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Abstract 

Most modern control methods including 

model predictive control (MPC) need to be measured 

or observed the state vectors of the object model. 

However, for real systems are often not fully measured 

state variables. Meanwhile, we must use the state 

observations to estimate the state vectors of the object 

model. One of the effective solutions to estimate the 

state of the system is to use Kalman filter for linear 

systems and extended Kalman filter (EKF) for 

nonlinear systems. This paper, we will mention the 

construction of extended Kalman filter to estimate the 

state parameters of the Twin rotor MIMO system 

(TRMS) and use this estimation to conduct tests on the 

real system so as to check the solution of the optimal 

problem by SQP algorithm mentioned in [4] and use 

variational method to solve the optimal problems, 

announced in [5] for the TRMS. Specifically the SQP 

algorithm and variational methods in the MPC given 

in [1], [2], [3]. 
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I.  INTRODUCTION 

The TRMS is the experimental system about 

the aerodynamics at the lab, have similarly working 

principles as helicopters, systems with bilinear forms 

mathematical model, has 6 state variables 

( )   h h h v v vS S . In which, we only 

measure two variables are the Yaw angle and the Pitch 

angle, other state variables are not measured. 

Therefore, to obtain the state variables in each 

iteration of the control algorithms need to use a state 

observer.  

II. THE TRMS MODEL 

The TRMS was given in figure 1 

The TRMS is a bilinear system with two 

inputs and two outputs. It can be described by the 

continuous model:  
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State variables, inputs, outputs, respectively are: 
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Fig 1. The TRMS 

Where: 

ωh: Rotational velocity of the tail rotor (rad/s) 

Sh :Angular velocity of the TRMS beam in the 

horizontal plane without affect of the main rotor 

(rad/s) 

h : Yaw angle of the TRMS beam (rad) 

ωv: Rotational velocity of main rotor(rad/s) 

Sv: Angular velocity of the TRMS beam in the vertical 

plane without affect of the tail rotor (rad/s) 

v: Pitch angle of the TRMS beam (rad) 

Uh: Input voltage signal of the tail motor (V) 

Uv: Input voltage signal of the main motor (V) 

The nonlinear continuous state space equations of 

the TRMS are expressed in [6], [7], [8] as (7): 

Where: 
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are positive constants, h and v  is defined by 
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III.  INSTALLING THE KALMAN OBSERVER 

Estimating the state parameters of an object 

is based on the measured parameters at the input and 

output of them in each time that estimate the other 

state parameters (not measured) of them. 

Assuming a nonlinear system have  state - space 

model: 
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( ) ( ( )) ( )

  

  

x k f x k u k w k

y k h x k v k
 

Extended Kalman Filter algorithm flowchart 

which estimate the state of the object (8) is shown in 

Figure 2. 

where: ( )w k and ( )v k  are white noise with covariance 

matrixes ( )Q k and ( )R k . The nonlinear state - space 

equation can be approximated by the state - space 

equation depends on the following state: 
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The estimation of optimal state variables can 

be achieved when using the loop equations, is follow 

 

 

 

A) The Predictive Period 

 

ˆ ˆ( 1) ( ( 1 1), ( )) (10)

ˆ ˆ( ) ( ( 1)) ( 1) ( ( 1)) ( ) (11)

    

     T

x k k f x k k u k

M k A x k k P k A x k k Q k

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. Flowchart of  the extended Kalman observer 

method 

where, ˆ( 1)x k k is predicted state và ( )M k  is 

predicted error covariance.  

 

B. Correction or 

update
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where '( )L k is the Kalman gain, ˆ( )x k k  is the updated 

state estimate, và ( )P k  is the update error covariance. 

 

C.  Check the status of observer 

In this section, using simulation methods on 

Matlab-Simulink software to check the accuracy of 

state estimation algorithm. Simulation test Chart 

observe the status is shown in Figure 3. In which, the 

TRMS model block is constructed from the expression 

(7), the inputs and two outputs of the model (Yaw 

angle and Pitch angle) are included in the state 

observer block, the outputs of the status observer 

block are states that need to estimate of the TRMS. 

The estimate status is compared with the state of the 

model. The simulation results are shown from Figure 

4 to Figure 9. 

 
Fig 3. Simulation diagrams check the status of observer 
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Fig 4. The output response of  the status observer with respect to the output response of model of the first state 

variable ( h ) 
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Fig 5. The output response of  the status observer with respect to the output response of model of the second state 

variable ( Sh  ) 
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Fig 6. The output response of  the status observer with respect to the output response of model of the third  state 

variable (h ) 
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Fig 7. The output response of  the status observer with respect to the output response of model of the fourth  state 

variable ( v ) 
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Fig 8. The output response of  the status observer with respect to the output response of model of the fifth  state 

variable ( Sv ) 
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Fig 9. The output response of  the status observer with respect to the output response of model of the sixth  state 

variable (v ) 

D. Comment 

From the above simulation results, we see 

that the state variables of the state estimation nearly 

coincides with the states of the TRMS (largest error is 

about 0.05% of the initial steps). So we can use this 

observation to conduct experiments predictive control 

for the TRMS. 

IV. EXPERIMENTING ON PHYSICAL MODEL 

OF THE TRMS 

To check by experiment the optimized 

predictive control algorithm based nonlinear 

programming and stable tracking predictive control 

algorithm according to the output sample signal, the 

authors have conducted experiments for the TRMS 

system at the Electricity - Electronics Engineering Lab, 

Thai Nguyen University of Technology - Thai Nguyen 

University.  

 

 

 

The pairing system with computer through 

the pairing CARD DSP1103, using real-time tools 

Workshop of Matlab/Simulink. The output signal 

which is the Yaw angle and  the Pitch angle is 

measured by Encorder, other states obtained through 

the state observer above, the experimental results are 

shown from Figure 10 to Figure 13. 

A. Reviews and evaluation of experimental results 

when using the SQP Algorithm  

Experimental results are given in Figure 10 

and Figure 11 shows that although the number of 

times oscillation more when simulation, and an 

overshoot of the Pitch angle in the 39th seconds is 

slightly larger when changing the large set signal 

amplitude (from 2.5 rad to 0 rad) but the output 

response of the Yaw angle and the Pitch angle  keeps 

tracking on set signal. 

The dynamic quality of the system is 

measured via the standard of deviation squared 
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integral, through the simulation times that value in the range of 0.75 to 0.83. 

 
Fig 10. The output response of the Yaw angle when using optimized predictive controller based nonlinear 

programming 
 

 
Fig 11. The output response of the Pitch angle when using optimized predictive controller based nonlinear 

programming 
 
 

 
Fig12. The output response of the Yaw angle when using predictive controller stable tracking follow the output 

sample signal 
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Fig 13. The output response of the Pitch angle when using predictive controller stable tracking follow the output 

sample signal 
 
 

B. Reviews and evaluation of experimental results 

when using the Variational Algorithm 

The experimental results obtained when 

using variational method is given by Figure 12 and 

Figure 13 shows the danamic characteristics of the 

system close the set signal. The dynamic quality of the 

system is measured via the standard of deviation 

squared integral, through the simulation times that 

value in the range of 0.83 to 0.86. 

V. CONCLUSION 

The experimental results have confirmed the 

correctness of the two algorithms that the authors have 

proposed in [4] and [5] and the feasibility of  them 

when applying to control for real system. However, 

this paper still don’t test when having the disturbances, 

so here is the future work in the next study. 
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