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Abstract  

In this work, we introduce a new adaptive 

tracking controllers dealing with a MIMO nonlinear 

system in presence of input noise. The adaptive 

tracking controllers base on Input to State Stability 

(ISS) stabilization. An ISS stabilization is used to 

make the error tracking smoothly converges to an 

arbitrary sufficient small area around the 

neighborhood of the origin. The set of controller’s 

parameter, which is a satisfy Hurwitz polynomial, is 

then updated by adaptive laws via a model reference 

system. Thanks to Lyapunov’s theory, the stability of 

the closed loop system is demonstrated. Finally, 

simulation results corresponding to an Active 

Magnetic Bearing system (AMBs) illustrate the 

effectiveness of our proposed combination. 
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I. INTRODUCTION  

In this paper, we consider a nonlinear MIMO 

system, which can be presented in Euler-Lagrange 

equation form. The Euler-Lagrange nonlinear system 

is a common model of many plants such as robot 

manipulators, mechanical Tora systems, Lavitat 

mechanical systems, etc. Consider the following 

dynamic model of Euler-Lagrange nonlinear system 

given by    

      ( ) ( ) ( , ) ( )t+ = + +&& &&u D q q C q q q G qh            (1) 

where
1 2 1 2

( , , ..., ) ; ( , , ..., )T T

n n
q q q u u u= =q u are 

output and input vectors 

respectively , ( ) nt Î Rh denotes the inputs noise 

vector, ( )D q is a positive definite symmetric function 

matrix depending onq , ( )&C q,q is a coriolis matrix and 

vector of centrifugal which depends on q , &q and 

the ( )G q is vector of gravity terms. The control 

objective is making the system (1) is stable tracking a 

prior trajectory
m

q called reference trajectory, that 

means lim ( ) 0, | ( ) |
t

t t
® ¥

=e e  

is finite, where ( )
m

t = -e q q is tracking error. 

With the assumption that system has exactly known 

parameters and is unaffected by noise, there are many 

successful control strategies in [1] including the state 

feedback controller. In other cases, when the system 

(1) has the presence of uncertainty and resistance to 

noise, most of adaptive control methodologies 

modulated by principles of certainty equivalence [4] 

are summarized in [2], [3]. These methods ensure 

error between output signal and the desired trajectory 

and its derivation which are always asymptotic. 

Nevertheless, in those papers, they do not focus on the 

performance of closed loop system, for instance, the 

settling time, overshoot and error between the output 

signal and its reference. Therefore, these mitigating 

problems are focused in this paper. 

 

[5], [6] consider the problem in the case of 

presenting of input noise ( ) 0t ¹h . The controller can 

derive the tracking errors to a neighborhood of the 

origin defined with a quite large radius. In [6], [7] 

sliding mode control is applied for this class of 

systems. However, a sliding mode control suffers from 

a well-known problem chattering due to the high gain 

and high-speed switching control. The undesirable 

chattering may excite previously unmodelled system 

dynamics and damage actuators, resulting in 

unpredictable stability. Therefore, the main 

contributions of this paper are summarized as follows: 

First, we develop an adaptive tracking control via ISS 

stabilization based on state feedback controller, and 

ensure the stability of the closed-loop system. Second, 

the set of controller’s parameter, which is a satisfy 

Hurwitz polynomial, is then updated by adaptive laws 

via a model reference system.  

 

The remainder of this paper is organized as 

follows. In section II, we introduce the new adaptive 

tracking control via ISS stabilization. Section III then 

provides the new adaptive tracking control combined 

with disturbance estimation. Simulation results are 

given in section IV and section V concludes this work. 

II. NEW ADAPTIVE TRACKING CONTROL 

VIA ISS STABILIZATION (NAC_ISS) 

Consider the following dynamic model of 

Euler-Lagrange with input noise (EULI) given as (1), 

with the assumption that all the state of the system are 

measurable and available for feedback. The state 

feedback controller introduced in [1], [2], and [5] 

without input noise 
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( )1 2
( ) ( , ) ( )

m
= + + + +&& & &&u D q q K e K e C q q q G q     (2) 

where
1

K ,
2

K are two positive definite symmetric 

matrices. This method guarantees the closed loop 

system is asymptotically stable. In case, ( ) 0t ¹h the 

new adaptive tracking controller in such as 

   
( )1 2

( ) ( )

( , ) ( )

m p p
t= + + - +

+ +

&& &

&&

u D q q K e K e v

C q q q G q
              (3) 

where
1

K ,
2

K are diagonal matrices, ( )
p m

t = -e q q is 

tracking error and the disturbance compensation 

signal ( )tv chosen as theorem 1.   

Theorem 1. Consider the system – EULI (1) and the 

new state feedback controller (3) 

with
1 1

( );
i

diag k=K
2 2

( )
i

diag k=K and 2

2 1i i
k k>  

1,2,..,i n= which are updated by the adaptive law: 

1

1 1 21 1 22 2 1

1

2 2 21 1 22 2 2

( ) ( ) ( (0))

( ) ( ) ( (0))

i p i

i p i

diag k dt diag k

diag k dt diag k

-

-

= - + +

= - + +

ò

ò &

P e P e e

P e P e e

a

a

                                                                                   (4) 

where P is roots of Lyapunov 

equation + = -T

m m
A P PA Q . If the disturbance 

compensation signal ( )tv is chosen such 

as | ( ) | ,t tm£ "p then the error between output signal 

and desired trajectory and its derivation will have the 

“attractor” 

               2

1

nR
l m

d

í üï ïï ïW = Î £ì ý
ï ïï ïî þ
e e                          (5) 

Proof: 

The second derivative of the output error is 

expressed 

 

1

1 2

1

1 2

( ) ( ) ( )

( ) ( ) ( )

m p p

m p p

t t

t t

-

-

= - + + + +

- + = - - + -

&& && &

&& && &
144444442 44444443

p

q v q K e K e D q

q q K e K e v D q

h

h
    

1 2

( )

p p

p p

T

p p p p p p p

I

æ ö æ öæ ö æ öQ Q÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç= +÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç- -÷ ÷ ÷ ÷ç ç ç çè ø è øè ø è ø

= + =

&

&& &

&

e I e
p

e K K e

x A x B p; x e e

                      (6) 

Explicit output reference, and derivative output are 

created using the reference model  for MIMO system 

as 

 

1 1 1

2 2 2

( ) 0 0

0 ( ) 0

0 0 ( )

m m

m m

mn mn n

x G s r

x G s r

x G s r

æ ö æ öæ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç=÷ ÷ ÷÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷÷ ÷ ÷ç ç çè ø è øè ø

L

L

M M M O M M

L

                         

where ( ), 1,2,...,
mi

G s i n= is described by the transfer 

function 

     

2

2 2
( )

2

mi mi

mi

i mi mi

x w
G s

r s zw s w
= =

+ +
              (7) 

By the same way, the description of the reference 

model (8) is 

2

1 1 1 1 1 1

2

2 ;

2 ;

m m m m m m m

mn m mn m mn mn n mn

w zw r x

w zw r x

e e e e

e e e e

= - = -

= - = -

&& &

M

&& &

               (8) 

( )

2

1

; ;
2

;

m

m m

m m m

T

m m m mn

m m m m

w zw

e e

æ öæ ö Q ÷÷ çç ÷÷ çç= = ÷÷ çç ÷÷ çç - ÷÷ç çè ø è ø
æ öQ÷ç ÷ç= =÷ç ÷çQ÷çè ø

= +

&

L

&

I
x A

I I

B

x A x B u

e

e

e                      (9) 

Subtracting eq. (6) from eq. (10) yields: 

m p
= -e x x  

m p m p
= - = + +e x x A e A x Bp                        (10) 

where:   

( )

2

1 2

2

1 2

1 2 1 2

1 1 1 2 2 2

2

2

; ;

;

m p

m m

m m

T

m p

m p m p

w zw

w zw

æ ö æ öQ Q÷ ÷ç ç÷ ÷ç ç= - = -÷ ÷ç ç÷ ÷ç ç- -- ÷ ÷çç è øè ø
æ öQ Q ÷ç ÷ç= ÷ç ÷ç + - + ÷çè ø

æ öQ÷ç ÷ç= - = - = =÷ç ÷ç ÷çè ø

= - = -

&

I I
A A A

K KI I

I K I K

B B B e e e e e
I

e x x e x x

                   

                                                                                 (11)  

The following Lyapunov function is used 

( ) ; 0, 0T TV a a= + = > >T
e e Pe P Pa a                       

wherea is a vector and contains the non-zero elements 

ofA . Take the derivative of ( )V e with respect to time, 

we have 

( ) ( ) 2

2 2

2 2 2

T T

p

T T T

T T T T T

p

V = + + +

+ +

= - + + +

&

&

&

T

m m
e e A P P A e e P A x

a a p B P e

e Qe e P A x a a p B P e

a

a

         (12) 

The chosen matrixQ in [1], [8] 

( )

2

1

2

2 1

2

2

æ öQ ÷ç ÷ç ÷= ç ÷ç ÷Q - ÷çè ø

K
Q

K K
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where Q is a zero matrix with an appropriate 

dimensions. Obviously,Q is positive definite matrix 

when 2

2 1
, 1,

i i
k k i n> = , P is the solution of the 

equation + = -T

m m
A P PA Q  

1 2 1

1 2

2æ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø

K K K
P

K K
 

set 2 2T T

p
+ = Q&e PA x a aa                                  (13) 

where 

( ) 1

1 2 1 2 1 2

2

11 12

21 22 1 2

0
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p

p

p

æ ö÷ç ÷ç= = = = ÷ç ÷ç ÷çè ø
æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç= = =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

&

&
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a
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1

2 2 21 1 22 2

1 1 2 2
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p

p

i i
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-

-

= - +

= - +
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&

& &

& && &

a P e P e e ;

a P e P e e
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a

a  

1 1 2 2

21 22

( ); ( );

; ; 1,

i i
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diag diag

i n

a a
´
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Î =P P R

a a
   

The solution of eq. (13) is (4) and eq. (12) becomes  

( )

( )

( )

2

1 1 2 1

2

1 22 1

2 2 2 2

1 2 1
1 1

11 1 1 21 1 2 2

2

1 2 1

( ) 2

2 2
2

2

2 2

2( , ..., , , ..., )

ax , ; min ,

T T T

T

T T

n n

i i i i n i
i i

n n n n n

i i ii i

V

k e k k e

k e k e k e k e

m k k k kl d

+
= =

+

= - +

æ ö æ ö æ öQ Q÷ç ÷ ÷ç ç÷ ÷ ÷ç ç ç÷= - - ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷Q - ÷ ÷ç ç÷ç è ø è øè ø

= - - - -

-

= =

å å

&e e Qe p B P e

K K K K
e e p e

I K KK K

p

( ) ( )

( )

2

2 1

2

;
i i

k p t

dV

dt

m

d l l m d

- £

£ - + £ -e p e e e

                                                                                         

                                                                                 (14) 

Eq. (14) shows that if 
l m

d
>e then 0V <& . 

Therefore, we always have monotonically decreasing 

error ( )te when
1

( )t Î We in (5). 

                                         

III.  ACTIVE MAGNETIC BEARING SYSTEM    

 

All paragraphs must be indented.  All 

paragraphs must be justified, i.e. both left-justified and 

right-justified. 

 

In this section, an active magnetic bearing 

system as Fig. 1, used to illustrate our proposed 

methods. According to [10], AMB system replaces 

mechanical bearings used in electric engine working 

in special environments. Because it uses magnetic 

forces to support the movement of the spindle without 

mechanical contacting, the new technology bearings 

have a number of advantages compared to other types 

of conventional bearings. However, this system is the 

instable, so a feedback control loop is necessary to 

stabilize system. Formerly, the other projects [10], 

[11], and [12] have been modeled the AMB 2 DOF 

system in linear and nonlinear state space which is 

difficult to consider disturbances inputs. The modeling 

of the AMBs in Euler-Lagrange equation is presented 

in [13]. The control objective is that the 

position x and y of a suspended object follow the 

position reference
m

x and
m

y with parameters of AMBs 

as Table 1. 

 

 
Fig. 1. Two degree of freedom AMB 

 

A. AMBs in Euler-Lagrange equation form 

 

Fig. 2a shows a shaft rotating at an angular 

speed of
rm

w around the k -axis. The three 

perpendicular x - y - and z -axes are in the rotational 

coordinate reference frames. The bottom of the shaft is 

fixed to the origin of these axes. At a length
rt
l from 

the origin, a cylindrical magnetic bearing rotor is fixed 

to the shaft. Fig. 2b shows the difference. In Figure 

2b1, a view along they -axis is shown. Thek -axis is 

inclined by an angular position
y

q from the z -axis. A 

moment (or torque)
 y
N  is applied around they -axis. 

Note that the angular position and moment are defined 

around the y -axis using the right–hand rule. In Fig. 

2b2, a view along the x -axis is shown. The angular 

position and the moment are also defined as 
x

q  

and
x

N  respectively, again, based on the right – hand 

rule. 
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Fig. 2. Coordinates; (a) Coordinate system; (b) view 

1; view 2 

Displacements from the cylindrical rotor center 

alignment on the x - andy -axes can be obtained from 

Fig. 2b

 2

2

os sinos
;

os os sin

rt y y y yrt y y

rt x x rt x x x x

x l cx l c

y l c y l c

q q q qq q

q q q q q q

í é ùïíï = -= ïï ê úï ï ë ûì ì é ùï ï= - = - -ï ï ê úïî ë ûïî

&& && &&&

& && && &&                    

(25)

 
In [13] we obtain the following dynamics equation 

2 2 2

2 2 2
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rt x rt y y

i rt i rt i rt

i rm k
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K l K l K l

J J mgh
l l x i

K l K l K l

w
q q

w
q q

íï -ï = - -ïïïï
ì
ïï = - +ïïïïî

&& &

&& &

   

                           

(26) 

and substituting (25) into (26), we have 

( ) ( ) ( , ) ( )t+ = + +&& &&u D q q C q q q G qh                                

(27) 

where:  
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with ;
x y

q q  is very small, so we assume 
x y

q q»  
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The modeling a system in Euler Lagrange equation 

has the following advantages: First, It is convenient to 

apply the modern control methods such as Li-Stoline, 

adaptive inverse dynamic [1]. Second, we do not 

consider to approximate 
( ) ( )

sin
x y x y

q q» as [10], [11]. 

Therefore, compare to the model built in [10], [11] 

and [12], the model established in this paper is more 

accurate. Third, the AMBs has a nonlinearity. 

Consequently, the decoupling a time-invariant linear 

system using state variable feedback [11] do not 

apply. Fourth, the effects of disturbance on the system 

are not considered in [10], [11] and [12]. There are 

two kinds of disturbance be concerned: caused by 

exogenous signals and error model. In this case, they 

can be recast into the disturbance and will be 

compensated by disturbance estimation techniques. 

TABLE I.  THE PARAMETERS OF AMBS 
Parameters Values 

Mass of rotor (kg)  12.4m =  

Displacements from the cylindrical rotor 

center alignment to fixed origin (m)  
0.21lrt h= =  

Moment of inertia in k-axis (kg.m
2
)  36.88 *10

k
J -=  

Moment of inertia in i and j-axis (kg.m
2
)  12.22 *10

i j
J J -= =  

Speed of rotor (rpm)  10000  

The ratio  electromagnetic-current (N/A)  102.325
i

K =  

The ratio  electromagnetic-displacement 

(N/A) 

54.65 *10
s

K =  

The gravity acceleration (kg. m/s
2
)  9.81g =  

 

B. The results simulation of our proposed 

controllers 

We will compare our proposed method 

NAC_ISS to Adaptive Control based on ISS 

stabilization (AC_ISS) in [2]. We choose the fixed 

matrices
1 2
,K K of AC_ISS and initial 

matrices
1 2
(0), (0)K K of NAC_DE such as: 

1 2

1 2

2 0 10 0
, ;

0 2 0 10

2 0 10 0
(0) , (0)

0 2 0 10

æ ö æ ö÷ ÷ç ç÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
æ ö æ ö÷ ÷ç ç÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

K K

K K

 

and the disturbance compensation signal ( )tv is chosen 

such as | ( ) | 5,t t£ "p . 

Comparison between the position x andy of a 

suspended object dealt with NAC_ISS and AC_ISS is 

presented. Responses of both NAC_ISS and AC_ISS are 

almost same (see Fig. 5). However, it is clear that the 

tracking error for the NAC_ISS due to reference 

position is much less than those of AC_ISS (see Fig. 4) 

and the adaptive gains of NAC_ISS automatically alter 

when disturbance impacts on the system (see Fig. 3). 
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Fig. 3. Adaptive gains of NAC_ISS 

 
Fig. 4. Tracking error of NAC_ISS (----) and AC_ISS (- - -) 

 

 
Fig. 5. Transient response of NAC_ISS (----) and AC_ISS (- 

- -) with disturbances  

 

IV. CONCLUSIONS 

Our approaches is applied for a class of nonlinear 

MIMO systems involving plan external disturbances. 

The tracking performances are greatly improved by 

the use the ISS stabilization and adaptive law of 

controller’s parameters. We investigate the effect of 

the controller from the simulation results. Compared 

to the case with NAC_ISS and AC_ISS in the 

illustrated examples, active magnetic bearing system, 

for instance, can do the following: (a) Greatly improve 

the transient behavior of the system; (b) Eliminate 

steady-state errors; and (d) Eliminate the influence of 

lumped disturbances. Strong properties achieved via 

the proposed methods confirm that NAC_ISS and is 

an attractive approaches for controlling nonlinear 

MIMO systems 
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