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Abstract  

 The paper proposes an approach to design 

adaptive robust control for tracking control a TRMS 

(Twin Rotor MIMO System), which is a perturbed 

coupled nonlinear system with two degrees of freedom. 

The here proposed controller uses an infinite horizon 

and continuous time nonlinear model. Hence it always 

guarantees the adaptive robust tracking stability of 

obtained closed loop systems in real time, without 

using an additional penalty function in objective 

function as usual. The obtained simulation result by 

using this controller has confirmed its promising 

applicability in practice.  
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I.  INTRODUCTION 

Some decades ago, the research of the control 
of Twin Rotor MIMO Systems (TRMS), which is 
depicted symbolically in Fig.1, has been considered as 
a benchmark of controlling the flight of air vehicle 
such as helicopter or UAV (unmanned air vehicle). 
Therefore several control methods and techniques for 
TRMS have been proposed and implemented regularly, 
in which the conventional control method namely PID 
and the modern one such as MPC are all employed. 
For example:  in 2002 Ahmad et al. provided the open 
loop control along longitudinal axis [1]; in 2007 Lu at 
al. proposed the time optimal control based on LQR 
[2], in 2010 Pratap et al. introduced a sliding mode 
state observer controller [3]; in 2014 Pandey et al. 
presented a PID controller, and in 2012 proposed 
Ramalakshmi et al. a nonlinear control approach based 
on Lyapunov [4], or an optimal LQR for the 
stabilization around an equilibrium had been 
introduced by Pandey et al. in 2015 [5] etc.,. Moreover, 
if in control problem of TRMS, there are some 
required constraints which are not ignorable, then the 
methods introduced by Akbar Rahideh in 2009 based 
on MPC seem to be good alternative solutions to 
overcome [6]. However, all these methods are 
restricted if the TRMS is additionally disturbed and if 
the trajectory to be tracking is a complicatedly desired 
hover [12]. 

This approach can be considered as an 
extension of the method, which is already proposed in 
[7] for bilinear discrete time systems. The extension 
here means that this approach is established for 

nonlinear continuous time systems without time 
discretizing them as well as without implementation of 
any constrained optimization algorithm as usual by 
applying MPC techniques.  

Moreover, since the discrete model obtained 
by discretizing could not reflect all inter-sample 
behaviors of the real system, which may be cause a 
number of critical event in practical applications, this 
proposed sample data controller with its avoidance of 
model discretization improves therefore indirectly the 
internal control performance of closed loop systems. 

 
Fig 1: Twin rotor multiple input-multiple output system 

 

II. MAIN CONTENT 

A. Nonlinear continuous time model of TRMS 

 A various number of TRMS model has been 
proposed in [8, 9, 10]. Under which this paper uses the 
TRMS model given in [10], where the pivot length is 
not negligible. Simulation results obtained in [10] 
show that this model is much precise than the other 
introduced earlier. This model was established by 
using the Euler-Lagrange equations and has an 
equivalent continuous time state equation as follows: 

 
( , )x f x u

y Cx







 (1) 

where 

( , , , , , )v h v h m tx          is the vector of  pitch 

angle, yaw angle, derivative of pitch angle, 
derivative of yaw angle, velocity of main rotor 
and velocity of tail rotor respectively. 
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where ( , , , )v h m tq      is the vector of  pitch 

angle, yaw angle, angle of main rotor and angle of 
tail rotor respectively, and 
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B. Receding Horizon Control model 

It is obviously that the function ( , )f x u  of 

TRMS model given in (1) is continuously 

differentiable. Therefore, at the current time instant kt  

and during a short time interval 1[ , )k kt t   with 

1 ,  0 1k k k kt t        afterward it can be 

approximated by: 

 

   1 1( , ) ( , )k k k k k k

k k k

f x u f x u A x x B u u

A x B u d

     

    

where 

 
1 1, ,

1 1

,   

( , )

k k k k

k k
x u x u

k k k k k k k

f f
A B

x u

d f x u A x B u

 

 

 
 
 

  

 (2) 

Therefore, the original nonlinear state equation in (1) 
can be now replaced accordingly during the same time 

interval 1[ , )k kt t   by a linear model: 

 ( , ) k k kx f x u A x B u d     

 It is clearly that all matrices ,  k kA B  and 

vectors kd  is determined, since ( )k kx x t  at the 

current time instant kt  are measureable and 

1 1( )k ku u t   at the previous time instant is already 

known. 

Hence, the original nonlinear model (1) of 
TRMS can be now replaced accordingly during the 

current time interval 1[ , )k kt t   by the following 

determined LTI model: 

 
k k kx A x B u d

y Cx

  





 (3) 

 Each model (3) can be replaced the original 
model (1) only during the appropriate time interval 

1[ , )k kt t   and all of them together with 0,1,k    will 

be called hereafter the receding horizon LTI models as 
depicted in Fig.2. 

 

 

 

 

 

 

 
Fig 2: Receding horizon control with optimization 

 

C. Adaptive robust controller design 

In the following, the obtained LTI model (3) 
will be used to design the state feedback controller 

( )u x  based on linear quadratic variation technique to 

control TRMS (1) during an appropriate time interval 

1[ , )k kt t  . The obtained optimal controller, which is 

obviously also valid only during the next time interval 

1 2[ , )k kt t  , will be denoted by ,  0,1,k k R   as 

illustrated in Fig.2. The merged controller from them: 

 1 2,  ,  0,1,k k kt t t k     R R  (4) 

for all time domain t , will be called the receding 
horizon controller. Consistently, the purpose of this 
receding horizon controller R  is the asymptotical 
convergence to zero of tracking error 

( ) ( )k k ke w t y t   of closed loop system for all k , 

where ( )w t  is the desired output. 

With (4) the designing of R  can be now replaced 
by determining of all instant controllers 

k  

kt  1kt   

2kt   

3kt   

1kR  

2kR  

t  

, , ,

,

k k k

k k

A B Q

R d
 

kR  



SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) – volume 4 Issue 12 December 2017 

ISSN: 2348 – 8379                 www.internationaljournalssrg.org                   Page 10 

,  0,1,k k  R . In order to avoid tracking errors 

1 1( ) ( )k kw t y t   by designing of kR , which could be 

remaining from previous control time instant 1kt  , an 

alternative desired value kr  for the current time instant 

kt   given below will be used instead of the original 

( )kw t : 

  1 1( ) ( ) ( )k k k kr w t w t y t    . (5) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Set Point with Compensation Value to Design Control 

 

Now, for a possible usage of optimal variation 

technique to design the controller kR , such that the 

outputs y  of linear time invariant system (3) converge 

asymptotically to desired output kr , it is required 

firstly this tracking problem to be converted 
correspondingly in a stabilizing control problem. 

Signify the steady state of closed loop system 

of (3) after tracking phase with [ ]sx k  and [ ]su k , then 

this steady state must be satisfied: 
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if the matrix 

 
k k

k

A B
F

C

 
   0

 (7) 

is invertible. Then, with the new symbols: 

 [ ],  [ ]s sz x x k v u u k     

the tracking control problem of (3) to an alternative 

desired value kr  will be converted correspondingly in 

the stabilization problem of following nominal system: 

 k kz A z B v  . (8) 

It is easy to recognize that for the invertibility of 

matrix kF  the number of inputs u  and of output y  

must be coincided. 

For optimal stabilizing this above obtained nominal 
system the following cost-function could be used: 

 
0

1
min

2

T T
k k kJ z Q z v R v dt


   
   (9) 

where ,  k kQ R  are two arbitrarily chosen symmetric 

positive definite matrices. Thence, based on the 
continuous time variation technique the optimal input 
v  it is deduced: 

 1 T
k k k kv R B L z z   R  (10) 

where the symmetric positive definite matrix kL  is 

obtained by solving the algebraic Riccati equation: 

 1 T T
k k k k k k k k k kL B R B L A L L A Q     (11) 

and it is equivalent to: 
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R  (12) 

The obtained value ( )u x  above is sent 

subsequently to the system (1) as control signal for a 

while of 1 2k kt t t   . To receive the next control 

value for the next time interval 2 3k kt t t    all 

calculation steps above have to be repeated. 

For a convenient implementation of proposed 
approach, the following algorithm has been 
established, which summarizes completely all 
calculation steps (2)-(13) given above. 

1) Choose arbitrarily two symmetric positive matrices 

,Q R  and their update factors 0 1,  1    . Select 

          Setpoint with compensation value at 1kt    is 1kr    to design kR    

Setpoint with compensation value at kt   is kr   to design kR   

( ), ( )w t y t  

( )y t

( )w t  

t
1kt   

1kw   
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a sufficiently small moving distance 0   along time 

axis for the control horizon. Set 0,  0,  0x u y  
  

 

and 0t  . 

2) Measure the current state and output vector ,x y  

from system and then determine , , , , ,A B d r 
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follows: 
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back to the step 2). 
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5) Calculate ,L u  respectively as follows: 
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6) If u U  then set :R R  and go back to the step 

5). 

7) Send u  to the controlled object for a while of  . 

8)Set ,  ,  ,  :x x u u y y R R   
  

 and :t t   . 

Then go back to the step 2). 

Note that within the algorithm, not any solution v  

obtained from (11) to stabilizing the nominal system 
(9) could guarantee definitely the satisfaction of the 

required constraint u U . However, based on the 

obviousness:

  1lim lim [ ] [ ]

[ ]

k k

T
k k k s s

R R

s

u R B L x x k u k

u k



 
   



 

it could be needed for satisfying this unavoidable 

constraint u U  an assumption, that [ ]su k U  

satisfies for all k . 

III. SIMULATION RESULTS 

 The following simulation was carried out 
with particular parameter values of TRMS given in 
Table I. 

Table I. Physical parameters of the trms 

Symbol Definition Value Unit 

g  Gravity acceleration 9.81 2
m s  

tm  Mass of the tail part of the beam 0.015 kg  

trm  Mass of the tail rotor 0.221 kg  

tsm  Mass of the tail shield 0.119 kg  

mm  Mass of the main part of the 0.014 kg  

beam 

mrm  Mass of the main rotor 0.236 kg  

msm  Mass of the main shield 0.219 kg  

tl  
Length of the tail part of the 

beam 
0.282 m  

ml  
Length of the main part of the 

beam 
0.254 m  

msr  Radius of the main shield 0.155 m  

tsr  Radius of the tail shield 0.1 m  

mmr  Radius of the main rotor 0.007 m  

mtr  Radius of the tail rotor 0.007 m  

bm  
Mass of the counterbalance 

beam 
0.022 kg  

cbm  Mass of the counter-weight 0.068 kg  

bl  
Length of the counterbalance 

beam 
0.265 m  

cbl  
Distance from the counter-

weight to the pivot  
0.25 m  

cbr
 

Radius of the counterbalance 1e-2 m  

cbL  Length of the counterbalance 3e-2 m  

bm
 

Mass of the pivot 0.09 kg
 

1bm
 

Mass of the rear part of the 

pivot 
0.05 kg

 

h  
Length of the main part of the 

pivot 
6e-2 m  

1h  
Length of the tail part of  the 

pivot 
0.02 m  

mrJ  Moment of Inertia of main rotor 21.624e-5 2kgm  

trJ  Moment of Inertia of tail rotor 3.1432e-5 2kgm  

H  High from the base to the pivot 0.5 m  

mrB  
Viscous friction constant of 

main motor 
4.5e-5 2kgm s  

trB  
Viscous friction constant of tail 

motor 
2.3e-5 2kgm s  

vB  
Viscous friction constant of the 

pivot in vertical plane 
0.6e-2 2kgm s  

bB  
Viscous friction constant of the 

pivot in horizontal plane 
0.1 2kgm s  

fvk  Coefficient of thrust due to 

main rotor 
1.13e-5 kgm  

fhk  Coefficient of thrust due to tail 

rotor 
2.23e-6 kgm  

,tv tmk k  Main rotor drag coefficient 3.646e-7 2kgm  

,th ttk k  Tail rotor drag coefficient 2.436e-8 2kgm  

cC  Cable spring constant 0.016 Nm rad  

0b  Steady yaw angle -0.4602 rad  

vF  
Sliding friction of the pivot in 

vertical plane 
0.1e-2 Nm  

hF  
Sliding friction of the pivot in 

horizontal plane 
0.01 Nm  

as well as with: 

1 2 3 4

5 6 7 1

2

 0.0347, 0.0013, 2.497 4, 0.029,

0.0047, 1.24 5, 6.36 5, 0.0408,  

0.2154

a a a e a

a a e a e b

b

    

     



 

Obtained simulation results, which are 
obtained by applying proposed control algorithm above 
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to adaptively tracking control the TRMS, are exhibited 
in Fig.4 and Fig.5. The simulation result of tracking 

ability of closed loop system to desired sinus hovers 

( )w t  is exhibited. Again, the obtained convergence 

behavior of system outputs ( )y t  to the desired 

references ( )w t  illustrated in this figure showed ones 

the tracking performance as desire. 
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Fig 4: Sinus References and Time Dependent 

Disturbances 
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Fig 5: Sinus References and Pulse Disturbances 

 

IV. CONCLUSIONS 

The paper has presented an approach for 
asymptotically tracking control to any desired 

trajectory of a nonlinear smooth continuous time 
system subjected to unavoidable constraints of control 

signals ( )u t U . This approach is created based on 

receding horizon technique with the movement of 
flexibly adjustable LQR along time axis. Thus, this 
proposed approach acts essentially as an adaptive 
constrained optimal controller in real time sample data 
systems. 

To verify the desired control performance of 
proposed approach, this method had been also in the 
paper implemented to simulate the tracking control of a 
TRMS. The simulation result has definitely confirmed 
that the adaptive tracking performance has met the 
desired expectation and therefore the proposed method 
could be now completely applicable in practice.  
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