High Performance and Low Power
Asynchronous Data Sampling with Power Gated Double Edge Triggered Flip-Flop

R. Aruna, S. Thenappan
1PG Scholar, Gnanamani College of Technology
2Assistant Professor, Gnanamani College of Technology

Abstract
Power consumption and energy efficiency is a major role in sequential circuit design. Power gating is a technique that is used to reduce the static power consumption of idle modules. Usage of Dual Edge Triggered Flip-flop (DETFF) is an efficient technique since it consumes the clock frequency and less power than Double Edge Triggered Flip-flops (DETFF’s). Integrating power gating technique with DETFF reduces the power consumption and leakage power further, but it leads to asynchronous data sampling problem. In this paper, two methods have been used to eradicate the asynchronous data sampling problem and their power analysis has been estimated. In order to reduce the leakage power consumption further, a new design has proposed for a DETFF. Based on his new design, the two methods have been implemented using 130 μm Tanner EDA tool.

Index Terms — Double Edge Trigger Flip Flop, Clock Gating, Power Gating, Single Edge trigger Flip Flop.

I. INTRODUCTION
Power efficiency and energy savings are considered to be vital issues for designers. Normally, high-performance chips will have high clock frequency, which leads to high power consumption. Therefore, less power consuming designs are needed.

The major source of power consumption in a sequential circuit is clock tree and the timing components. Higher speed of clock, increase level of integration and technology scaling are reasons for high increases in power consumption. Therefore low power consumption is becoming very crucial factor for VLSI circuits. Performance assessment of the SVM showed leak size, location is both predicted with a reasonable degree of accuracy. The location prediction limits the set of locations that need to be considered when searching for a leak, thereby providing useful information for authority [1]. A set of novel D-type double edge triggered flip-flops which can be implemented with fewer transistors than any previous design. The analysis includes an implementation independent study on the effects of input sequences, in this energy dissipation of single and double edge triggered flip-flops.

The system level energy savings possible by using registers consisting of double edge triggered flip-flops, instead of single edge trigger flip-flops [2].

The requirements of the energy dissipate high density circuits and to extend the battery life in portable systems such as devices with wireless communication capabilities. Flip Flops are mostly energy power consumed device.

A significant amount of energy is wasted to conservatively ensure power synchronization among different components [3]. A sequential circuit by a quaternary variable and uses this representation to propose and analyze two clock gating techniques. Based on it, two types of clock-gating were introduced to form a derived clock. [4]. A new simulation and optimization approach is represented, for a high performance and power issues. The analysis of an approach reveals that sources of performance and power, a set of consistent analysis approach and simulation conditions has been introduced [5].

Flip-flops use new gating techniques that reduce power dissipation to deactivating the clock signal. To overcome the presented clock duty cycle limitations of previously reported gated flip-flops. Numerical simulations of the circuit extracted from the layout with the inclusion of parasitic, show that a significant power dissipation reduction is obtained if input signal switching activity is low. [7]. The power consumption of a clock system is one of the main sources of power dissipation, typically 20 to 45% of total chip power. Consequently, many ingenious techniques have been proposed recently to reduce the clock power of the flip flops [8]. A low swing clock double-edge triggered flip flop (LSDFF) is developed to reduce power consumption significantly compared to conventional flip flops. The internal node transitions to reduce power consumption, in additions the clock tree is reduced [9]. The Double pulse dual edge trigger flip flop uses a split output latch clocked short pulse train. Compared to the previous report double edge triggered flip-flops, the DPDET flip flop uses only a six transistors with two transistors being clocked, operating correctly under a low level supply voltage[10]. In modern VLSI the clock tree designs tends to a dominate measurement must been taken to keep an under control. The design methodology has
been fully integrated into an industry strength design flow, based on Synopsys Design compiler (front-end) and Cadence Silicon Ensemble [11]. The performance, power characterization of DETSE includes the effect of clocking at halved clock frequency and impact of load imposed by the storage element to the clock distribution network. A class of dual edge triggered flip flops with clock load, delay, and internal power consumption is comparable to the fastest single edge triggered storage elements (SETSE) [12].

II. EXISTING METHOD

A. D Type Flip Flop

The methodologies for leakage power reduction are categorised into two classes depending on whether they reduce standby or runtime leakage. Several techniques have been proposed for standby leakage reduction. Variable threshold voltage MOS technique adjusts the device threshold voltage by body biasing. Multi threshold CMOS (MTCMOS) technique uses low voltage devices to implement main circuit elements, and high voltage devices to implement switches to disconnect the main circuit from supply line in standby mode. The proposed circuits deploy that reduced swing clock and swing data to manage dynamic power. Furthermore, it employs clock gating and power gating process during idle mode to its eliminate dynamic power and reduce static power, while retaining its state.

The static structure of the circuit makes it feasible to be used in variable frequency power control designs. The proposed circuits were used to construct a new low-power dual-edge triggered state-retention scan FF called DET_SRSFF.

Fig.1 Single Edge Trigger Flip Flop

The proposed FF reduces static and dynamic power consumption in both the clock tree and the FFs. For continuous operation of DET_SRSFF between the idle and active modes, a special buffer called leakage-feedback buffer is used to avoid floating output nodes, and at the same time to hold the state of the FF in the idle mode. The overall PDP of DET_SRSFF is comparable with conventional high-performance FFs and at the same time with extra level conversion and state retention feature.

B. Clock Gating

A double edge-triggered half static clock-gated D-type flip-flop (DHSCGFF), which consists of two parallel dynamic master latches connected in parallel and a single half-static latch with clock-gating circuit. The proposed DHSCGFF makes use of a clock-gating circuit to achieve better race tolerance, circuit compactness and energy efficiency without the use of pulse generator. A simulation result of proposed circuit using a 0.18 nm technology is presented. The proposed circuit double edge-triggered half-static clock-gated D-Flip-Flop (DHSCGFF). The core of the flip-flop is shown in Fig. 1 (b), which consists of two identical dynamic master latches and a half-static slave latch. Compared with the SET implementation [3], the proposed DHSCGFF consists of an additional master latch (master latch 2 in Fig. 1) in parallel to the original master latch. The proposed DHSCGFF also makes use of a clock-gating circuit to suppress the redundant transitions and achieves 96% Reduction in redundant power dissipation at \(\phi = 0 \). Since no pulse generator was used, the timing flexibility of the circuit can be maintained.

Fig.2 Clock Gating Circuit

C. Clock Gating Circuit

The proposed DHSCGFF does not require any pulse generator; it reduces the power dissipated on the clock network. The efficiency of the proposed DET-FF can be further enhanced by introducing a clock-gating circuit. This simple and energy efficient clock-gating circuit is based on XNOR circuit constructed by pass transistors [8]. The pass transistor
logic simplifies the circuit and reduces the internal power dissipation.

![Fig.3 Master Slave Flip Flop](image)

III. PROPOSED METHOD

A. Power Gated D Flip-Flop

The pulse generator is used which produce the dual pulse which is active at both rising and falling edge of the clock. The \(C \) (internal gated clock) signal maintains its value instead of generating an active edge in the gating mode. \(C \) changes after the transition on \(CLK \) in the non-gating mode.

Asynchronous data transition occurs in DET_SRSFF; when there is an input change while \(CLK \) equals 0. Because when there is a change in the input, clock signal is made inactive. At that time when the input is stable that means no significant change in the output. But still at that time circuit evaluate the input. This is basically used to control the discharge path. The dual triggered pulse generator produces a brief pulse signal synchronized at both rising and falling clock edges.

![Fig.4 Existing System](image)

Conditional precharge technique is used for removing the redundant transitions of the flip-flop to reduce the power dissipation. The schematic of this type of circuit is shown in fig 4. In this conditional technique for preventing the precharging of internal node discharging path is controlled when the input remains high for long time. The flip-flop’s output is examined and the transition is allowed only if there is a significant change in the output of the flip-flop. The correct choice of flip-flop and its corresponding design has a deep effect in reducing the power consumption. Pulse triggered flip-flops gave better output as compared master slave latch flip-flops because of timing issues.

There are different types of the dual edge triggered flip-flop used in the different synchronous circuits. There are many microprocessors which use master-slave and pulse triggered flip-flops. Master slave dual edge triggered flip flop which is made up of two stages, one is master and other is slave. They are characterized by the positive set up time and large \(D \) to \(Q \) delay. Also there is duplicating of the latch part one is for master and other is for slave. Examples of master-slave flip-flops include the transmission gated transmission gated based flip-flop, push-pull dual edge flip-flop and transmission gate latch mux (TGLM). In pulse triggered flip-flops, one is implicit pulse triggered flip-flop in which for generating the clock pulse implicit pulse generator is used and other one is explicit pulse triggered flip-flop in which generation of the clock pulse by explicit pulse generator.
IV. EXPERIMENTAL RESULTS

A. Proposed Dual Edge Triggered FF

![Fig 5 Schematic representation Proposed work](image)

In this proposed circuit of flip-flop some type of controlling circuit is embedded so that clock is disabling when the input invokes no output change. In order to eliminate the redundant transitions this data dependent technique based flip-flop is proposed. This results in saving of the power because the clock is disable at the point when no significant change at output because of stable input.

B. Results

![Fig 6 Simulation Output](image)

C. Power Results

V1 from time 0 to 2e-006
Avg power consumed -> 1.032937e-003w
Max power 4.580270e-003 at
Time 9.29607e-008
Min power 4.637432e-009 at
Time 9.3e-007

V. CONCLUSION

Various power reduction techniques emerged as a result of high demand in mobile devices. DETFF is an efficient technique for power reduction, when used separately. When clock gating technique is integrated with DETFF, asynchronous data sampling problem arises at the output between two clock edges. This problem has been defined in detail and solutions were given to eradicate it. Three simple approaches were made to reduce the power consumed in DETFF’s by eliminating the asynchronous data sampling issue. In order to reduce the power consumption further, a new design has been proposed and based on that, three designs were implemented using Tanner EDA Tool.

REFERENCES