High-Speed and Energy-Efficient Carry Skip Adder Functioning under a Extensive Range of Supply Voltage Levels

Amrutavarshini S H, Mr. S Pramod Kumar
Amrutavarshini S H, PG student/ VLSI and ES, ECE, Kalpataru Institute of Technology Tiptur, Tumkur, India
Asst. Prof, S Pramod Kumar ECE Department, Kalpataru Institute of Technology Tiptur, Tumkur, India

Abstract
In this paper, we herein present a structure of other type adders utilizing a forty nm static CMOS in adder which has higher speed yet lower energy consumption when compared with the conventional. The speed of the enhancement is achieved by applying the concatenation and the scheme of incrementation to ameliorate the efficiency of the conventional CSKA structure. Instead premeditating on the multiplexer logic, suggested structure makes utilization of AND-OR-Invert or OR-AND-Invert compound gates for those skip logic. The whole structure may be realized with both fixed and also variable style in size wherein the latter furthering augments the speed and the respective parameters of energy of the corresponding adder. Ultimately, hybrid variable latency at extension of those of supply of voltage. Suggested structure are assessed by making a comparison of their speed, power and parameters of energy with those of other type adders utilizing a forty nm static CMOS in technology for an extensive range of supply of voltage.

Keywords: Carry skip adder(CSKA), Ripple Carry adder(RCA)

I. INTRODUCTION
Depending on the quantity of the supply voltage reduction, the functioning of the ON devices reside in the threshold, near threshold or even subthreshold regions. Working at the super threshold region does provide us with lower delay and green switching and leakage of powers can be compared with the near or threshold regions. In the subthreshold region, logic gate in lagging and the respective leakage power does exhibit the exponential reliance on those of supply and voltages.

II. MOTIVATION
The reckoning of the power on the supply of voltage has been the motivation for the design of those circuits with the feature of dynamic voltage and the scaling. Suggest amendment does make an impact those of CSKA speed which is presented. Suggested amendments do ameliorates the respective speed.

III. CHANGE IN VOLTAGE
In these circuits, we herein reduce the consumption of energy and system may amend the voltage and those of frequency of the considered which is relied on the requirement of the workload. For these systems, the circuit need be able to operate under extensive range of supply of voltage.

IV. OPTIMISING POWER AND SPEED
In considering addition of the knob of the respective supply of voltage, one may chose between the different structures of adder or families primarily for optimizing at the power and the speed. Fewer speed of this considered structured adder of CSLA and the PPA, however does limits its utilization for the high speed applications.

V. STRUCTURAL ADJUSTMENT
Adjustment of the structure is reckoned on the technique of variable latency which in turn does lowers the consumption of power without which considerably

VI. WORKING WITH AMALGAMATION
Amended CSKA structure considered amalgamating the concatenation and those of schemes of incrementation to the conventional CSKA for embellishing the speed and energy capacitance of the adder. This amendments does offer with the ability to utilize simpler carry skip logics which is based on the AOI/OAI compound gates instead of the multiplexer.

Fig. 1. Conventional structure of the CSKA
VII. CONVENTIONAL CARRY SKIP ADDER

Herein, for an RCA which comprises of N is cascaded Fast, the worst propagation lagging of the two N bit numbers where A and B does belongs to the case where all the respective Fas are in the mode of propagation.

\[P_i = A_i \oplus B_i \text{ for } i = 1, \ldots, N \]

Where \(P_i \) is the signal of propagation, which is related to \(A_i \) and \(B_i \) respectively. Whole of CSKA will be enacted utilizing FSS and VSS where there is greatest speed which may be procured for the structure of VSS. [1]

A. Fixed Stage Size CSKA

By assuming that each of the stage of the respective CSKA comprises of M, Fas, there are Q being equal to \(N/M \) stages, where for the sake of the simplicity, we herein assume Q representing an integer. The input signals of the \(j \) th multiplexer are the carry output of the FAs chain in the \(j \) th stage denoted by \(C_{0j} \), the carry output of the previous stage (carry input of the \(j \) th stage) denoted by \(C_{1j} \) (Fig. 1).

Critical path delay of a FSS CSKA is formulated by

Based on (1), the optimum value of \(M(M_{opt}) \) that leads to optimum propagation delay may be calculated as \((0.5N\alpha)^{1/2} \) where \(\alpha \) is equal \(T_{MUX}/T_{CARRY} \).

\[T_{D,\text{opt}} = 2\sqrt{2NT_{CARRY}T_{MUX} + (T_{SUM} - T_{CARRY} - T_{MUX})} = T_{SUM} + (2\sqrt{2N\alpha - 1} - \alpha) \times T_{CARRY}. \] (2)

Optimal lagging of the FSS CSKA is almost proportional to the square root of the respective product of N and \(\alpha \).

B. Variable Stage Size CSKA

Propagational lagging is worked to determine the rate of increase.

\[t_j^+ = \max(t_{j-1}^0, t_{j-1}^1) + T_{MUX} \] (3)

where \(t_{j-1}^0 \) and \(t_{j-1}^1 \) shows the guesstimating delay of \(C_{0j-1}(C_{1j-1}) \) signal in the \((j-1) \)th stage. Increasing the size of \(M_j \) for the \(j \) th stage should be restricted by

\[t_j^0 \leq t_j^+ = t_j^0 + (j - 1)T_{MUX}. \] (4)

To manage worst case delay for the critical path, we need to minimize the size of the following RCA blocks. This may be analytically expressed as

\[T_{SUM,j+1} \leq T_{SUM,j} - T_{MUX}; \text{ for } i \geq p. \] (5)

The trend of decreasing the stage size should be considered to continue until we offer the necessitated number of adder bits. To satisfy (4), we augment the size of the first \(p \) stages up to the nucleus utilizing [3]

\[M_j \leq M_1 + (j - 1)\alpha; \text{ for } 1 \leq j \leq p. \] (6)

VIII. PROPOSED CSKA STRUCTURE

We present an amended CSKA structure that lessens this delay. [2] [5]

A. General Description of the Proposed Structure

The structure is reckoned on amalgamating the concatenation and the schemes of incrementation [13] In the suggested structure, the first stage has only one block, which is RCA. As shown in Fig. 2, the skip logic determines the carry output of the \(j \) th stage \(C_{0j} \) based on the Intermediate results regulated by the RCA block and the carry output of the earlier stage to guesstimate the ultimate summation of the stage.

To solve this particular problem, especially at the suggested structure, we consider block of RCA with a carry input of zero. RCA block of the stages does not need to wait for those carry output of the earlier stage, the output carries of the respective blocks are evaluated in parallel.
Fig. 3. Internal structure of the jth incrementation block, $K_j = \sum_{r=1}^{j-1} M_r$ ($j = 2, \ldots, Q$).

B. Area and Delay of the Proposed Structure

These blocks can be enacted with similar logic gates (XOR and AND gates) as those utilized for regulating the chosen signal of the multiplexer in the conventional structure.

The critical path of the suggested CI-CSKA structure, which constitutes three parts, is shown in Fig. 2. These parts comprises of the chain of the FAs of the first stage, the path of the skip logics, and the incrementation block in the last stage. The lagging of this path (T_D) may be expressed as

$$T_D = [M_1 T_{\text{CARRY}}] + [(Q-2)T_{\text{SKIP}}] + [(M_Q-1)T_{\text{AND}} + T_{\text{XOR}}]$$

(10)

Where the three brackets correspond to the three parts mentioned above, respectively. Here, T_{AND} and T_{XOR} are the delays of the two inputs static AND and XOR gates, respectively. To guessimate the lagging of the skip logic, the average of the delays of the AOI and OAI gates, which are typically close to one another [35], is used. This is amended to-

$$T_D = [M_1 T_{\text{CARRY}}] + [(Q-2)\left(\frac{T_{\text{AOI}} + T_{\text{OAI}}}{2}\right)] + [(M_Q-1)T_{\text{AND}} + T_{\text{XOR}}]$$

(11)

Where T_{AOI} and T_{OAI} are the lagging of the static AOI and OAI gates, respectively.

It should be noted that the lag lessening of the skip logic has the greater impact on the lags decrease of the whole of the structure.

C. Stage Sizes Consideration

The optimum value of M, which may be procured utilizing (11), is given by

$$M_{\text{opt}} = \sqrt{\frac{N(T_{\text{AOI}} + T_{\text{OAI}})}{2(T_{\text{CARRY}} + T_{\text{AND}})}}$$

(12)

Therefore,

Fig. 4. Sizes of the stages in the case of VSS for the proposed and conventional 32-bit CSKA structures in 45-nm static CMOS technology.

In this case, the size of the last stage is one, and its RCA block contains a HA.

The imbalanced rates may yield a larger nucleus stage and smaller number of stages leading to a smaller propagation delay.

Fig. 5. Generic structure of variable latency adders based on RCA.

$$T_{\text{INC},j} \leq T_{\text{INC},j-1} - T_{\text{SKIP},j-1}; \quad \text{for} \quad i \geq p + 1.$$
IX PROPOSED HYBRID VARIABLE LATENCY CSKA

In this section, first, the structure of a generic variable latency adder, which may be utilized with the voltage scaling reckoning on adaptive clock stretching, is described. Then, a hybrid variable latency CSKA structure based on the CI-CSKA structure described in Section IV is suggested.

X Variable Latency Adders Relying on Adaptive Clock Stretching

In Fig. 5, the input bits \((j + 1)\text{th} - (j + m)\text{th}\) have been exploited to predict the propagation of the carry output of the \(j\) th stage \(\text{(FA)}\) to the carry output of \((j + m)\)th stage. The range of voltage Therefore, the predictor block size should be chosen based on these tradeoffs.

B. Proposed Hybrid Variable Latency CSKA Structure

The suggested hybrid variable latency CSKA structure is shown in Fig. 6 where an \(M_p\)-bit amended PPA is used for the \(p\)th stage (nucleus stage). The utilization of the fast PPA helps augmenting the available slack time in the structure of variable latency.

Fig. 6. Structure of the proposed hybrid variable latency CSKA.

In addition, similar to the proposed CI-CSKA structure, the first point of SPL1 is the first input bit of the first stage, and the last point of SPL2 is the last bit of the sum output of the incrementation block of the stage \(Q\).

XI RESULTS

<table>
<thead>
<tr>
<th>Library</th>
<th>Area ((\mu m^2))</th>
<th>Power (22\text{nd})</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripple Carry Adder</td>
<td>167.77</td>
<td>4822212.26nW</td>
<td>8.282ns</td>
</tr>
<tr>
<td>Conventional structure of the CSKA</td>
<td>251.66</td>
<td>5801012.42nW</td>
<td>8.927ns</td>
</tr>
<tr>
<td>Proposed CI-CSKA structure</td>
<td>257.95</td>
<td>5562424.57nW</td>
<td>8.572ns</td>
</tr>
<tr>
<td>proposed hybrid variable latency CSKA</td>
<td>308.28</td>
<td>5178447.72nW</td>
<td>7.978ns</td>
</tr>
</tbody>
</table>

XII CONCLUSION

Enhancement of speed can be ascertained by amending the structure primarily through the techniques of concatenation and incrementation. In addition AOI and OAI compound gates were found exploited for the carry skip logics. The efficiency of the suggested structure for an addition, a hybrid variable latency extension of the structure was suggested forth. It exploited an amended parallel adder structure at the middle recognized stage for
ameliorating the time of slack. The efficiency of this respective structure was compared versus those of variable latency RCA, C2SLA, and hybrid C2SLA structures.

REFERENCES