
SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 2 May to Aug 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 6

FPGA Implementation of Simple and High

Speed Vedic Multiplier

Shilpi Thawait1, Jagveer Verma2
1(M.Tech Scholar, Department of Electronics & Telecommunication, Chouksey Engineering College / CSVTU

Bhilai(C.G.), India)
2(Assistant Professor, Department of Electronics & Telecommunication, Chouksey Engineering College /

CSVTU Bhilai(C.G.), India)

 Abstract

 Multiplier is the basic and the key element

used in many Digital Signal Processing applications,

arithmetic operations, in image processing

applications such as FFT (fast fourier transform),

convolution, correlation etc. This paper presents a

simplified and efficient method of multiplication using

vedic mathematics. Vedic mathematics is the name

given to the ancient Indian system of mathematics

and is based on mental calculations. Urdhva

Triyakbhyam sutra of vedic multiplication is found to

be the most efficient sutra of vedic multiplication

among its all 16 sutras. The aim of this paper is to

implement a simpler and high speed vedic multiplier

by using Urdhva Triyakbhyam sutra efficiently.

 Synthesis has been done using Xilinx ISE

9.2i simulator using VHDL language.

Keywords - CSA(Carry Save Adder), ISE (Integrated

Software Environment), LUT (Look Up Table),

UT(Urdhva-triyakbhyam), Vedic Multiplier,

VHDL(Very High Speed Integrated Circuit Hardware

Description Language), Xilinx.

I. INTRODUCTION

The multiplier is one of the most important

block used in all the processors now a days. A variety

of computer arithmetic techniques are used to realize

a digital multiplier. Most of the techniques involve

calculating the partial products and then summing

them together. Most of the application requiring

Digital Signal Processing requires multiplier. Hence

speed , complexity and power consumption of the

multiplier are of much important parameters to be

considered. This paper presents a well organized and

systematic design of multiplier with high speed and

performance.

The architecture of the multiplier presented

here is based on the Vertical and Crosswise algorithm

that is the Urdhva Triyakbhyam sutra of

multiplication of vedic mathematics.

II. VEDIC FORMULAE

The word „Vedic‟ has been derived from the

word „veda‟ which means the store-house of all

knowledge. There are mainly 16 sutras in vedic

mathematics dealing with various branches of

mathematics like arithmetic, algebra, geometry etc.

These 16 sutras of vedic mathematics along with

their brief descriptions are enlisted below

alphabetically.

1. (Anurupye) Shunyamanyat – If one is in ratio, the

other is zero

2. Chalana-Kalanabyham – Differences and

Similarities.

3. Ekadhikina Purvena – By one more than the

previous one

4. Ekanyunena Purvena – By one less than the

previous one

5. Gunakasamuchyah – The factors of the sum is

equal to the sum of the factors

6. Gunitasamuchyah – The product of the sum is

equal to the sum of the product

7. Nikhilam Navatashcaramam Dashatah – All from

9 and the last from 10

8. Paraavartya Yojayet – Transpose and adjust.

9. Puranapuranabyham – By the completion or

noncompletion

10. Sankalana-vyavakalanabhyam – By addition and

by subtraction

11. Shesanyankena Charamena – The remainders by

the last digit

12. Shunyam Saamyasamuccaye – When the sum is

the same that sum is zero

13. Sopaantyadvayamantyam – The ultimate and

twice the penultimate

14. Urdhva-tiryakbhyam – Vertically and crosswise

15. Vyashtisamanstih – Part and Whole

16. Yaavadunam – Whatever the extent of its

deficiency.[1]

Study of these formulae is a field of diverse study.

The proposed multiplier uses Urdhva-Triyakbhyam

sutra only. Hence detail description of only Urdhva-

Triyakbhyam sutra is given below in this paper and

detail description of all the other formulae are beyond

the scope of this paper.

A. Urdhva Tiryakbhyam (UT) sutra

This sutra literally means vertically and

crosswise. This sutra is one of the best known sutra of

Vedic Sutras that provides an effective algorithm

applicable to all multiplication cases. In addition, the

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 2 May to Aug 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 7

sutra yields faster operations by generating partial

product and sum in a single iteration step.

Two-digit multiplication based on this

method is shown in Fig.2.1. To explain using an

example, consider the multiplication of two digits, 23

and 52.

The first step is the multiplication (3x2),

which becomes the LSB bit. Then, the addition of

operation (2x2) and (5x3) is carried out. One digit

answer is placed left to LSB and the carry is

forwarded to the next stage. Next step is

multiplication of 2x5 and adding the product with the

previous carry. This procedure can be extended for

4x4 bit multiplication as shown in Fig.2.2 and can be

further extended to perform NxN bit

multiplication.[2]

In Fig.2.2, vertical and slanted lines

represent the AND operation i.e. partial product

generation between operands while horizontal lines

represent summing of partial products.

Steps to be followed for the multiplication

process for 4x4 multiplier are shown in Fig.2.2.

Considering ABC as multiplicand and DEF

as the multiplier, the steps of multiplication are

descriptive in the fig.2.2.[3]

B. 2x2 Multiplier

Applying Urdhva-Triyakbhyam sutra let us

take two inputs each of 2 bits say A1A0 and B1B0.

Output can be of 4 bits. Result of multiplication is

obtained after getting partial product and performing

addition.

 A1 A0

 x B1 B0

 A1B0 A0B0

 A1B1 A0B1

 CY S2 S1 S0

In equation form, Urdhva-Triyakbhyam sutra can be

given as below:

Consider two 4-bit binary numbers a3a2a1a0 and

b3b2b1b0. The partial products

(P7P6P5P4P3P2P1P0) generated are

given by the following equations:

i. P0= a0b0

ii. P1= a0b1 + a1b0

iii. P2 = a0b2 + a1b1 + a2b0+ P1

iv. P3= a0b3 + a1b2 + a2b1 + a3b0+ P2

v. P4 = a1b3 + a2b2 + a3b1 + P3

vi. P5 = a1b2 + a2b1 + P4

vii. P6 = a3b3 + P5

viii. P7 = carry of P6 [4]

In the fig.2.3 S0 is the vertical product of bit

A0 and B0. S1 is the addition of crosswise bit

multiplication that means addition of A1xB0 and

B1xA0. S2 is again the sum of vertical multiplication

of bit A1 and B1 with the carry generated during S1

calculation, if any. CY is the carry generated during

S2 calculation , if any.

As shown in Fig.2.3 half adders are used to

add the partial products generated.

C. 4x4 Multiplier, 8x8 Multiplier, 16x16 Multiplier

For getting high speed performance 4x4

multiplier can be designed using 2x2 and CSA (Carry

Save Adder) as shown in fig.2.4.

D. CSA(Carry Save Adder)

Carry Save Adders have been used in above

architectures for adding the partial products generated

by the multiplication of bits. CSA basically consists

of n-full adders and a Ripple Carry Adder but here in

proposed architectures it consists of full adders as

well as half adders as per the need and a Ripple Carry

Adder. Each full and half adder computes a single

sum and carry bit based solely on the corresponding

bits of the inputs which in number is 3 for full adders

and is 2 for half adders. For given the three n-bit

numbers a,b,c as input it produces a partial sum bit,

PS and a shift carry bit, SC as :

PSi = ai XOR bi XOR ci

SCi = (ai AND bi) OR (bi AND ci) OR (ci AND ai)

The actual sum can be computed by the following

steps :

1. Shifting the carry sequence SC left by one

bit position.

2. Appending a „0‟ as the most significant bit

of the partial sum sequence PS.

3. Using ripple carry adder add these two

sequence together and produce the resulting

n+1 bit value.[6]

This process can be continued indefinitely,

adding an input for each stage of half and full adders

without any intermediate carry propagation. CSA is

being used here in proposed architecture because

number of stages it uses for calculation of sum and

hence propagation delay are fixed regardless of the

number of bits. Hence it speeds up the carry

propagation and provides faster operation and has

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 2 May to Aug 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 8

paid a very important role in increasing the speed of

operation of proposed multiplier.

III. SIMULATION RESULT

The 16x16 multiplier has been designed in

VHDL and its functionality is verified for various

possible inputs by generating test bench. For fast

operation adder should be fast so here concept of

Carry Save Adder has been used. Simulation result of

8x8 multiplier is shown in fig.4.1.

The VHDL program of 8x8 multiplier has

been used for designing 16x16 multiplier. Simulation

result of 16x16 Vedic Multiplier is shown in fig.4.2.

IV. SYNTHESIS RESULT

Multiplier No. of

slices

used

No. of 4

input

LUTs

used

No. of

IOBs

used

 8x8 112 196 32

 16x16 456 799 64

Synthesis has been done using Xilinx ISE 9.2i

software. Target device for the synthesis is c3s50-5-

pq208.

V. FIGURES

Figure2.1 Two digit multiplication using ‘UT’ sutra[2]

Figure2.2 Four bit multiplication using ‘UT’ sutra[3]

Figure2.3 Architecture of 2x2 vedic multiplier[5]

Figure2.4 Architecture of 4x4 vedic multiplier

Figure2.5 Architecture of 8x8 vedic multiplier

Figure2.6 Architecture of 16x16 vedic multiplier

SSRG International Journal of VLSI & Signal Processing (SSRG – IJVSP) – Volume 2 Issue 2 May to Aug 2015

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 9

Figure4.1 Simulation Result of 8x8 Vedic Multiplier

Figure4.2 Simulation Result of 16x16 Vedic Multiplier

Figure5.1 RTL view of 8x8 Vedic Multiplier

Figure5.2 RTL view of 16x16 Vedic Multiplier

VI. CONCLUSION

In this paper a simpler concept with a

simpler architecture of Vedic Multiplier has been

presented. This provides hierarchical design for

multiplier. So the modularity gets increased and the

complexity gets reduced. The design is based on

Vedic Mathematics and uses concept of CSA that

means modified form of the same has been used here.

REFERENCES
[1] Honey Durga Tiwari, Ganzorig Gankhuyag, Chan Mo

Kim, Yong Beom Cho, “Multiplier design based on

ancient Indian Vedic Mathematics”, International SoC

Design Conference, 2008.

[2] Hardik Sangani, Tanay M. Modi, V.S. Kanchana

Bhaaskaran‟ “Low Power Vedic Multiplier Using Energy

Recovery Logic” , International Conference on Advances

in Computing,Communications and Informatics

(ICACCI),2014.

[3] Sudeep.M.C, Sharath Bimba.M, Mahendra Vucha

,“Design and FPGA Implementation of High Speed Vedic

Multiplier”, International Journal of Computer

Applications (0975 – 8887) , Volume 90 – No 16, March

2014.

[4] Premananda B.S., Samarth S. Pai, Shashank B., Shashank

S. Bhat, “Design and Implementation of 8-Bit Vedic

Multiplier”, IJAREEIE, vol 2, issue 12, December 2013.

[5] Pushpalata Verma, K. K. Mehta, “Implementation of an

Efficient Multiplier based on Vedic Mathematics Using

EDA Tool”, International Journal of Engineering and

Advanced Technology (IJEAT) ISSN: 2249 – 8958,

Volume-1, Issue-5, June 2012.

[6] Wikipedia, http://en.wikipedia.org/wiki/Carry-save_adder,

DOB- 29/04/2015.

