwiththe proposed

generatorare shown in Table 2.

Table 2. Mos commonly used address sequence

generation

Up-counter (Linear) sequence, also called

the counting address sequence is the first one in the

set of the address sequence family [3]. For the

generation of up-counter sequences formed by binary

counting circuits (counters), it is necessary to form a

generating matrix V with the all zeros, except forthe

main diagonal, like it is shown in Table 2.

To minimize stresses during memory testing,
sequences with minimal switching activity are used,

mainly the set of Gray Code sequences [3]. An

example of such a type of sequence is shown in

Table 2.

Based on the proposed mathematical model

a FPGA implementation was made. On Fig.3

simulation for address sequences from table 1. Fig.4

shows the result of it’sRTL synthesis.

Fig. 3.

Fig 4

n
B(n)

De Bruijn

B(n)

Up-counter

1111

0111

1011

0101

1
V

0001

1000

0100

0010

2
V

A(n)
De Bruijn

A(n)
Up-counter

A(n)
De Bruijn

A(n)
Up-counter

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0

2 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0

3 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0

4 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0

5 1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0

6 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0

7 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0

8 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1

9 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1

10 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1

11 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1

12 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1

13 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1

14 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1

15 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1

n
B(n)

Up-counter

Up-counter

1000

0100

0010

0001

Gray Code

1000

1100

0110

0011

Random

1000

1100

1110

1111

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1

3 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0

4 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1

5 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0

6 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0

7 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 1

8 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1

9 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

10 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0

11 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1

12 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0

13 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1

14 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1

15 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0

www.internationaljournalssrg.org

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 6 Issue 11 – Nov 2019

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 59

IV. CONCLUSION

Though this work, a new architecture for an

address generator which occupies major part of

modern BIMSThas been introduced. The main goal

behind the proposed address sequence generation

method is the significant expansion of the set of

different address sequences including the standard

well known and extensively used sequences for

MBIST. The lower bound of number of address

sequences can be estimated by the value 2m − m,

andthe upper bound does not exceed 22m−1. The

peculiar properties of the generation of theToeplitz
matrix (5), allows to obtain address sequences with

different characteristics and properties.

REFERENCES

[1] International Technology Roadmap for Semiconductors,

Test and Test Equipment, 2015.

[2] Bushnell, M. L. Essentials of Electronic Testing for Digital,

Memory & Mixed-Signal VLSI Circuits / M.L. Bushnell,

V.D. Agrawal. – New York : Kluwer Academic Publishers,

2000. – 690 p.

[3] Goor, A.J. Optimizing memory BIST Address Generator

implementations / A.J. Goor, H. Kukner, S. Hamdioui //

Proc. of 2011 6th International Conference on Design &

Technology of Integrated Systems in Nanoscale Era (DTIS),

Athens, Greece. – 2011. – P. 572–576.

[4] Marinissen, E.J. Challenges in Embedded Memory Design

and Test / E.J. Marinissen, B. Prince, D. Keitel-Schulz, Y.

Zorian // Proc. of Design, Automation and Test in Europe

Conference and Exhibition, Munich, Germany. – 2005. – P.

722–727.

[5] Aswin, A.M. Implementation and Validation of Memory

Built in Self-Test (MBIST) –Survey / A.M. Aswin, S.S.

Ganesh // International Journal of Mechanical Engineering

and Technology (IJMET). – 2019. – Vol. 10, № 3. – P. 153–

160.

[6] Golomb, S.W. Shift Register Sequences / S.W. Golomb.

San Francisco : Holden-Day, Inc., 1967. 224 p.

[7] Yarmolik, V.N. Generation and application of

pseudorandom sequences for

random testing / V.N. Yarmolik, S.N. Demidenko. – New

York,NY,USA:John Wiley & Sons, Inc., 1988. – 167 c.

[8] Mohan, M. Review on LFSR for Low Power BIST / M.

Mohan, S.S.A. Pillai // Proceedings of 3rd International

Conference on Computing Methodologies and

Communication (ICCMC), Erode, India. 2019. P. 788-

454.

[9] Hellebrand, S. A mixed mode BIST scheme based on

reseeding of folding counters / S. Hellebrand, H.G. Liang,H-

J. Wunderlich // Journal of Electronic Testing. – 2001. –

№17. – P. –341–349.

[10] Ren,H. A Multi-polynomial LFSR Based BIST Pattern

Generator for Pseudorandom Testing / H. Ren Z.Xiong//

Proceedings of 2nd International Conference on

Information Science and Control Engineering, Shanghai,

China. – 2015. – P. 788-454.

[11] 15. Vennelakanti, S. Design and Analysis of Low Power

Memory Built in Self-Test Architecture for SoC based

Design / S. Vennelakanti, S. Saravanan // Indian Journal of

Science and Technology. – 2015. – Vol 8, №14. – P. 1–5.

[12] Ajane, A. Comparison of binary and LFSR counters and

efficient LFSR decoding algorithm / A. Ajane, P.M. Furth,

E.E. Johnson // Proceedings IEEE 54th International

Midwest Symposium Circuits Systems (MWSCAS), Seoul,

Korea. – 2011. – P. 1–4.

[13] Morrison, D. Multistage Linear Feedback Shift Register

Counters With Reduced Decoding Logic in 130-nm CMOS

for Large-Scale Array Applications / D. Morrison, D. Delic,

M.R. Yuce, J.-M. Redouté // IEEE Transaction on Very

Large Scale Integration (VLSI) Systems. – 2019. – Vol 27,

№1. – P. 103–115.

[14] Kumar, S. Efficient Memory Built in Self-Test Address

Generator Implementation / S. Kumar, M. Rajkumar //

International Journal of Applied Engineering Research. –

2015. – Vol 10, № 7. – P. 16797–16813.

[15] Saravanan, S. Design and Analysis of Low-Transition

Address Generator / S. Saravanan, M. Hailu, G.M. Gouse,

M. Lavanya, R. Vijaysai // Proc. of 6th EAI International

Conference, ICAST, Bahir Dar, Ethiopia. – 2018. – P.

[16] Singh, B. Address Counter / Generators for Low Power

Memory BIST / B. Singh, S. B. Narang, A. Khosla // IJCSI

International Journal of Computer Science Issues. – 2011. –

Vol. 8, Issue 4, № 1. – P. 561–567.

[17] Awad, A.N. Low Power Address Generator for Memory

Built-In Self-Test / A.N. Awad, A.S. Abu-Issa //The

Research Bulletin of Jordan ACM. – 2011. – Vol. II (III). –

P. 52–56

[18] Boyd, S. Introduction to Applied Linear Algebra: Vectors,

Matrices, and Least Squares / S. Boyd. – Cambridge, United

Kingdom :University Printing House, 2018. – 463 p.

[19] Yarmolik, V.N. Generating Modified Sobol Sequences for

Multiple Run March Memory Tests / V.N. Yarmolik, S.V.

Yarmolik // Automatic Control and Computer Sciences. –

2013. –Vol. 47, № 5. – P. 242–247.

[20] Chen, T.Y. Quasi random testing / T.Y. Chen, R. Merkel //

IEEE Trans. Reliability. – 2007. – Vol. 56, №3. – P. 562–

568

www.internationaljournalssrg.org
https://link.springer.com/article/10.1023/A:1012279716236
https://link.springer.com/article/10.1023/A:1012279716236
https://link.springer.com/article/10.1023/A:1012279716236
https://scholar.google.com/citations?user=SVXONrAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=SVXONrAAAAAJ&hl=en&oi=sra

