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Abstract  

The research work deals with Detailed 

modelling of permanent magnet synchronous motor 

for electrical drives. In this paper we have discussed 

about mathematical modelling of PMSM for 

Electrical Forklifts designing aspects of subsystem of 

PMSM Block of the Main model. Permanent magnets 

to replace the electromagnetic pole with windings 

requiring a less electric energy supply source 

resulted in compact dc machines. Likewise in 

synchronous machines, the conventional 

electromagnetic field poles in the rotor are replaced 

by the PM poles and by doing so the slip rings and 

brush assembly are dispensed. With the advent power 

semiconductor devices the replacement of the 

mechanical commutator with an electronic 

commutator in the form of an inverter was achieved. 

These two developments contributed to the 

development of PMSMs and Brushless dc machines. 

Due to many applications of PMSM like sensor less 

speed control, appropriate position control, Servo 

motor, etc. Mathematical modelling of permanent 

Magnet synchronous motor is carried out and 

simulated using MATLAB. The most important 

features of PMSM is its high efficiency given with the 

ratio of input power after deduction of loss to the 

input power. There is no field current or rotor 

current in the PMSM. 
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I. INTRODUCTION 

Electric motor drives are used in a very wide 

power range, from a few watts to many thousand 

kilowatts, in applications ranging from very precise, 

high performance position controlled drives in 

robotics to variable speed drives for adjusting flow 

rates in pumps. In all drives where the speed and 

position are controlled, a power electronic converter 

is needed as an interface between the input power and 

the motor.  Above a few hundred watts power level, 

there are basically three types of motor drives: DC 

motor drives, Induction motor drives, and 

Synchronous motor drives. AC motor drives have 

replaced DC drives in most applications as they have 

more advantages to offer.  The application or process 

determines the requirements of the motor drive.  For 

example, a servo-quality drive is needed in robotics, 

machine tools, paper mill or steel mill drives whereas 

only an adjustable speed drive is needed in air 

conditioning system. 

 

For a suitable drive to be selected for a 

specific load or application, complete information 

about load requirements should first be obtained.  A 

motor having speed-torque and speed current 

characteristics that suit the load requirements is 

chosen.  A motor will have characteristics compatible 

to the load if it satisfies the speed and torque 

requirements of the load without exceeding the 

current limitation imposed either by the motor rating 

or the source capacity.  Usually the natural speed-

torque characteristic is not compatible with the load 

requirements and a power electronic converter is used 

to interface the motor and the source.  Further, a 

control strategy that ensures that the drive and load 

characteristics are well matched is employed.  The 

control strategies most commonly employed with 

modern electric drives can be grouped into scalar and 

vector control schemes in the case of AC drives. 
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II. MODELLING OF THE PERMANENT MAGNET SYNCHRONOUS MOTOR (PMSM) FOR 

ELECTRICAL FORKLIFTS PART-II DESIGNING OF SUBSYSTEM OF PMSM BLOCK 

 
Fig. 1 :Comparison of MATLAB Model of PMSM and My Own Model 

The goal of the project is to investigate 

anddevelop permanent magnet synchronous 

motors(PMSM) for traction applications such as 

electricdriven forklifts. An existing 

induction(asynchronous) traction motor that can be 

found inelectric forklifts is used as benchmark for the 

study.The aim of the design is to have a high efficient 

permanent magnet motor drive that could be a 

feasible alternative to the induction motor drive in a 

longer perspective, despite a higher initial cost due to 

the expensive rare-earth permanent magnet (PM) 

materials that are preferably used in these types of 

motors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Different Models in Comparison of MATLAB Model of PMSM 

 

There are multiple model inside the each 

block and subsequent programming has been done in 

order to find out or to calculate the desired 

parameters and characteristics. The details of various 

model inside the PMSM block are as shown in fig. 2. 

In this paper we are discussing the designing of 

subsystem block of the PMSM block.  
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III. THE DESIGNING OF THE SUBSYSTEM MODEL OF PMSM BLOCK IN MODELLING 

OF PERMANENT MAGNET SYNCHRONOUS MOTOR (PMSM) 

 

In this section, the simulation of the subsystem model 

of PMSM block in modelling of permanent magnet 

synchronous motor is developed using simulink. The 

simulation circuit includes all realistic components of 

the drive system. modelling of a permanent magnet 

synchronous motor is performed using the machine 

equations; with some assumptions like: saturation is 

neglected; the induced EMF is sinusoidal; Eddy 

currents and hysteresis losses are negligible; there are 

no field current dynamics; all motor parameters are 

assumed constant; Leakage inductances are zero. The 

d-q model has been developed on rotor reference 

frame. This dynamic simulation of PMSM subsystem 

block is done with the aid of SIMULIN in MATLAB 

package. The PMSM motor drive simulation was 

built in several steps like abc phase transformation to 

dqo variables, calculation torque and speed, and 

control circuit. The abc phase transformation to dqo 

variables is built.  

 

Fig. 3 Inside Model of PMSM block of Main model from fig. 1 

The PMSM block of the main model figure 

1 comprises of sub blocks named as Subsystem, 

PMSM dynamic model and Subsystem 1these blocks 

are also subdivided into various blocks. This block 

provides the relationship between these blocks & 

various other signals which are generated or taken as 

input and fed to these blocks to process are to 

produce the desired output. 

 
Fig. 4 Inside Model of Subsystem Block of PMSM Block from Fig. 3. 

 

The subsystem block of PMSM main model is further divided into 3 sub models named as abc to dqo 

transformation, sin-cos calculator, ds-s to de-qe model these models calculate for their respective outputs and 

which in turn becomes output of subsystem block.  
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Fig.5 Inside Model of abc to dqo Transformation of Subsystem block fig. 4. 

 

PMSM motor drive simulation was built in 

several steps like abc phase transformation to dqo 

variables, calculation torque and speed, and control 

circuit. For simulation purpose the voltages and 

currents are taken as inputs and output and one can 

use Parks transformation for conversion of Vabc to 

Vdqo.  

 

  

This is abc to dqo transformation of 

subsystem of PMSM block which calculates the 

different voltages which in turn have been used to fed 

to the ds-s to de-qe block as input in order to 

calculate output of subsystem block. 

 

This is sin, cos calculator of subsystem of  

PMSM block which calculates the values of sin & 

cos of the theta angle which is used as input to ds-s to 

de-qe block to calculate Vqs_e , Vds_e outputs of 

subsystem block. 

Fig. 6 Inside Model of sin cos Calculator of Subsystem 

Block Fig. 4. 
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Fig. 7 Inside Model of ds-s to de-qe Calculation  of Subsystem Block Fig. 4. 

 

This block known as ds-s to de-qe is the 

third sub block of subsystem of PMSM block. which 

receives the Inputs from abc to dqo transformation & 

sin cos calculation to generate output as qs_e & ds_e. 

To generate output of qs_e this block Adds 

product and product1 block. In this qs_s and cos Oe 

signals are fed to product and ds_s and Sin Oe are fed 

to Product1 which are added to  produce results of 

qs_e. 

Similarly to generate output of ds_e we add 

Product 2 and Product 3 block. In this ds_s and cos 

Oe signals are fed to product2 and qs_s and Sin Oe 

signals are fed to Product 3 block which are added to 

produce results of ds_e. 

 

IV. RESULTS 

 
Fig. 8 Gives the Total Harmonic Distortion and Fast Fourier Analysis (FFT) for input-3, Signal Number 1 for 60 Hz 

Fundamental Frequency and Maximum Frequency of 1000 Hz. 
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Fig. 9 Gives the Total Harmonic Distortion and Fast Fourier Analysis (FFT) for Input-3, Signal Number 2 for 60 Hz 

Fundamental Frequency and Maximum Frequency of 1000 Hz. 

 

V. CONCLUSIONS 
A detailed Simuliink model for a PMSM 

block in detail modelling of PMSM drive system for 

electrical forklifts with field oriented control has 

being developed and operation at and above rated 

speed has been studied using two current control 

schemes. Simulink has been chosen from several 

simulation tools because its flexibility in working 

with analog and digital devices. In the present 

simulation measurement of currents and voltages in 

each part of the system is possible, thus permitting 

the calculation of instantaneous or averages losses, 

and efficiency. Usually in such a drive system the 

inverter is driven either by hysteresis or by PWM 

current controllers. A speed controller has been 

designed successfully for closed loop operation of the 

PMSM drive system so that the motor runs at the 

commanded or reference speed. 
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