Design of Robust and power Efficient 8-Bit Ripple Carry Adder using Different Logic Styles

Mangayarkkarasi M1, Joseph Gladwin S2

1Assistant Professor, 2Associate Professor

1Department of ECE

1Sri Muthukumaran Institute of Technology, 2SSN College of Engineering, 12India.

Abstract—The binary adders are key component in digital signal processors (DSP). These adders are crucial building blocks in very large scale integrated circuits. Its efficient implementation is highly important because a carry propagation involving all operand bits has to be performed. With the increasing level of device integration power became the predominant design goal for fast adders. Low power consumption and smaller area are some of the most important criteria for fabrication of DSP systems and high performance systems. In this paper we try to determine the best solution to this problem by comparing a few 8-bit Ripple Carry Adder (RCA) circuits implementation with Complementary, Dynamic, Constant Delay (CD) and Energy Efficient Constant Delay (EE-CD) logic styles. The adders are simulated using MicroWind environment to find an efficient adder structure. To reduce the power consumption for low power applications an EE-CD logic style is proposed. When we compare the power consumption of all the adder logic style we find that Complementary logic style consume more power. The EE-CD logic style has better power consumption compared to all other logic styles.

Keywords—CMOS, Ripple Carry Adder, Power Consumption, Complementary Logic, Dynamic Logic, Constant Delay Logic, Energy Efficient- Constant Delay Logic.

I. INTRODUCTION

To add the data in the processor adders are most widely used1. A significant performance improvement in integrated circuits are scaling of the transistor size and reduction in power. There are two most important factors to realizing modern VLSI circuits are low-power and high-speed.

In VLSI circuits the high performance energy efficient logic styles are always important. To construct these types of integrated circuits CMOS technology is the most commonly used. Power parameter is most widely used to measure the quality of the circuits. The advancement in the CMOS technology leads to improve the power 2.

To enhance the speed of the digital circuitry (Dynamic Logic) many improvements has been done 3. But this logic is affected by charge leakage, charge sharing and backgate coupling of logic blocks. To avoid this problem, the CMOS domino logic (Feedthrough) was introduced 4. Before all the inputs are valid, the output is partially evaluated. This is the most important feature of domino logic; it’s also occurs due to extra supply.

The architecture, logic style, layout and process technology are the different levels of high-performance and low-power adders. To optimize the speed in adders, we need carry generation. For fast adder implementation, the generated carry should convey to the output as soon as possible. So the worst path delay which determines the speed of the digital processor can be reduced.

We can obtain the Ripple Carry Adder (RCA) by cascading many single-bit Full Adder (FA)cells5. This architecture is simple and area efficient. Each FA starts operation till the previous carry out signal is ready which is shown in Fig. 1. Because of this effect the computation speed is slow. This adder is very fast in operation compared to other high-speed adders.

The path delay is determined by its carry out propagation route. The number of bits increases, the delay of RCA increases in a linear way. The equation 1 describes the delay of RCA. The Boolean expressions for Sum and Carry are given in equation 2 and 3. The corresponding truth table shown in Table 1.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
A & B & Cin & Sum & Carry \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\caption{Truth Table of One-Bit Full Adder}
\end{table}
\[t_{adder} \approx (N - 1)t_{Carry} + t_{Sum}(1) \]
\[Sum = A \oplus B \oplus Cin(2) \]
\[Carry = AB + BCin + CinA \]

(3)

Where \(t_{sum} \) and \(t_{carry} \) are the propagation delay from carry input to carry output and Sum.

\[P_{total} = P_{switching} + P_{short
circuit} + P_{leakage} \]
\[= (\alpha_{0 \rightarrow 1} \times C_L \times V_{dd} \times f_{CLK}) + (I_{short
circuit} \times V_{dd}) + \]
\[(I_{leakage} \times V_{dd}) \]

(4)

II. ADDER ARCHITECTURES

A. Complementary Logic

The circuit has Pull Up Network (PUN) and Pull Down Network (PDN) with ‘N’ input logic gates shown in Fig.2. Where all the inputs are distributed to both the networks via low resistance path. Only one of the network is conducting in steady state. For high output, the path exists between \(V_{dd} \) and output or for low output, the path exist between \(V_{ss} \) and output. So the output node is always a low impedance node in steady state.

To implement an ‘N’ input logic gate we required 2N transistors\[1\]\[7].

\[Fig. 2 \text{ General Complementary Logic Style} \]

Here, one-bit full adder is considered to design an 8-bit Ripple Carry Adder. In this logic style the outputs of one-bit full adder is Sum and Carry, having the OR and AND operations. We could not perform these operations in complementary logic so we need an additional inverter logic to compliment the outputs. The one-bit full adder logic shown in Fig.3.

\[Fig. 3 \text{ Complementary Logic of One-bit Full Adder} \]

For one-bit Full Adder (FA) the number of inputs are three (A, B and Cin). In order to design the one-bit logic we need 2N transistors. Here, 6 transistors were used to implement the Sum, three for PUN and three for PDN. For Carry the number of inputs are 6, so 12 transistors were used, 6 for
PUN and 6 for PDN. An CMOS inverter is added additionally to both the outputs.

Here, the 8-bit RCA implemented using the above one-bit complementary logic style, which is shown in Fig. 4. The total number of transistors used here is 178. For each Sum 6 transistors are used with a CMOS inverter. With addition to CMOS inverter 12 transistor used for each Carry.

![Fig.4 8-Bit RCA using Complementary Logic Style](image)

In this logic the carry output of the first stage FA (C_0) is given to the carry input of the second stage FA. This process continued till we get the carry output (C_7) of the 8th stage. The Sum outputs are Sum_0 to Sum_7.

B. Dynamic Logic

The circuit requires 2+N transistors to implement the logic function which is shown in Fig.5. The additional two transistors are used for precharge and evaluation phases to realize the logic functions. When the clock signal (ϕ) is low, the evaluation transistor (M_e) is OFF and there is no static power. The precharge transistor (M_p) is OFF when the clock signal (ϕ) is high. The output of a dynamic gate is once discharged; it cannot be charged again until the next precharge operation. During evaluation the inputs to the gate makes at most one transition. During and after evaluation the output should be in high impedance state and it’s stored on C_L. The dynamic circuits having the following properties: The logic function is implemented by the PDN only, Full scaling outputs, Non-Ratioed, Faster switching speed and Needs a precharge/evaluation clocks[1][7-8].

Here, we are using only PDN with the addition of precharge (M_p) and evaluation (M_e) transistors. To construct the one-bit Dynamic logic using FA we need N+2 transistors. So 3 transistors used for Sum and 6 transistors for Carry with precharge and evaluation transistors. The dynamic logic shown in Fig.6. The CMOS inverters in the output stage is eliminated here.

![Fig.6 Dynamic Logic of One-bit Full Adder](image)

Here, the 8-bit RCA implemented using the above one-bit Dynamic logic style, which is shown in Fig.7. The total number of transistors used here is 104. For each Sum 3 transistors are used with a precharge and evaluation transistors (M_p and M_e). With addition to precharge and evaluation transistors 6 transistor used for each Carry. The charging and discharging done through the capacitor (C_L).

![Fig.7 8-Bit RCA using Dynamic Logic Style](image)
C. Constant Delay (CD) Logic

In this logic the static power is reduced by using a Timing Block (TB) which creates an adjustable window period. The general logic and its timing diagram's shown in Fig.8 and 9.

This mode occurs before the CLK becomes low with IN (inputs of PDN) make a transition from high to low. For the entire evaluation period, X raises to logic “1” and Y remains at logic “0”, when CLK becomes low.

3. D-Q Delay Mode

To enable the high performance operations this mode utilizes the pre-evaluated characteristics of CD logic. Before the IN (inputs of PDN) transit CLK falls from high to low and X is initially rises to a non-zero voltage level. The Y is still low but IN (inputs of PDN) become logic “0” and X quickly rises to logic “1”. When the CLK_d rises little slower than X, then Y will initially rise but return back to logic “0”.

Fig.10 Constant Delay (CD) Logic of One-bit Full Adder

Here, we are using only PDN with the addition of Timing Block and Logic Block. To construct the one-bit Constant Delay logic using FA we need N+3 transistors with TB and Logic Block. So 3 transistors used for Sum and 6 transistors for Carry with the addition to an inverter. Here we can keep the structure up to X logic for all stages. The X logic having TB with transistors M_0, M_1 and M_2. So totally 94

Fig.11 8-Bit RCA using Constant Delay (CD) Logic Style

In this logic the total number of transistors used here is 88. For each Sum 4 transistors are used with an inverter and 7 transistor used for each Carry with the addition to an inverter. Here we can keep the structure up to X logic for all stages. The X logic having TB with transistors M_0 and M_1.
transistors were used in this logic which is shown in Figure 11.

D. Energy Efficient-Constant Delay (EE-CD) Logic

The EE-CD logic reduces the power consumption by control the PUN through feedback technique shown in Fig. 12. The PUN having the transistor (T₁) in series with transistor (T₂) and T₃ transistor is controlled by the drain of the T₂ transistor. The inverted CLK signal drives the source of transistor T₂ and the output signal is taken to control the gate terminal of transistor T₂. When the CLK signal is high the T₄ transistor reset the node X. The transistor T₆ is used to reset the output terminal. PDN consist only NMOS transistors.

![Fig. 12 General Energy Efficient-Constant Delay (EE-CD) Logic Style](image)

The EE-CD logic having two modes of operation, reset and evaluation mode [11-13].

1. **Reset Mode**

 When CLK is high both X and OUT pre-discharges to GND, so the output always at logic “0”.

2. **Evaluation Mode**

 When CLK is low the circuit enters into the evaluation mode, here contention mode takes place. In this mode, the CLK is low when the input (IN) at logic “1”. At this time both PUN and PDN conduct simultaneously, which causes a temporary glitch at the output. So it creates a direct path between power supply and ground. The output node become a non-zero voltage level is used to turn ON the transistor T₁ by feedback method. The inverted CLK pass through transistor T₂ is disables the transistor T₃. So the direct path is disabled till the entire contention period and the glitches has been eliminated.

 The EE-CD logic shown in Fig. 13. Here, we are using PUN as X Logic. To construct the one-bit EE-CD logic using FA we need N+1 transistors with X Logic. The X logic having transistors T₁, T₂ and T₃ with additional reset transistor T₄ used to reset the logic. So 3 transistors used for Sum and 6 transistors for Carry with additional transistor used to reset the output terminal.

 ![Fig. 13 Energy Efficient-Constant Delay (EE-CD) Logic of One-bit Full Adder](image)

In this logic the total number of transistors used here is 88. For each Sum 4 transistors are used with an X Logic. Here we can keep the structure up to X Logic for all stages. The X logic having the transistors T₁, T₂, T₃ with additional reset transistor T₄. So totally 92 transistors were used in this logic which is shown in Fig. 14.

III. SIMULATION RESULTS FOR POWER ANALYSIS OF DIFFERENT 8-BIT RCA LOGIC STYLES

The Fig. 15-18. below describe the output waveforms of 8-Bit RCA using complementary, Dynamic, Constant Delay and Energy Efficient-Constant Delay logic styles.
The truth table was verified by the simulation waveform which is shown in Fig. 15, using the complementary logic style.

Fig. 15 Simulation Waveform of 8-Bit RCA Using Complementary Logic Style with Power

The operation of the 8-Bit Dynamic logic has been verified by the truth table with common clock signal which is shown in Fig. 16. Whenever the clock signal is low, all the evaluation transistors are OFF and also there is no static power consumption and its vice-versa for precharge phase. During and after evaluation all the inputs must have one transition.

Fig. 16 Simulation Waveform of 8-Bit RCA Using Dynamic Logic Style with Power

The Fig. 17 verifies the adder logic with precharge and evaluation phases using common clock signal and common timing block for all stages. The three modes, contention mode, C-D delay mode and D-Q delay modes of evaluation phase also verified.

Fig. 17 Simulation Waveform of 8-Bit RCA Using Constant Delay Logic Style with Power

When the clock signal is high and the outputs are always at high during the Reset mode. The contention mode takes place during the evaluation phase. At this time the clock signal is low and inputs are in logic “1”. So both PUN and PDN conduct simultaneously and glitches occurred at this phase. By disabling the direct path in entire contention period the glitches eliminated which is also shown in Fig. 18.

Fig. 18 Simulation Waveform of 8-Bit RCA Using Energy Efficient-Constant Delay Logic Style with Power
TABLE II
POWER ANALYSIS OF FOR POWER ANALYSIS OF DIFFERENT 8-BIT RCA LOGIC STYLES

<table>
<thead>
<tr>
<th>Logic Style</th>
<th>Number of Transistors</th>
<th>Power (μW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementary</td>
<td>176</td>
<td>68.819</td>
</tr>
<tr>
<td>Dynamic</td>
<td>104</td>
<td>44.517</td>
</tr>
<tr>
<td>Constant Delay</td>
<td>94</td>
<td>18.011</td>
</tr>
<tr>
<td>Energy Efficient Constant Delay</td>
<td>92</td>
<td>4.770</td>
</tr>
</tbody>
</table>

The power consumption is calculated by using the different values of width of the transistors. If the width is minimum, we can calculate how much power consumed. The overall power is the combination of short circuit and switching power. The dynamic energy consumption consumed energy of power supply during Sum and Carry operations. The above Table I shows the number of transistors and power calculations of different logic styles.

IV. CONCLUSION

In this paper, different types of 8-Bit Ripple Carry Adders (Complementary, Dynamic, Constant Delay and Energy Efficient-Constant Delay) has been designed and evaluated on power parameter. Both constant Delay and Energy Efficient-Constant Delay adders uses least number of transistors while complementary logic has highest number of transistors i.e. 176 transistors. Compared to this the Dynamic logic has moderate number of transistors. The Complementary logic has highest power of 68.819μW compared to other logic styles. Dynamic logic has the power of 44.517μW which is better than complementary and higher than other two logic styles. By observing the powers of Constant Delay and Energy Efficient-Constant Delay logics, it is observed that Energy Efficient-Constant Delay logic has a superior power of 4.770μW of Constant Delay logic. Here, we conclude that power consumption of Efficient-Constant Delay logic is very less, so it will be considered as a fast adder.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their careful revision and important suggestions which significantly helped to improve the presentation of this paper.

REFERENCES