Grid connected using Fuzzy Logic Control of Bidirectional Dc-Dc Converter

R.Vinya, N. Vinothini, A. Liyas Basha

1Student, Department of Electrical and Electronics Engineering, AVS College of Engineering, Salem, Tamilnadu
2Assistant Professor, Department of Electrical and Electronics Engineering, AVS College of Engineering, Salem, Tamilnadu.
3Assistant Professor, Department of Electrical and Electronics Engineering, AVS College of Engineering, Salem, Tamilnadu.

Abstract: Bidirectional DC-DC converter (BDC) has received lot of attention due to increase in need of system with capability of energy transfer between source to load and vice versa. Apart from the traditional applications such as DC motor drives, new application of BDC includes energy storage in renewable energy systems. The fluctuating nature of most renewable energy resources makes them not suitable for standalone operation as a sole source of power. To overcome this drawback one finite solution is to use an energy storage device between source and load. The implementation of fifth order resonant converter provides flexibility and advantages compared to conventionally used circuits. The topology is used half bridge converter on both primary and secondary side of high frequency transformer. The provision of phase shift between the two input converters eliminates triplen harmonics and the usage of fifth order resonant filter results in the elimination of negative sequence harmonics.

Keywords: Half bridge converter, Fifth order resonant converter, Harmonic distortion, Isolated DC-DC Converter.

I. INTRODUCTION

Power electronic circuits primarily process the energy supplied by a source to match the form required by the load by means of using semiconductor devices to control the voltage and current. The energy is usually available from the utility grid or from a bank of batteries with the applications ranging from high-power conversion equipment processing megawatts to everyday low power equipment with requirements of a few milliwatts.

The majority of power converters are unidirectional with the power being supplied from the source to the load. But, a number of applications like motor drives, uninterruptible power supplies, alternate energy systems, battery charger dischargers, telecommunication and space systems, require the additional exchange of energy from the load to the source. These applications utilize power converters with bi-directional transfer properties.

Conventionally unidirectional converters are used for energy transfer between sources to load and vice versa; each converter transfers the power in one direction. The escalating cost of energy in recent years has resulted in growing emphasis on energy management due to the drain on natural resources and environmental pollution, and energy saving techniques are becoming more important. The demand for the development of sophisticated, compact and efficient power systems has prompted research in bi-directional converters providing the desired bilateral power flow and capable of replacing the two unidirectional converters.

A Bi-directional DC-DC converter, having capability of bilateral power flow, provides usage of two uni directional (half bridge or full bridge) converters in a unique single converter circuit. The implementation of this proposed converter topology demonstrates its advantages and feasibility when compared to that of conventionally used topologies. The converter circuit provides usage of half-bridge converters on both primary and secondary side of an isolation transformer. Achieving bi-directional flow of power using the reduced power components provides a simple, efficient, flexibility for a low power bi-directional DC-DC converter.

II. ISOLATED BIDIRECTIONAL DC-DC CONVERTER

The block diagram of the Isolated Bidirectional DC-DC (BDC) converter with the fifth order resonant filter is shown in the Fig. 1. It consists of a primary DC source, half bridge converter, high frequency transformer, resonant filter, a pulse generator and load. During Boost mode the source side converter acts as inverter and load side converter acts as rectifier and it is vice versa for Buck mode.
A. Resonant converter

Resonant converters are widely used in different applications where soft switching is of great importance. Especially in high-voltage applications, resonant converters are suitable topologies since they can effectively absorb and take advantage of parasitic components, which are considerable due to the high-voltage transformers used to provide the voltage gain and galvanic isolation. In high-voltage applications, due to the structure of the transformer, a very large turn’s ratio is inevitable. This leads to a high value of the equivalent secondary capacitance. Furthermore, the primary winding and the secondary winding are not perfectly coupled due to the distance imposed by the required high-voltage insulation. The weak coupling leads to a large leakage inductance that must be modelled on both sides of the transformer. In order to analyse the converter, this transformer is usually modelled by an equivalent circuit based on the operating frequency of the converter and transformer configuration.

The proposed converter is a fifth-order resonant converter, which fully incorporates the transformer parasitic components into the resonant circuit. This topology uses a purely capacitive filter at the output side. This is a great advantage in high-voltage applications, due to the fact that there are so many issues with the fabrication of the inductor at high-voltage output in terms of insulation.

There are two main control techniques used to regulate the output voltage of the resonant converters.

- variable-frequency (VF) control method
- fixed-frequency phase-shift control method

In high-voltage applications, the VF technique is not preferable since the breakdown voltage of the insulation materials used in the converter significantly degrades with the increase in the frequency. Therefore, the fixed-frequency phase-shift control technique is well suited for this application. In addition, since the range of load variations is very wide in this application (from absolutely no load to full load), the converter should be able to maintain ZVS for the entire range. Thus, the converter requires the circulating current even at light loads in order to have ZVS. This imposes a little extra conduction losses imposed by the reactive current, which is more pronounced in light loads. However, maintaining ZVS for light loads is essential in order to have a reliable operation and a noise-free control/drive circuitry. Also, since the voltage is pretty high in the primary side, the current is pretty low, and the extra conduction losses are negligible.

In all equations, the transformer secondary-side variables are transferred to the primary side. The procedure in this analysis is to find the equivalent impedance viewed from different points of the resonant tank through the FHA of the currents and voltages. The FHA of \(i_{LS1}(t), i_{LP}(t), \) and \(i_{LS2}(t) \) are given by

\[
\begin{align*}
\dot{i}_{LS1}(t) &= I_{LS1} \sin(\omega_s t - \phi) \\
\dot{i}_{LP}(t) &= I_{LP} \sin(\omega_s t - \varphi) \\
\dot{i}_{LS2}(t) &= \dot{i}_{LS1} - \dot{i}_{LP} = I_{LS2} \sin(\omega_s t + \delta).
\end{align*}
\]

(1)
(2)
(3)

B. High frequency transformer

The high frequency transformer is the backbone of modern switched mode power supplies. The physical size is dependent on the power to be transferred as well as the operating frequency. The higher the frequency smaller will be physical size. Frequencies are usually between 20 and 100 kHz. Ferrite is mainly used as the core material.

C. Driver

Driver is an electrical circuit which is used to control another circuit or other components. They are usually used to regulate current flowing through a circuit or control the other factors such as prevent high voltages or rapidly changing voltages from damaging components or distorting other components.
III. CONVERTER TOPOLOGY

![Isolated Bidirectional DC-DC converter circuit](image)

Fig. 2 Isolated Bidirectional DC-DC converter circuit

Most of the existing Bidirectional DC-DC converters consist of current fed or voltage on one side. Based on the placement of the auxiliary energy storage, the Bidirectional DC-DC converter can be classified into Buck and Boost type. In Buck type the energy storage device placed on the high voltage side, and in the Boost type it is placed on the low voltage side. To get the power flow on both sides in Bidirectional DC-DC converters, the semiconductor switches should carry current in both directions. The circuit diagram of proposed system is shown in Fig 2. It is usually implemented with a unidirectional power semiconductor switches such as MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or IGBT (Insulated Gate Bipolar Transistor) in parallel with a diode. For the Buck and Boost DC-DC type converters, double sided current switch is used cell by replacing the switch and diode to achieve the bidirectional power flow.

In the Bidirectional DC-DC converters the isolation is normally provided by an isolation transformer. The added transformer provides increase in additional cost and losses. However, since transformer is used to isolate the two voltage sources and provide the impedance matching between them, it is an alternate approach for those kinds of applications. Advantages of this proposed converter topology include isolation is provided between the two dc sources using a single transformer, low switch count with the use of same power components for power flow in either direction.

By incorporating an appropriate value of phase shift between two converters at the input side with respect to each other to reduce or cancel the triplen harmonics and to control the power flow from one DC source to another. In summary, the operation of the isolated bidirectional DC-DC converter circuit involves the utilization of the leakage inductance of the transformer and it is used as a main energy storing and transferring element to deliver bidirectional power flow.

IV. OPERATING PRINCIPLE

The proposed converter is supplied by a hybrid system consisting of a primary DC source and a battery for emergency applications. The proposed converter circuit consists of two half bridge converters at the source side with 60° phase shift connected to the primary side of the high frequency transformer. This is done to cancel the triplen harmonics. The load side half bridge converter is connected to the secondary side of the transformer through fifth order resonant filter. The proposed circuit is shown in Fig. 3. The modes of operation are as follows:

A. Boost mode

![Boost mode](image)

Fourier analysis waveforms of two source side converters V_1 and V_2 gives

\[
V_1 = \frac{4V_s}{\pi} [\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \frac{1}{7} \sin 7\omega t + \ldots]
\]

\[
V_2 = \frac{4V_s}{\pi} [\sin \left(\omega t - \frac{\pi}{3}\right) + \frac{1}{3} \sin 3 \left(\omega t - \frac{\pi}{3}\right) + \frac{1}{5} \sin 5 \left(\omega t - \frac{\pi}{3}\right) + \frac{1}{7} \sin 7 \left(\omega t - \frac{\pi}{3}\right) + \ldots]
\]
The resultant voltage applied to the transformer primary is

\[V_p = V_1 + V_2 \]

\[V_p = \frac{2V_s}{\pi} \sqrt{3} \sin \left(\omega t - \frac{\pi}{6} \right) + \frac{1}{5} \sin \left(5\omega t + \frac{\pi}{6} \right) + \frac{2}{7} \sin \left(7\omega t - \frac{\pi}{6} \right) + \ldots \] (6)

In boost mode of operation the source side converter acts as inverter this square wave is applied to the resonant converter through isolation transformer which provides a low impedance to the square wave and smoothens it into a sine wave and the right side converter acts as a rectifier. The output capacitor provides smooth DC output as ripple free. The operation of source side half bridge converter consists of two modes of operation

Mode 1: \(S_1 \) ON, \(S_2 \) OFF; \(v_o = V_s/2 \)

During mode 1 the switch \(S_1 \) starts to conduct and capacitor \(C_2 \) charges form \(-V_c\) to \(V_c \) and capacitor \(C_1 \) discharges to \(-V_c\). So the output voltage across \(C_2 \) is \(V_{in}+V_c \). The current flows through \(S_1 \), resonant converter, \(C_2 \) then back to source. Therefore the output voltage of the source side converter is

\[V_o = \left(\frac{2}{\pi} \int_0^{\frac{2\pi}{4}} \frac{V_s^2}{dt} \right)^{\frac{1}{2}} = \frac{V_s}{2} \] (7)

In the secondary side switch \(S_2 \) starts to conduct and the current flows through \(S_2 \), and \(C_2 \) and it is charges to \(V_s \) output voltage applied across the load. Similarly for second converter at the same side but the switch \(S_2 \) is turned on in a phase delay of 60° with respect to \(S_1 \) and the mode I operation are remains same as converter I.

Mode 2: \(S_1 \) ON, \(S_2 \) OFF; \(v_o = -V_s/2 \)

During mode 2 switch \(S_1 \) is turned off and \(S_2 \) is turned on then capacitor \(C_1 \) starts to charge form \(-V_c\) to \(V_c \) and \(C_2 \) discharge to \(-V_c\). So the output voltage across the \(C_1 \) is \(V_{in}+V_c \). The current flows through \(S_2 \), \(C_1 \) then back to source. Similarly for second converter at the same side but the switch \(S_4 \) is turned on in a phase delay of 60° with respect to \(S_2 \) and the mode II operation are remains same as convertor I. In the secondary side switch \(S_5 \) is turned off and \(S_5 \) starts to conduct and the output voltage applied across the load as 2\(V_s \).

B. Buck mode

Similarly in Buck mode the load side converter acts as inverter and the power flows from load to source. The source side converter which acts just like a diode rectifiers through the coupling transformer as same as in boost mode. The output voltage from the source side converters is stored in to a battery for emergency applications. The output voltage appears across the output is 56.64V but the nominal output voltage of the battery is 48V. So the battery gets charged by giving input voltage to the battery greater than the nominal value.

V. DESIGN CONSIDERATIONS

Turns ratio

\[
\begin{align*}
E_1 &= 4.44 \times N_1 \times 0 \times f \\
48 &= 4.44 \times N_1 \times 10 \times 10^{-6} \times 40 \times 10^3 \\
N_1 &= 28 \\
E_2 &= 4.44 \times N_2 \times 0 \times f \\
100 &= 4.44 \times N_2 \times 10 \times 10^{-6} \times 40 \times 10^3 \\
N_2 &= 57
\end{align*}
\]

TABLE 1 TRANSFORMER PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal input voltage</td>
<td>48V</td>
</tr>
<tr>
<td>Nominal output voltage</td>
<td>100v</td>
</tr>
<tr>
<td>Magnetizing inductance (L_{m})</td>
<td>500H</td>
</tr>
<tr>
<td>Primary and secondary leakage inductance (L_{lkp}, L_{lks})</td>
<td>0.08H</td>
</tr>
</tbody>
</table>
Resonant circuit parameters

The resonant filter is designed by using the resonant frequency, which can be written as,

\[F_r = \frac{1}{2\pi \sqrt{L_s C_s}} \] \hspace{1cm} (8)

Let, \(C_s = 44 \text{nF} \)
\[L_p = 500 \text{\mu H} \]

\[F_r = \frac{1}{2\pi \sqrt{L_s C_s}} = \frac{1}{2\pi \sqrt{315 \times 44 \times 10^{-9}}} \]

So that \(L_s \) can be calculated as 315 \(\mu \text{H} \)

Similarly \(F_r = 5 \times F_r \)

Therefore \(L_s = 705 \ \mu \text{H} \)

Where

\[L_s = L_{s1} + L_p \]

Let \(L_p = 500 \ \mu \text{H} \) then

\[L_{s1} = 205 \ \mu \text{H} \]

<table>
<thead>
<tr>
<th>TABLE 2 RESONANT FILTER PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant filter parameters</td>
</tr>
<tr>
<td>values</td>
</tr>
<tr>
<td>Series capacitance (C_s)</td>
</tr>
<tr>
<td>44nF</td>
</tr>
<tr>
<td>Series inductance (L_{s1})</td>
</tr>
<tr>
<td>315 (\mu \text{H})</td>
</tr>
<tr>
<td>Series inductance (L_{s2})</td>
</tr>
<tr>
<td>205 (\mu \text{H})</td>
</tr>
<tr>
<td>Parallel inductance (L_p)</td>
</tr>
<tr>
<td>500 (\mu \text{H})</td>
</tr>
<tr>
<td>Parallel capacitance (C_p)</td>
</tr>
<tr>
<td>140nF</td>
</tr>
</tbody>
</table>

Capacitor specification for half bridge converter

\[c_1 = c_2 = \frac{0.876 \beta_0 (1 - 0.636 M_p)}{v_o^2 f} \] \hspace{1cm} (9)

Where, \(M_p = \frac{v_o}{v_{in}} \) \hspace{1cm} (10)

\[c_1 = c_2 = 1e^{-6} \]

Simulation circuit parameters

<table>
<thead>
<tr>
<th>TABLE 3 VALUES FOR SIMULATION SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation parameters</td>
</tr>
<tr>
<td>setup</td>
</tr>
<tr>
<td>Ratings</td>
</tr>
<tr>
<td>Nominal input voltage</td>
</tr>
<tr>
<td>48 V</td>
</tr>
<tr>
<td>Output voltage</td>
</tr>
<tr>
<td>210 V</td>
</tr>
<tr>
<td>Switching frequency</td>
</tr>
<tr>
<td>40 KHz</td>
</tr>
<tr>
<td>Transformer turns ratio</td>
</tr>
<tr>
<td>28:57</td>
</tr>
</tbody>
</table>

VI. OUTPUT WAVEFORMS AND RESULTS

A. Boost mode

The output waveforms and results of the simulated circuit for an Isolated BDC using MATLAB software are shown below. The output waveforms and results obtained can be used so that it is easier to design the prototype model. The waveform of the output voltage is shown below in Fig.5.

![Fig. 5 Output voltage waveform of BDC in Boost mode](image)

The waveform of the source side converters with phase shift is shown below in Fig.6.

![Fig. 6 Output voltage waveform of source side converters](image)

Fig. 7 Voltage waveform at the secondary side of the transformer.
FFT analysis for Boost mode

Fig. 8 FFT Analysis of BDC in Boost mode

B. Buck mode

The output waveforms and results of the simulated circuit for an Isolated BDC in Buck mode are shown below

Fig. 9 Output voltage waveform of BDC in Buck mode

The waveform of the output voltage obtained for the converter circuit is shown in Fig. 9.

Fig. 10 Input voltage waveform of BDC in Buck mode

FFT analysis for Buck mode

Fig. 11 FFT Analysis of BDC in Buck mode

VII. CONCLUSION

In this paper the operation of Bidirectional DC-DC converter was discussed for both buck and boost mode. The addition of two converter voltages with phase shift resulting the elimination of triplen harmonics and also the addition of fifth order resonant circuit gives the output with reduced fifth order harmonics i.e., negative sequence harmonics. These negative sequence harmonics produce opposing torque in a drive system. In this proposed model these negative sequence harmonics are highly reduced and provide better efficiency. The operation of Bidirectional DC-DC converter has been verified through simulations.

REFERENCES

R.VINYA received her B.E degree in Electrical and Electronics Engineering from SALEM Engineering college. Presently he is pursuing his M.E in Power Electronics & Drives AVS Engineering College, Salem. Her area of interest includes Power quality, Robotics and Renewable energy sources.

MS. N.Vinothini, Assit prof IN AVS Engg. college
Completed PG in anna university in 2014, Completed UG in anna university in the year 2012, Her area of interest includes electrical machines and power systems control and power quality ,she has presently research papers in 12 international and national conferences ,she has published 5 research papers in international journals.

A.LiyasBasha, AP EEE AVS Enggcollege, Completed PG in Annaimathammal SheelaEngg college namakkal first Class with distincation Completed UG in government college Of Engg Bargur krishnagiri district 4years teaching experience in diploma at PGP polytechnic College Namakkal 5 years teaching experience in jayalakshmi institute of technology Thoppurdharmapuri district