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 Abstract  

 The WSNs are developed to sense, gather, 

process and transmit the real-world information and 

so in recent years, solving numerous challenges of 

wireless sensor networking are considered intensely. 

In addition, in Wireless Multimedia Sensor Networks 

intra- and inter-signal correlations can be exploited 

in the theory of distributed source coding and 

similarly in distributed compressive sensing to 

compress signals as much as possible. These cases 

may be occurred in applications and services in 

which work with smart spaces and context aware 

networks.In this paper based on compressive sensing 

a framework denoted asECMis proposed to compress 

and reconstruct the signals of the sensors even for 

networks which the data transmission is 

imperfect.ECM uses the concepts of distributed 

compressive sensing and the shared information 

between sensor's signals to compress the signals 

more. 
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I. INTRODUCTION 

The Wireless sensor networks (WSN) 

provide a flexible way to monitor the physical 

parameters of the environment through the 

deployment of a large number of sensor nodes. There 

are three main challenges in WSN, i.e., network 

lifetime, computational ability and bandwidth 

constraints.  With the availability of low-energy and 

low-cost multimedia devices, such as microphones 

and cameras, which may capture multimedia contents 

from the field, the next generation WSNs, Wireless 

Multimedia Sensor Networks (WMSN) have been 

proposed and drawn the immediate attention of the 

research community [1]. 

 

Suppose there are 𝐽sensors in the region, 

measuring a phenomenon in spatio-temporal manner. 

A Fusion Center (FC) gets all the measurements and 

runs an algorithm which jointly decodes the signals of 

the sensors and reconstructs the phenomenon at the 

sensor positions. In cases that there is a significant 

correlation between the sensors' signals, the joint 

decoding based on Distributed Source Coding (DSC) 

[2] could be used in the FC to decompress the 

transmitted sensors' signals. Using DSC methods can 

increase compression rate so that data can be 

transmitted by consuming less power and bandwidth. 

 

On the other hand, Compressive Sensing 

(CS) is a sampling theory [3], which leverages the 

compressibility of the signal to reduce the number of 

samples required for reconstruction and significantly 

reduces costs of sampling and computation at a 

sensor with restricted capabilities. CS theory exhibits 

that a signal with a sparse transform representation 

can be reconstructed from a small set of irrelevant 

random projections. CS technique as the data 

acquisition approach in a WSN can significantly 

reduce the energy consumed in the process of 

sampling and transmission through the network, and 

also lower the wireless bandwidth required for 

communication. 

 

CS can also be applied in distributed 

scenario similar to distributed source coding (DSC). 

The theory of Distributed Compressive Sensing 

(DCS) [4] uses inter -and intra- signal correlations, 

for proposing new distributed source coding and 

compression algorithms for multi-signal ensembles 

based on CS theory. In a typical DCS setting and 

Joint Sparsity Model (JSM) [4], each sensor 

compresses its signal individually by means of 

projecting it on an incoherent basis and transmits the 

compressed information (actually sensed) to the 

Fusion Center (FC). If the right conditions exist, FC 

can reconstruct jointly all the signals considering that 

the measured signal of each sensor is individually 

sparse in some basis. 

 

Current paper proposes amethod for 

compressing the signals of a WMSN and reducing the 

amount of the transmitted data. In the regarded 

WMSN, the captured signal of each sensor should be 

transmitted to a central unit (or FC) through a 

wireless interface. In addition signals of the sensors 

are sparse in a dictionary or basis. The proposed 

method denoted as Enhanced Common Model 

(ECM)and can be basically used in WMSN's services 

in which there is an intrinsic shared part between the 

captured signals of the sensors. This means that ECM 

is an algorithm which is context aware and relies on 

the captured signals' properties. Another aim of the 

proposed method is that they be able to reconstruct 

the signals' of sensors robustly if some perturbations 
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are occurred in the transmission procedure. To this 

end ECM exploits the following strategies: 1)ECM 

models the perturbation of the transmission system by 

using disturbance filters between each sensor node 

and the FC. The reconstruction formulas of the 

mentioned methods consist of the estimated version 

of these filters and provides some compensation 

against the errors occurred. 2) Similar to other DSC 

methods, ECM benefits the shared common part 

between the ensembles of the signals for compressing 

the signals further.The proposed method basically can 

be used to develop a framework for WSN's services 

in which there is an intrinsic sparse shared part 

between the sensors' captured signals and also this 

shared common component is almost fix for a while 

large enough with respect to the sensing time interval. 

Such cases can occur in multi-view imaging [5], large 

camera arrays imaging of a scene [6] and distributed 

compressive video sensing (DCVS) [7]. 

Rest of the paper includes following parts. 

Section II introduces the mathematical preliminaries 

of the used theorems such as Compressive Sensing 

and Joint Sparsity Model. The system model of the 

wireless sensor network is exhibited in section III. 

Section IV represents the mathematical criteria used 

for developing the ECM method such as estimating 

the disturbance filters, decompressing the signals 

jointly. The corresponding experimental results are 

reported and discussed in section [V]. Finally, the 

paper is concluded in section [VI]. 

II. MATHEMATICAL BACKGROUND 
Interpret the linear system 𝑥 = 𝐷𝛼 as a way 

of constructing a signal 𝑥 ∈ 𝑅𝑁 where𝐷 ∈
𝑅𝑁×𝐾and𝛼 ∈ 𝑅𝐾. The matrix 𝐷 is referred as a 

dictionary of atoms and each of the 𝐾 columns of 𝐷 

is a possible basis signal in 𝑅𝑁 and can be called as 

atomic signals or atoms [8]. The signal 𝑥 can be 

represented sparsely if 𝑥 can be generated by the 

multiplication of 𝐷 by a sparse vector 𝛼 with 𝑘0 ≪ 𝐾 

non-zeros which produces a linear combination of  𝑘0 

atoms with varying weights. In compressed sensing 

(CS) research, the interest is the inverse problem of 

recovering a signal 𝑥 from the noisy linear 

measurements 𝑦 = Φ𝑥 + 𝑛 (𝑦, 𝑛 ∈ 𝑅𝑤). The focus is 

on under-determined problems where the forward 

operator Φ ∈ 𝑅𝑤×𝑁 has unit norm rows and forms an 

incomplete basis with 𝑤 ≪ 𝑁. The resulting ill-posed 

inverse problem is regularized by assuming that 1) 

the unknown signal 𝑥 is compressible with 𝑘0 ≪ 𝐾 

significant coefficients in a dictionary 𝐷 and 2) the 

noise process is bounded by 𝜀. The theory of CS 

states that, for most full-rank matrices Φ that are 

incoherent to 𝐷, if 𝛼 is sparse with respect to its 

dimension 𝑁, there is the unique solution of a 

regularized 𝑙1-minimization program: 

𝛼 = min𝛼  𝛼  1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑦 − Φ𝐷𝛼  2 ≤ 𝜀(1) 

(1) is a convex optimization problem and the 

literature of convex optimization has provided a long 

list of solvers for this task. Basis Pursuit DeNoising 

(BPDN) [9] refers to the solution of (1) as using 

relaxation 

𝛼 = min𝛼 
1

2
 𝑦 − Φ𝐷𝛼  2

2 + 𝜆 𝛼  1 (2) 

and so the solution 𝛼  is a function of the parameter 𝜆. 

This solution contains signal-plus-residual which the 

size of the residual is controlled by 𝜆. If 𝜆 → 0, the 

solution behaves exactly like BP applied to y and the 

the residual goes to zero. As 𝜆 → ∞, the residual gets 

large and 𝛼 = 0. 

For the reconstruction in the theory of DCS, 

the required measurements could be decreased by 

using intra- and inter-signal correlations. In a typical 

DCS setting, the sensors measure signals that are 

each individually sparse in some basis. DCS assumes 

that each signal in a signal ensemble 𝑥𝑗 ∈ 𝑅
𝑁 , 𝑗 ∈

 1,2, … , 𝐽  is generated as a combination of two parts: 

the common part 𝑥𝑐 , and the innovation part 𝑥𝑖𝑛𝑛 𝑗  

That is 𝑥𝑗 = 𝑥𝑐 + 𝑥𝑖𝑛𝑛 𝑗  Different sparsity 

assumptions for the common and the innovation parts 

lead to three different models and authors in [4] 

proposed some solving methods to deal with JSMs. In 

JSM-1 both common and innovation parts are sparse, 

in JSM-2, both common and innovation parts are 

sparse and have same supports, in JSM-3, the 

common part is not sparse but the innovation part is 

sparse. 

 

III. SYSTEM MODEL 

Assume that J sensors are distributed in the 

region and each of them captures a signal 𝒙𝑗 ∈

𝑅𝑁 , (𝑗 ∈ {1,2,… , 𝐽}). A common component 𝒙𝑐 ∈ 𝑅
𝑁 

is shared by each signal such that 𝒙𝑗 = 𝒙𝑐 +

𝒙𝑖𝑛𝑛 𝑗where 𝒙𝑖𝑛𝑛 𝑗 ∈ 𝑅
𝑁 is the innovation part of each 

signal𝒙𝑗 . There exists a dictionary𝑫 ∈ 𝑅𝑁×𝐾 in which 

signals can be represented sparsely as a linear 

combination of the atoms (columns) of the dictionary 

(𝒙𝑗 = 𝐷𝜶𝑗 ). Clearly, this dictionary is able to exhibit 

signals sparsely as 𝒙𝑗 = 𝑫(𝜶𝑐 + 𝜶𝑖𝑛𝑛 𝑗 )in which 𝜶𝑐  

and 𝜶𝑖𝑛𝑛 𝑗 s belong to space RK  with different sparsity 

levels. 

The signal of each sensor is compressed 

(actually sensed) with 𝒚𝑗 = Φ𝑗𝒙𝑗by using an 

individual measurement matrix Φ𝑗 ∈ 𝑅
𝑤𝑗×𝑁. Each 

sensor's sensed signal 𝒚𝑗 ∈ 𝑅
𝑤𝑗  should be sent to the 

FC and consequently detected in FC via a 

conventional digital communication transceiver 

module. The received detected signals by the FC are 

denoted by 𝒓𝑗 ∈ 𝑅
𝑤𝑗 . 

Clearly, 𝒚𝑗 consists of two parts: The 

common part 𝐲cj
 ∈  Rw j  and the innovation part 

𝒚𝑖𝑛𝑛 𝑗 ∈ 𝑅
𝑤𝑗  which can be represented as𝒚𝑐 =

Φ𝑗𝒙𝑐and 𝒚𝑖𝑛𝑛 𝑗 = Φ𝑗𝒙𝑖𝑛𝑛 𝑗 . Therefore, it is possible to 

write that𝒓𝑗 = 𝒓𝑐 + 𝒓𝑖𝑛𝑛 𝑗  where 𝒓𝑐  and 𝒓𝑖𝑛𝑛 𝑗 are the 
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received detected signals corresponded to the 

common and innovation parts. 

In our proposed method, the y𝑐𝑗  will be 

assumed known in FC and will be used for estimating 

some disturbance filters which we'll introduce later. 

Therefore, not only the two common and innovation 

parts y𝑐𝑗  ∈  𝑅𝑤𝑗 and𝑦𝑖𝑛𝑛 𝑗 ) are transmitted 

simultaneously to the FC but also these two 

components should be separable in the FC. For 

instance signals can be transmitted simultaneously by 

using multi-user and multiple access communication 

techniques such as CDMA with different codes. 

IV. RECOVERING THE SIGNALS  

The first and the simplest idea to reconstruct 

the PSD 𝒙𝑗  is to compute 𝒙 𝑗 = 𝑫𝜶 𝑗  where 𝜶 𝑗  is 

attained by solving problem (3). 

𝜶 𝑗 = min𝜶  𝜶 𝑗 1
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒓𝒋 −𝜱𝒋𝑫𝜶 𝒋 2

≤ 𝜀(3) 

However it is obvious that solving equation 

(3) to recover the samples can only be useful when 

there is no difference between 𝒓𝒋 and 𝒚𝒋. Inaccurate 

compressive sensing based reconstruction can be 

caused by this destructive difference and this fact 

makes this recovery method impractical especially for 

scenarios which the symbol errors have occurred. In 

order to recover the uncompressed signals𝒙𝑗  more 

robustly, wepropose here to use the shared common 

component 𝒙𝑐  based on the JSM concepts. In 

mentioned models, since the disturbance filters 𝜷𝑗  are 

embedded in the reconstruction criteria, recovering 

the signals is straight and also more robust against bit 

and symbol error rates.  

A. Estimating the Disturbance Filters 

  For simplicity, wesimulate the 

effect of disturbance filter by circular convolution 

𝒓𝑗 = 𝒚𝑗⨀𝜷𝑗 + 𝒏𝑗  where ⨀ shows the circular 

convolution operator. The disturbance filter 𝜷𝑗 ∈ 𝑅
𝑤𝑗  

and additive noise 𝒏𝑗 ∈ 𝑅
𝑤𝑗  are used to model the 

deviations between the values of the original sent and 

the received signals. First of all, we should estimate 

the disturbance filter 𝜷𝑗 . Similarly, we can model the 

received signal of the common part 𝒓𝑐𝑗  as 𝒓𝑐𝑗 =

𝒚𝑐𝑗⨀ 𝜷𝑗 + 𝒏 𝑗  or in the matrix multiplication form as  

𝒓𝑐𝑗 = 𝒀𝑐𝑗
𝑂 𝜷𝑗 + 𝒏 𝑗 (4) 

where𝒀𝑐𝑗
𝑂 ∈ 𝑅𝑤𝑗×𝑤𝑗  is the circulant matrix of 

𝒚𝑐𝑗 ∈ 𝑅
𝑤𝑗  [10]. So if we assume that 𝒚𝑐𝑗  signals are 

known by the FC or equivalently FC knows the 𝜶𝑐  
andΦjs, the estimated impulse response of the 

destructive filter 𝜷𝑗  can be achieved by solving the 

simple optimization problem:  

𝜷 𝑗 = 𝑚𝑖𝑛𝜷 𝑗  𝒓𝑐𝑗 − 𝒀𝑐𝑗
𝑂 𝜷 𝑗 

2

2

.(5) 

Now, after estimating the destructive filters 𝜷𝑗 s, 

which are related to the communication paths 

between the 𝑗th sensor and the FC, we can construct 

the circulant matrix of the 𝜷 𝑗 as 𝑩𝑗
𝑂 ∈ 𝑅𝑤𝑗×𝑤𝑗 . 

B. Individual Model 

Remember that the received signal of each 

sensor to the FC were modeled in the equation (4). 

By using the estimated disturbance filters and the 

matrix form of the circular convolution, we simply 

define the Individual Model (IndM)in equation (6) to 

represent the received signal of each sensor. 

𝒓𝒋 = 𝑩𝒋
𝑶𝒚𝒋 + 𝒏𝒋 = 𝑩𝒋

𝑶Φ𝑗𝑫𝜶 𝑗 + 𝒏𝒋(6) 

By using the proposed IndM, therecovered signals 

can be computed by𝒙 𝑗 = 𝑫𝜶 𝑗where 𝜶 𝑗  is obtained 

after solving the optimization problem in equation 

(7). 

𝜶 𝑗 = min𝜶  𝜶 𝑗 1
 𝑠𝑢𝑏.  𝑡𝑜  𝒓𝒋 − 𝑩𝒋

𝑶𝜱𝒋𝑫𝜶 𝒋 2
≤ 𝜀(7) 

C. Common Model 

But in order to reconstruct the uncompressed 

signals𝒙𝑗  more efficiently, it is logical to use the 

shared common component 𝒙𝑐between neighbor 

sensors based on the JSM and therefore, reconstruct 

the data in lower measuring rate. Inspired from JSM 

equations (8) to (12) are defined to model, reconstruct 

and decompress the signals for a  𝐽 neighbor. 

𝒓 = 𝑩 𝛷𝛹𝜶+ 𝒏 (8) 

𝒓 =  𝒓1
𝑇𝒓2

𝑇  ⋯ 𝒓𝐽
𝑇 
𝑇
 

𝒏 =  𝒏1
𝑇𝒏2

𝑇  ⋯ 𝒏𝐽
𝑇 
𝑇
 

𝜶 =  𝜶𝑐
𝑇𝜶𝑖𝑛𝑛 1

𝑇  ⋯ 𝜶𝑖𝑛𝑛 𝐽
𝑇  

𝑇

 

 

 

 

(9) 

Φ =  

Φ1 0
0 Φ2

⋯ 0
⋯ 0

⋮
0 ⋯

⋱ ⋮
0 Φ𝐽

  

 

(10) 

Ψ =  

𝑫
𝑫
⋮
𝑫

𝑫 0
0 𝑫

⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 0
0 𝑫

  

 

(11) 

𝑩 =

 
 
 
 
𝑩1
𝑂 𝟎

𝟎 𝑩2
𝑂

⋯ 𝟎
𝟎

⋮ ⋱
𝟎 ⋯

⋱ ⋮
𝟎 𝑩𝑗

𝑂
 
 
 
 

 

 

(12) 

 

where𝒓, 𝒏 ∈ 𝑅𝑊, 𝜶 ∈ 𝑅𝐾(𝐽+1), Φ ∈ 𝑅𝑊×𝑁𝐽 , 

Ψ ∈ 𝑅𝐽𝑁×𝐾(𝐽+1) and 𝑊 =  𝑤𝑗
𝐽
𝑗=1 . Therefore, the 

desired signals can be yielded by 𝜶 𝑗 = 𝑫(𝜶 𝑐 +

𝜶 𝑖𝑛𝑛 𝑗 ) where 𝜶 𝑐  and 𝜶 𝑖𝑛𝑛 𝑗 s are located in the found 

vector 𝜶  by solving the optimization problem (13). 

𝜶 = min𝜶  𝜶  1  𝑠𝑢𝑏.  𝑡𝑜  𝒓 − 𝑩 𝜱𝜳𝜶  
2
≤ 𝜀(13) 

 

D. Enhanced Common Model 
Till now, was have proposed to model the 

signals by eq. (8). But remember that, we assume the 

common part 𝜶𝑐  is known by the FC. This item can 

be used in the receiver (FC) to enhance the 

reconstruction performance and system's 
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efficiency.Consequently, the signal of each sensor 

𝒙 𝑗  will be reconstructed by (15) where 𝜶 𝑖𝑛𝑛 𝑗 s are 

located in the computed 𝜶 𝐼 vector from (14). 

𝜶 = min𝜶  𝜶  1  𝑠𝑢𝑏.  𝑡𝑜  𝒓 − 𝑩 𝜱𝜳𝜶  
2
≤ 𝜀(14) 

𝒙 𝑗 = 𝑫(𝜶𝑐 + 𝜶 𝑖𝑛𝑛 𝑗 )(15) 

V. SIMULATION RESULTS 
Some experimental results of the 

proposed models are reported here in order to 

show their capabilities. Five signals 𝑥𝑗 ∈

𝑅400 , (𝑗 ∈ {1,2, … ,5}) from 𝐽 = 5 sensors were 

generated in these experiments such that there is a 

shared common component xc  between them and 

also each one of them is sparse in a random 

dictionary 𝑫 ∈ 𝑅400×512  with different sparsity 

levels (Maximum 50-sparse). Consequently, five 

different measurement matrices Φj ∈ Rw j ×400  with 

Gaussian random set of projections sense the 

signals. The sensed samples 𝑦𝑗 ∈ 𝑅
𝑤𝑗 , (𝑗 ∈

{1,2, … ,5}) are sent to the FC through a digital 

transceiver system. Binary Phase Shift Keying 

modulating (BPSK), 1/2 channel encoding, and DS-

CDMA with 4-chip's length are the specifications of 

the used transceiver system. Simulations are 

experimented for 100 frames with different xjs and 

the achieved mean results are reported. The average 

ratio between the power of innovation part and 

common part was such that 
 𝜶𝑐  2

 𝜶𝑗  2

within these frames. 

The configuration of the used system is Intel 

Core2Duo, 2.53GHz, P8700, 4GB RAM in 64Bit-

Matlab R20011b platform. CVX [11] and SparseLab 

[12] matlab toolboxes are used to solve the mentioned 

problems. 

First of all, the simulation results of 

experiments in a loss-less scenario are considered 

here. In the loss-less scenario the channels are 

assumed ideal and there is not any bit errors. So in 

using BPDN we can set 𝜆 = 0 or equivalently use 

BP. Fig. 1 shows the reconstruction performance of 

the methods for different sensing rates (𝑤𝑗 ) and 

evaluated by normalized mean squared error 

(NMSE). The Sensing Rate percentage (and the 

Compression Rate) can be computed as100 ×
𝑤𝑗
𝑁

 (and 

100 ×  1 −
𝑤𝑗
𝑁
 ). NMSE which we used for our 

experiments is 

𝑁𝑀𝑆𝐸 =
1

𝑀2
   

𝑠 𝑗 (𝑛)

 𝑠 𝑗 2

−
𝑠𝑗 (𝑛)

 𝑠𝑗 2

 
2

𝑁
𝑛=1

𝑀2

𝑗=1 (17) 

whereM2 and N are the number of sensors and the 

number of PSDs’ samples, respectively. 

It can be inferred from Fig. 1 that 1) Since 

Common Model exploits the shared common 

component of the signals as like as DSC schemes, 

makes the reconstruction more efficient than 

(Individual Model)IndM and the signals can be 

reconstructed in a lower sensing rate. 2) Using 

Enhanced Common Model(ECM)makes the 

reconstruction even more efficient than Common 

Model and the signals can be reconstructed in a lower 

sensing rate. 

We can report that the elapsed time for IndM 

is significantly lower than common models and this 

phenomenon is caused by the higher solution 

complexity in Common Models and the larger length 

of the variables vector.Therefore, when the scenario 

of the case study is such that 𝜶𝑐can be used, the best 

method to reach our goals is ECM, otherwise IndM is 

more preferable and efficient (it needs much lower 

solving time). 

Here a destructive system will be considered 

too. Because of this, the sensed samples are 

transmitted to the FC through Additive White 

Gaussian (AWGN) Channels which cause symbol 

errors. In Fig. 2 the Semi Normalized Mean Squared 

Error of the signal reconstruction for different Bit 

Error Rates is shown. In this figure the reconstruction 

accuracy without using destructive filters (eq. (3)) 

and with using destructive filters (IndM and ECM) 

can be compared. In this experiment, the sensing rate 

is set 𝑤𝑗 = 90. Fig. 2 indicates that higher BERs 

brings more errors for all the methods (as expected) 

but both IndM and ECM methods can compensate 

this destruction significantly and reconstruct signals 

with lower errors. 

Fig. 2 shows two interesting phenomena. 

One is that IndM intersects the perfect reconstruction 

line in almost 2 times worse bit error rates in 

comparison to using no destructive filters. This fact 

happens for ECM method even for 5 times worse bit 

error rates which is a great and notable result for 

proposed IndM and ECM methods. The other 

phenomenon is that since ECM method uses the 

shared component between the signals, by equal 

sensing rate ECM reconstructs signals with lower 

 
Fig. 1. Comparison between compression ability of the proposed 

models.  
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errors even for bit error rates which all of the methods 

achieve their final and best results. This phenomenon 

was seen before in Fig. 1. 

VI. CONCLUSION 

In this paper amethod called Enhanced 

Common Method (ECM)is proposed to compress the 

signals of the sensors which should be transmitted to 

the FC and also reconstruct the signals more robust 

when the data transmissions to the FC is imperfect. 

We model the perturbation of the transmission system 

by using disturbance filters between each sensor node 

and the FC. We also suggest an scheme to estimate 

the destructive filters. The proposed methodis based 

on compressive sensing. In addition, ECM uses the 

shared common part between the ensembles of the 

signals to compress the signals further. ECM 

basically can be used in WMSN's services which 

there are an intrinsic shared part between the sensors' 

captured signals and the signals can be represented 

sparsely in some basis. This issue makes that ECM be 

a context aware method and will be useful in many 

multimedia applications. 
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Fig. 3. The accuracy of the signal reconstruction for different bit 

error rates. 

 


