
SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 12

Mechanism For Detection of Software Design

Defects
KalalaliRoselineAsimini-Hart

#1
, BennetOkoni

*2
, Nuka Nwiabu

#3

Department of Computer Science,

Rivers State University, Port Harcourt,

Rivers State Nigeria

Abstract

This dissertation provides a mechanism for the

detection of software design defect. There are stages

of design defect which includes planning, analysis,

design, implementation and testing in which this

dissertation focuses on the design process alone.

There are basic principles of software design which

are ambiguity, inferiority, inconsistency and

incorrectness. This dissertation is picking

inconsistency and incorrectness as the two variables

to work with to test5 for software defect. The design

methodology is an object-oriented design which also

has five stages to actualize the aim of this

dissertation. The first stage of the OOD is been used

which is to define the context and external interaction

with the system thereby produces an SRS (Software

requirement Specification) Document with the

developer. After developing the software, the tester

tests the software using the two chosen variables to

test against the SRS Document to ascertain whether

the software developed is in conformity with the laid

down document. In the testing process, expert system

is used. machine learning under the supervised

learning where the system is trained with an

algorithm and the SRS data stored into the database.

Keywords – software, design, OOD, software

efficiency, software inconsistency,

I. INTRODUCTION

Software is a set of instructions and associated

documentation that enables a computer to perform a

specific task as opposed to the physical components

of the system (hardware) which comprises of system

and application software.

A defect is a general word for any kind of

shortcoming or imperfection, whether literal or

figurative. Sometimes applications can malfunction

and produce incorrect results, usually resulting from

coding or logic error. In such an instance, we call it a

software defect.

Several methods may be used to identify or detect

defects at different phases of the development life

cycle. It is well known that the later defects are

detected the more expensive they are to fix or

resolve. As such, organizations seek to identify

potential defects as early as possible in the software

development process. Early defect detection using

static code analysis eliminates future costs and

prevents problem expansion in the production or

implementation phases. Preventing a problem will

always be a better practice than waiting for it to

surface on its own. The earlier a development team

can identify flaws or vulnerabilities within the

software, the less the issue will cost and the easier it

will be to remedy. Early defect detection using static

code analysis ensures that the end product has

minimal-to-no defects, thus creating a stable

infrastructure deployment or market release.

According to Capers Jones (20l2), the expense of

fixing defects has been the most expensive in all

software dealings. Given the fact that defect repairs

are the most expensive element in the history of

software, it might be expected that the cost is

measured accurately and carefully. In avoidance to

measure defect repair cost, lines of codes are used by

some companies as metrics that are against normal

economic assumptions that disqualify high-level

language and „cost per defect‟ which condemns

quality.

A synergistic combination of formal inspections,

static analysis, and formal testing can achieve

combined defect removal efficiency levels of 99%.

Static code analysis is possible as soon as there is

code being written. Early defect detection

assessments provide a cost-effective, accurate

approach to creating a secure, robust software. As

flaws or vulnerabilities remain unidentified, they

create a continuously compiling expense in the form

of cost-to-fix or remediation. Automated software

using static analysis offers direct insight as to the

source of the problem and makes it easy to resolve

issues long before deployment. This drastically

decreases organizational costs, increases developer

productivity, and ensures a reliable implementation

or release.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 13

CAST Application Intelligence Platform or AIP is an

enterprise-driven static and architectural analysis

solution that assesses size, complexity, quality, and

technical risk at any point in the development life

cycle.

II. MATERIALS AND METHODS

Research methodology is the study of how a specific

research project is carried out using some laid down

techniques or approach. To effectively obtain the

objectives of this dissertation, A Constructive

research method is used to structure the research

goals. The design approaches are Top-Down design

approach and object-oriented Design Approach

(OODA) for developing the system configuration.

A. Constructive Research Method

Constructive research is one of the very common

computer science research procedures. The

constructive approach means problem solving

through the construction or use of models, diagrams,

plans, organizations, etc. This style of study is

generally used in technical sciences, operations

analysis, mathematics, clinical medicine and in

operations research (Eero et al, l993). The word

“construct” is frequently used in this context to

indicate a new contribution being developed and the

construct can be a new theory, model, software,

algorithm, or a framework. Mathematical algorithms

and new mathematical entities present theoretical

examples of constructions. Constructive method

solves practical problems while producing an

academically valued theoretical contribution (Liisa et

al., 20l7). The main idea of the Constructive study is

that construction, based on the existing or present

knowledge is used in a fresh or new way, with

possibly adding a few missing links (Crnkovic, 20l0).

Constructive research help in solving practical

problems while producing an academically

appreciated theoretical contribution. The solutions,

that is, constructs, can be processes, practices, tools

or organization charts for improved apprehension to

the reader as well as the researcher.

Relevance of constructive research to the research

work are:

I. Help to obtain a comprehensive

understanding of the study area;

II. Creating one or more applicable solutions to

the problem;

III. Demonstrating the solution‟s feasibility;

IV. Connecting the results back to the theory

and demonstrating their practical

contribution.

The constructive method is illustrated by dividing the

study into the stages:

I. Discover a practical relevant problem which

also has a good research potential.

II. Acquire general and comprehensive

understanding of the topic.

III. Create (constructing a solution).

IV. Show that the solution works.

V. Show the theoretical relations and the

research contribution of the solution

concept.

VI. Examine the scope of the solution.

B. Problem / Solution

This is the process or act of finding the mechanism

for detection of software design

defects solution using a particular tool. Constructive

research method help to place the problem into a

particular context that spells out the parameters of

inquiry.

A defect in a software design always creates a

recurring expense in the form of cost-to-fix or

remediation. This can be temporarily fixed by

creating a virtual operating system on which the

application software is to be tested upon for defects.

C. Practical Relevance

This involves having a practical understanding of the

mechanism of detecting a software design

defect solution, which means that they help us to be

fully involved in the work. However, in some

disciplines, it may be more important that a

dissertation has practical relevance. Research that has

practical relevance adds value; for instance, it could

make a recommendation for a particular industry or

suggest ways to improve certain processes within an

organization as being more concerned with or

relevant to practice than theory.

D. Theoretical Relevance

Theoretical relevance is formulated to explain,

predict, and understand phenomena and, in many

cases, to challenge and extend existing knowledge

within the limits of critical bounding assumptions.

The theoretical framework is the structure that can

hold or support a theory of mechanism for the

detection of software design defects solution gives

the new theoretical knowledge that needs scientific.

E. Theoretical body of knowledge

This is the complete set of concepts, activities and

terms which comprise a professional domain,

recognized by the relevant professional association. It

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 14

is a type of knowledge representation by any

knowledge organization.

An information source is a person, thing, or place

from which information of the causes of software

design defect comes, arises, or is

obtained. Information sources can be known as

primary or secondary. That source might then inform

a person about something or provide knowledge

about it.

Constructive research method in project management

research was performed by Oyegoke (2oll), which

support the application of the constructive research

method to the construction of Project Management

discipline. In (Lisa et al, (2ol7), Problem Solving for

Complex Projects was researched using the

Constructive Research method.

F. Methods of Data Collection and Tools

The method of data collection and tool adopted in

this research is the secondary data collection method

which is further classified into Internal and external

secondary data. They include;

I. Information collected through censuses

II. Internet searches or libraries

III. Progress reports

The rationale for selecting secondary data collection

in this thesis is that it is time-saving, cost-effective,

available from other sources and may already have

been used in previous research, making it easier to

carry out further research and much of the

background work needed for the mechanism for

detection of software design defects have already

been carried out.

G. Design Methodology

Design methodology refers to the development of a

system or method for a unique situation. Today, the

term is most often applied to technological fields in

reference to web design, software or system

architecture. The main thing in design methodology

is designing unique solutions tailor-made for each

unique situation, be it industrial design, architecture

or technology. The methods used in this research is

“Object-Oriented Method and Recursive Design”

(OOM/RD).

H. Object-oriented Method

The software development methodology uses object-

oriented development methods for which the entire

system is broken down into subsystem and modules

and the modules are seen as objects. Object-oriented

programming is often the most natural and pragmatic

approach, once you get the hang of it. An object

oriented programming language allows you to break

down your software into bite-sized problems that you

then can solve, one object after the other. The steps in

a typical object-oriented Method (OOM) model will

generally include the following details:

i. Identification of critical objects of the main

systems design by breaking them down into modules

(smaller blocks) or subsystems

ii. Performing software processing on

identified objects

iii. Re-applying software processing on the

identified objects

The steps are crucial to almost any object-oriented

technological design and must performed in a

repeating manner to arrive at reasonable performance

estimates. Bottom-up design is the type of object

oriented method used in the system design because it

is the best for systems that are created from the

current system. This method is chosen for this

research since the modules in the proposed method is

seen as objects.

I.Recursive Design

The research utilized the Recursive design approach

because it affords programmers the advantage of the

repetitive structure present in many problems,

especially in algorithm design.

However, the main reason of combining object

oriented method and recursive design in this design

methodology of this research is for a good

userinterface of the system design making the system

user-friendly.

Using the “Recursive Design” method in this

research makes me to understand the domain of “big

data” in the ranking method which will be used in

solving the issue because of it ability of Iteration.

This is as result of multi-test of the process to

generate a sequence outcome.

J. System Architecture

An architecture specification is a precise description

and illustration of the system, which is constructed in

a pattern that provides insight into the structures and

actions of the system. Figure 3.l.Shows the proposed

system architecture

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 15

Figure 1 System Architectural Structure

The principles of software design are incorrectness,

inconsistency, ambiguity, and inferiority. For this

research, the scope in narrowed down to two

principles/parameters which are; inconsistency and

incorrectness.

i. Incorrectness: The design does not meet the

user‟s requirements on its functionality and

features. Such an error may appear in the

form of misinterpretation or omission of

user‟s requirement

ii. Inconsistency: This is where a design fails to

work. For example, if two design statements

make conflicting assumptions about the

functionality of a component or the meaning

of a data item, the design simply does not

work.

K. Design Defect Detection Process

This process is of two levels Primary and secondary.

The primary defect detection process is at the same

level of abstraction and the secondary defect

detection process is at a different level. It is noted

that design defect, design inspection, and functional

testing are primary processes code inspection and

unit testing are secondary defect detection processes

L. Report

In this stage, the process reports the result of the

defect and the required changes to be done in the

design to achieve the specific requirement earlier

specified.

M. Detailed Design of Functional Testing

The detailed design explain the basic component they

make up the operation of the system. Figure 2 below

shows the detailed design of the functional testing

system and the component. The process of arranging

the preliminary design of a system or component in

such a manner that the design is sufficiently complete

to be implemented.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 16

Fig. 2: Component of Functional Testing

In the proposed system, a Mechanism for the

detection of software design defects is proposed. In

the case of software defect prediction models, there

is four-parameter use in predicting whether the

software is defective or clean.

Algorithm 1:

// return the greatest

// common denominator

Int Euclid (int m, int n)

 {

 Assert {n > m};

 Assert {m>0}

 Int r;

If {n > m}

 {

r = m;

m = n;

n = r;

 }

r = m % n;

while {r ! - 0}

 {

m = n;

n = r;r = m % n;

 }

assert (n > o);

return n;

}

Fig. 3: Testing flowchart

The following figure below shows how integration

testing can be done without performing fill basis

path testing of all modules.

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 17

Fig4: Use case diagram of the proposed system

A use case is a process of modeling a system‟s

function in terms of system events and how the

system responds to those events. In Use Case

modeling, Use Case Diagram contains symbols

written in Unified Modeling Language (UML).

The system functions include in this case are the user

responsible for reporting defects while the quality

access (QA) is responsible for testing and fixing

defects and the developer is will handle the change of

defect, fix the defect and also assign defect to himself

in the cause of developing.

Fig. 6: Activity Diagram

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 18

The activity diagrams describe the various activities

that are involved in this research. It is laid down

activity that the system follows to achieve its aim.

The activities of this work start from gathering of

information to describe the software design defect,

after the gathering of data it will report or register

defect in bug tracker if the developer cannot reduce

the error, he will determine the possible cause and

select the root cause then estimate solution if the

approved change is no it will send feedback to clients

else it will develop a solution strategy maybe test and

evaluate the solution and correct changes.

Fig. 7: Flow diagram of the system mechanism

Figure 3.7 shows the mechanisms and the processes

that take place in software design defect they include:

Analysis: in analyzing a software defect, a tester

must be an intelligent observer and should likewise

have a lot of knowledge in such a manner. A tester is

required to apply demonstrative perception to have

the capacity to reveal the test situation from both a

positive and negative approach

New: when the defect is reported and posted for the

first time. Then it is given a new state.

Duplicate: if the bug was reported earlier and again

it is reported then the status is marked as duplicate.

Rejected: If the bug reported the testing team is

considered as working fire then the defect is rejected

by the development form.

Deferred: the defect reported by the testing team is

not of high priority and can be fixed in next releases

then the defect is marked as deferred and will be

fixed in an upcoming release

Assigned: once reported the lead of the testing team

will approve the defect is genuine and the defect is

assigned to the corresponding developer. Then the

status is changed to assign.

Open: once the defect is assigned to a developer, the

status of the defect is changed to an open state.

Fixed: the status of defect changed to fixed when the

developer makes the necessary changes in code and

verified the changes.

Retest: after the defect is fixed by the developer, it is

assigned to the testing team for a retest. The status is

changed to retest.

Reopen: once the testing team retests the fixed

defect. If the defect is still present, there then the

status of defect is changed to reopen.

Defect is found

Status = reopened

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 19

Close: if the testing team retests

N. The architecture of Ambiguity Detector
The architecture of the ambiguity detector is a tool

that contains four components i.e. SRS document,

Algorithm for detecting sentence, Corpus of different

ambiguous words and parts of speech.

O. Software Requirement Specification

(SRS)Document

SRS (Software Requirement Specification): is the

primary vehicle for agreement between the developer
and customer on exactly what is to be built. It is a

document reviewed by the customer or his

representative and often is the basis for judging the

fulfillment of contractual obligations.

The SRS records the result of the problem analysis.

Documenting the result of analysis allows questions

about the problem to be answered once during

development. It defines what properties the system
must have and constraints on its design and

implementation. It helps in ensuring that requirement

decision is made explicitly during the requirement

phase not implicitly during programming.

P. Unit Testing of Software

Unit testing is a software testing method in which the

individual units of the source code such as the
associated functions are tested to determine whether

each unit of the code generates the precisely expected

output. In this, the unit test cases for every

microprocessor machine instruction set were

developed and used to verify the incorrectness and

inconsistency of the instruction set operations

emulated in the tested.

III. RESULTS AND CONCLSION

This section explores facets of the application under

review and evaluates its implementation and

performance with regards to its purpose for which it

was designed. It showcases the design specification,

installation procedures, and documentation and

launching.

Our application compilation for software defect
mechanism is grasped using PHP (HyperText

Preprocessor) as the main scripting language, CSS

(Cascading Style Sheet) was used to style the

interface, MYSQL Server as the database server, and

XAMPP as the Web server.

A. Result for incorrectness

the resulting level is determined by the threshold (th)
level

th< 25 represent Error Free and

th>25 represent Error

B. Result for inconsistency

the resulting level is determined by the threshold (th)

level

th<50 represent Error Free and

th>50 represent Error

TABLE I
Application name: Like me

Variables True

(<25)

False

(>25)

Point

Per

Variable

%

Solution

Preferred

Incorrectness False 83 Make sure all

finding given by

the owners are

met

Inconsistency  N/A N/A

Total

Amount of

Defect

 83

TABLE II
Application Name: Global Development

Variables True

(<25)

False

(>25)

Point Per

Variable

%

Solution

Preferred

Incorrectness

False

48 Make sure all

finding given

by the owners

are met

Inconsistency N/A N/A N/A

Total Amount

of Defect

 48

TABLE III
Application Name: Social Network

Variables True

(<25)

False

(>25)

Point Per

Variable

%

Solution

Preferred

Incorrectness False 52 Make sure all

finding given

by the owners

are met

Inconsistency N/A N/A N/A

Total Amount

of Defect

 52

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 20

TABLE IV

Application Name: Smart Home Design

Variables True

(<25)

False

(>25)

Point Per

Variable

%

Solution

Preferred

Incorrectness True N/A Good

condition

Inconsistency  64 N/A

Total Amount

of Defect

 64

A. Graphical Representation of the Result

The graphs below represent the incorrectness of

software design defect as a variable, it is assumed

that when the threshold is greater than 25% it will be
abnormal this is represented by the red symbols while

the normal is less than 25%. This applies to the

inconsistency variable but in the ambiguity, the

threshold is set at normal when is less than 50%

while the abnormal is greater than 50%.

Fig. 8: incorrectness of software design

Fig. 9: inconsistency variable

This studywas narrowed down to software design

defect which is the art of testing software based on an

input variable that determines an error-free software

or defect software. Utilizing static code analysis to

detect defects helps averts future costs and prevents

problem expansion in the production or

implementation phases. Essentially, faults detections

activities are carried out in every phase of the

software development life cycle based on their need

and criticality. In this application, we collect the

information of the said software and analyze their

must variables which are the functionality, reliability,

usability, efficiency, maintainability, and portability,

when we look into these features of software design

decisions are made. So, this mechanism works when

we put in a variable and we check for the software

design defect the system will analyze the input and

give the required result if the software is designed

defected or error-free.

IV. CONCLUSION

The detection and correction of design defects due to

poor design choices are difficult because of the lack

of precise specifications of defects and tools for their

detection and correction. No single software fault

detection technique is capable of addressing all

concerns in error detection. Similar software reviews

and testing, static analysis tools (or automated static

analysis) can be used to remove faults before a

software product release. Inspection, prototyping,

testing, and proofs of correctness are several

approaches to identify faults. in software defect

solution testing is one of the least effective

techniques. A single error can lead to one or more

faults and several faults can lead to failure. To avoid

this failure in software products, faults detections

activities are carried out in every phase of the

software development life cycle based on their need

and criticality.

To this end, it must be emphasized that if all parties

both middle level and top management, company

owners and all stakeholders in software market are

committed and agree to define and meet the

expectations of each other by producing error-free

software our aim of maintaining error-free software

will be achieved since success is measured by

achieving defined goals and meeting expectations to

the satisfaction of all.

REFERENCE

[1] Dresch, Aline, Lacerda, Daniel Pacheco; Jr. Ose

Antonio Valle Antunes (2015). “Design Science

Research: A Method for Science and Technology

Advancement Cham”. Springer, pp. I doi:10, 1007/978-

3-319-07374-3.

[2] Hoshggoftaar, T., & Allen, E. (1998). “Predicting the

order of fault-prone Modules in legacy software”.

[3] Kemerer, C. F. & Mark, C. (2009). The impact of

design and code reviews on software Quality: “An

Empirical study based on PSP Data” IEEE

Transactions on Software Engineering. Vol. 35 No. 4.

[4] Liu, Khoshgoftaar, &Seliya (2010). “International

Conference or Machine Learning and Applications”.

[5] Zhang Yanjun, “Design and Development of Chinese

Teaching Software based on Chinese Audio-visual

Multimedia Corpus”, SRG International Journal of

SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 3 – March 2020

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 21

Electrical and Electronics Engineering Volume 5 Issue

10 Oct 2018

[6] Mende, T., &Koschri, R. (2009). “Revisiting the

evaluation of defect prediction models? Process

International Conference on Predictor models in

software engineering”.

[7] Ohlsson, N., &Alberg, H. (1996). “Predicting fault

probe software module in telephone switches” IEEE

Trans Software Engineering, 22(12), 886-894.

[8] OMG (2010). “Unified Modelling Languages,

superstructure specification, version 2.1.1,

http://www.omg.org/spec/UML/2.1.1/superstructure

/PDF/.

[9] Orthogonal defect classification, “A concept for In-

Process Measurements, IEEE Transactions on Software

Engineering”, SE 18. P. 943 – 956.

[10] Wise, A. (2006). Litter-JIL. “1.5 Language Report on

Technical Report”, Department of Computer science,

University of Massachusetts.

[11] Zheng, J., Williams, L., Nagappan, N., Snipes, W.

Hudepohl, J. P. &Vonk, M. A. 2006). “On the value of

static Analysis for fault Detection on Software”. IEEE.

Transactions on Software Engineering, 32, (4).

