Reflective Optical Programmable Encoder

Hanumant Nawale
Electronics Telecommunications
Indira College of Engineering & Management
Pune, India

Bhagwat D.S
Electronics Telecommunications
Indira College of Engineering & Management
Pune, India

Abstract—A concept presented for integration of Reflective lens less optical phased array photo sensor with use of blue led in a thumb size is a flood gate open for automation industries. this combinations makes difference over Magnetic and transmission optical technology. it has a high space utilizations with greater gap between sensor and disc is unique feature over transmission technology lick components used featuring of short wavelength as well as low jitter in output signal due to improved signal quality. Use of this technology gives low optical crosstalk .Interpolation programming of sin-cos signal for easy higher resolution are getting at low cost compared to optical encoder. Mechanical thumb structure gives space benefit in a various applications.

Keywords— optical encoder, photo sensor, thumb size, signal,

I. INTRODUCTION

In human life Automation is the success key for development in every place in day to day. This need convert into save time, money, wealth of society and increasing better utilizations of resources and time. For that study the motion control is very important in respect of automations .motion may be linear, rotary, angular, curved, or any form. You say that it is a little bit point of contact always, in the f use when Use live conditions and gives the feedback for control system without need of human input f or corrections .to make control of mechanical motion interfacing to electronic card transducers are born.

In early stage to control the rotary motions tacho generator, potentiometer, resolver, magnetic encoder, Optical encoder are used but now a day as the market becomes increasing driven by consumer demands, businesses are forced into an intensified effort of meeting those demands to ensure business survival. It is a free for all in a business landscape that is filled with unpredictable sentiment and unforgiving circumstances. From suppliers to manufacturers, distributors to sales channels, all mechanisms involved in supporting the end products are faced with the seemingly unreasonable task of delivering products that are record-breaking miniature sizes; complete with extended capacities, high quality, while continuously maintaining a cost-down price structure. Validate for end use as desired/estimated in thought. An optical encoder has become recognized as an indispensable displacements/position sensor over magnetic sensor to its advantages of excellent immunity to electromagnetic interface, high resolution, light weight and less space .It plays a vital role in allot of industrial applications enabling precise positions control encompassing robotic controls printers, diamond cutting, cut to length, the encoder which typically involves a code disc optical sensing head and signal circuits is classified into two categories of reflective or transmission depends on arrangements of light source, code disc and photo detector. All transmission type encoder are usually pursued to conveniently dispose its constitute elements and having the space constraints

A. Principal

The operating principal of reflective is light emitted by the transmitter is influenced by an objects or a media on its way to the detector the change in the light signal caused by an interactions with the objects then produces change in the electrical signal in the opto-electronic receiver

Blue LED

Blue LEDs are the basis for white emitters which are in extreme demand by the automotive and illumination markets today long term temperature stable blue LEDs are available which outshine the IR
and red LEDs used in encoders so far, because they offer higher light yield and efficiency at even lower cost. Optical position sensors benefit notably as a result of the technological progress of both LED and CMOS technology. IC-Haus has optimized the new incremental scanners in its high resolution icPR- Series especially for blue light. The integration platform for such single chip encoder is denoted by the trademark Encoder blue [3]

Hardware design and set up

To integrate a sensor and disc with a minimum size and adding various features to encoder like reverse polarity protection, Short circuit protection with bearing encoder

Fig 02: Reflective proto testing set up

Provides great deal in size utilizations of all side, creep age distance during the PCB design and placing components for Considering Reflow soldering for all packages

Placing the electronic components like sensor ic having size of 5 mm by 5mm and interpolator. As this is the Optical encoder hence gap between sensor and disc should maintain within 100 micro mm to 1.5 mm for good results

Mechanical Design

As defined encoder is an electro mechanical device that transmit mechanical motion in to an electrical signal by using Reflective principal. All electrical signal quality of sine cos pulse and driver output is depend upon the gap bet the sensor and disc and horizontal and vertical ovality of disc with respect to centre, Boring of shaft and taper of shaft plays role during the manufacturing of shaft. Process is critical

Shaft material and his hardness and surface finish plays important role for higher accuracy and better resolutions control over these parameters plays long life encoder performance for getting accurate results

Hub design makes sense because PCB is resting over the hub machining of hub for ovality puts the signal output variations and bearing size concentric boring also make sense to quality of encoder signal placing pcb and crimping for permanent holding pcb
Speed | Output frequency
---|---
200rpm | 53.33khz
500rpm | 133.33khz
1000rpm | 266.66khz
2000rpm | 533.33khz

Fig05: Output signal speed and frequency table

Conclusion

From the given Prototype design and reading it shows that o/p of encoder are easily interpolated and getting higher PPR and resolution compared to normal optical encoder. As seen from above prototype design that all encoder feature are obtained in thumb size. Great space utilizations and programmable output is achieved by interpolations.

Acknowledgment

Any accomplishment requires the effort of many people and this work is no different. I find great pleasure in expressing my deep sense of gratitude to wards all those who have made it possible for me to present this work.

I would like to express a sincere gratitude to my guide Prof. D. S. Bhagwat for his dynamic and valuable guidance. I am grateful to him for constant encouragement in the fulfillment of the paper work. This paper result of combined efforts put in by my guide and me. I would also like to thank him for providing me with all necessary infrastructure and facilities to complete the paper. I also extend thanks and sincere gratitude to Head of Department of Electronics and Telecommunication Prof. A. M. Patki and all Staff Members who extended the preparatory steps of this paper. I am also thankful to our Principal Dr. S. B. Ingle for his valued support and faith for me. I would also like to express appreciation and thanks to all my friends who knowingly assisted me with their valuable suggestions and supports and I am very grateful for their assistance. I would also like to thank those who are directly or indirectly guiding me.

References

[1] Hak-Soon Lee, Sang-Shin Lee “Reflective Optical Encoder Capitalizing on an Index rating Imbedded in a Compact Smart Frame Volume 6, Number 2, April 2014 DOI: 10.1109/JPHOT.2014.2307554 1943-0655 2014 IEEE. J. M. Abdul Waheed Dept. of Mechanical and Aerospace Engineering Hong Kong University of Science and Technology Hong Kong; awaheed@connect.ust.hk Lilong Cai Dept. of Mechanical and Aerospace Engineering Hong Kong University of Science and Technology Hong Kong melcai@ust.hk,” Alternative Design for Optical Incremental Encoder Measurement Systems.”978-1-4673-8075-11169@2016-IEEE

