
SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 6

Efficient Data compression using variable

length Huffman coding
Reva Joshi

1
, G. Githika

2
, Ch. Prudvi

3
,Dr.SK.Fairooz

4
, Shaik Mohammed Rafi

5

123UG Scholar , Sreyas Institute of Engineering & Technology, Hyderabad.

4 Dr SK.Fairooz, Associate Professor , Dept of ECE, Sreyas Institute of Engineering & Technology, Hyderabad.
5 Shaik Mohammed Rafi, Assistant Professor , Dept of ECE, Sreyas Institute of Engineering & Technology,

Hyderabad.
ABSTRACT : In this paper, we are developing a new compression approach that relies on the diversity of the

proposed approach and the high and low data blocks in Huffman encoding. The proposed curriculum in VHDL

languages will be developed and tested for implementation via the targeted Xilinx FPGA. The proposed high-speed

decoding system takes approximately 43.75 seconds to decode a 12x32 test dataset. The current tree-based Huffman

decoder takes about 83.15μs to decode the same data set. The high-speed decoder implemented takes about 400

hours less than the current system.

Keywords : Huffman , Variable length , FPGA , Xilinx , compression.

I. INTRODUCTION

 Huffman encoding is a widely used lossless

data compression algorithm that assigns shorter

encoded words for more frequent symbols and longer

encoded words for relatively rare symbols to reduce the
size of the original information [1]. Huffman encoding

is also known as optimal variable length encoding, and

the algorithm provides the highest lossless compression

ratio for compression methods that encode symbols

separately [2]. VLSI implementation of Huffman

encoders is an important ongoing topic, and several

VLSI designs have been suggested in the literature.

However, current Huffman encoding schemes require

considerable time and computational resources to create

the Huffman tree and generate encoded words, resulting

in lower encoding speed and higher hardware costs [3].

In this article, we suggest a new data structure to build a
Huffman tree, and the proposed data structure is used to

develop a new algorithm to improve the efficiency of

Huffman coding by creating a Huffman tree

simultaneously with word generation encoded, where

the width of the symbols does not affect the

compression time. The proposed new data structure

does not require storing the Huffman tree in fixed

RAM, which increases the available memory resources.

High-speed serial data encryption software is essential

for many applications, such as image compression, data

transmission, and data communications. Therefore, the
proposed technological innovation is used in VLSI

high-speed serial data encryption using Verilog's

Hardware Description Language (HDL), and is

simulated using the Modelsim Electronic Design

Automation (EDA) tool. The simulation results show

that the proposed encoding scheme provides more

encoding speed and lower hardware cost compared to

current Huffman parallel encoding applications [4] [5].

The proposed design requires an average of 3.28 cycles

per clock to compress the 8-bit code, which is much

lower than the reference [5]. An average of 7-clock

cycles requires compression of the 8-bit code. The

organization of the paper as section II is proposed
architecture, section III as decoder , section IV as

experimental results and section V as conclusions.

II. PROPOSED ARCHITECTURE

The high-speed decoder receives the serial

input bitstreams from the encoder, and proceeds to the

N-bit shifter where the serial data becomes parallel.

This parallel data is passed to the decoder and the

longitudinal decoder to decode the encoded words to
the original data. The symbol decoders are provided

with segmented notebooks. Symbol books are aligned

as LUTs with the same symbol length. Each LUT

contains all the code words of equal length and is

shortened depending on their length.

Depending on the length of the code words,

the current high-speed decoder scans the received code

words using LUT. Since each LUT consists of only a
specific length code, the scan time to trace the code is

reduced.

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 7

Fig.1 :Proposed for Encoder and Decoder

The method proposed here consists of the following
units;

1. Input Memory Element,

2. Occurrence Calculator,

3. Code Generator

4. Encoder,

5. Decoder,

6. Output Memory Element.

II. A) INPUT MEMORY ELEMENT

Fig 1: Input Memory Elements

The input memory component consists of

twelve locations with a length of 32 bits each. This

block stores data that is passed to the frequency

calculator. Signal 'S' is the status signal, made '1' once

the complete data is passed to the repeat calculator, clk
is the clock signal that activates the presence calculator

on the rising edge, "first" is the reset signal, which

when high, initializes all memory locations to Zero

External data is the output vector, which transfers data

from memory to an occurrence calculating unit. The

memory object transports all the data stored in it as 4-

bit blocks to an iteration calculator, and each 4-bit

block is individually called as a single word. Therefore,

the number of unique words is sixteen (that is, 0000 to

1111).

II. B) OCCURRENCE CALCULATOR

Fig 2: Occurrence Calculator unit

 This block counts the number of unique word

occurrences in the data. Generates a control signal to

the encryption block with status S, to indicate that the

recurrence calculation is complete, and enables

encryption (when S = '1'). clk is the clock signal that

activates the repeat calculator on the rising edge, it is

reset to first, all repeat values are initialized to zero, and

Sout (3 to 0) is the four-bit input data which are fed into

the occurrence calculator from the input memory item,
OC0 to OC15 are the occurrence values for single

words.

II C) Code Generator:

This Block can be treated as the combination of the

following Sub-Modules:

1. SUMMER

2. SORTER

1) SUMMER:

The summer is to calculate the sum of the two

values fed and provides the sum of these two inputs.

Summer is used in encryption to calculate the sum of

the last two elements after each type.

Fig3: Summer Module

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 8

2) SORTER:

Fig 4:Sorter Module

 The classifier contains si0, si1, si15 as

input values taken from the frequency calculator

and ordered in descending order, when the enable

signal "on" is active high and the reset signal

"activates first" it is low. The ordered values are

passed to the code generator.

Fig 5: Code Generation unit

Huffman's code is created in this block.

Perform the following process.

• Click replacing each unique word with an

equivalent word

• Stores compressed data, after encryption, to

be sent to the decoder.

III. DECODER CIRCUIT

This block receives the bits encoded as serial
bits and is decoded. Please go back to get the original

data and block consists of:

III. A) COMPARATOR

 This part compares the compressed data

received from the encoder with the predefined

codewords stored in the LUT.

III. B) LOOK UP TABLE (LUT)

This block stores a predefined code sequence
from which the comparator takes data and uses it to

decrypt. This block gets values from the Encoder block.

IV. EXPERIMENTAL RESULTS

Fig 6: Simulation result showing decoding state

transition and the decoded data set

The simulation result obtained for the current

Huffman coding system implemented. The simulation

result shown above shows that a decoding state

transmission can be observed from the specified
simulation result. A total of 14 decoded cases are

observed for a full set of cipher data. The "Test_Set"

flag shows the decoded data that the encoder has

retrieved from the obtained encrypted data.

Fig 7 : Simulation result showing the final data block

decoded at 83.15μs.

Figure 7 above illustrates the simulation result obtained

for the current Hofmann coding system. From the

simulation result it was observed that a total of 83.15
μm was taken to decrypt the entire set of encoded data.

The "Test_set" flag shows the recovered decoded data

set for the encoded data bits obtained.

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 9

Fig8 : Showing the implementation of Huffman design

on to the targeted FPGA (Xcv300-6bg432) generated

on FPGA Editor Tool.

Figure depicts resource use for the FPGA

target (Xcv300-6bg432) and channeled to the

implemented Huffman coding system. The directive is
implemented using the FPGA editor. It was noted that

about 50% of the resources are used to implement the

current Hofmann coding system at the target FPGA

Fig 9 : Logical Placement of the implemented

Huffman System

Figure 9 shows the implementation of the

logical block in a configurable logical block (CLB)

taken from the Huffman design as shown above,

indicating the FPGA (Xcv300-6bg432) created in the

FPGA Editor tool.

Fig 10 :Floor plan for the Huffman design developed on

FPGA Floor planner tool.

The figure shows the blueprint of the system

implemented for Huffman encoding in the target FPGA.

The floor design provides a list of interworking

networks between each node in a specific programmed

FPGA structure.

Fig 11: Chip view for the Huffman design developed on

FPGA floor Planner tool.

The Figure shows the default chip

configuration for the implemented Huffman encoding

system. The figure shows the custom screws, VCC and

GND pins for the executed design.

V. CONCLUSION

 In this article, a length variable decoder is applied

to decode. From the simulation results obtained, it can

be seen very clearly that the proposed high-speed

decoding system takes approximately 43.75 μs to

decode a 12x32 test data set. The current tree-based

Huffman decoder takes approximately 83.15 μs to

decode the same data set. The implemented high-speed

decoder takes approximately 400 clocks less than the
current system. From these observations, it can be

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 10

concluded that the proposed system could give a higher

decoding rate compared to the current Huffman coding

system.

REFERENCES

[1] Rongshan Weia , Xingang Zhang: " Efficient VLSI Huffman

Encoder Implementation and its Application in High Rate

Serial Data Encoding" , IEICE Electronics Express, October

24, 2017

[2] D. A. Huffman: “A method for the construction of Minimum-

Redundancy Codes,” Proc. I.R.E. #40 (1952) 1098.

[3] P. K. Shukla, et al. “Multiple Subgroup Data Compression

Technique Based on Huffman Coding.” First International

Conference on Computational Intelligence, Communication

Systems and Networks IEEE Computer Society, 2009:397-

402.

[4] W. W. Lu and M. P. Gough: “A fast-adaptive Huffman coding

algorithm,” IEICE Trans. Commun. 41 [4] (1993) 535.

[5] V. K. Prasanna and H. Park: “Area Efficient VLSI

Architectures for Huffman Coding,” IEEE Trans. Circuits and

Syst. (1993) 568.

[6] A. J. Mukherjee, et al. "MARVLE: A VLSI Chip for Variable

Length Encoding and Decoding." IEEE International

Conference on Computer Design on Vlsi in Computer &

Processors IEEE Computer Society, (1992)170.

[7] L. Y. Liu, et al.: “Design and hardware architectures for

dynamic Huffman coding,” IEE Proc. – Comput. Digit. Tech.

142 [6] (1995) 411.

[8] Y. S. Lee, et al.: “A memory-based architecture for very-high-

throughput variable length codec design,” IEEE International

Symposium on Circuits and Systems IEEE, 1997:2096-2099

vol.3.

[9] Babu, K. Ashok, and V. S. Kumar. "Implementation of data

compression using Huffman coding." International Conference

on Methods and MODELS in Computer Science IEEE,

2010:70 - 75.

[10] H. C. Chang, et al.: “A VLSI architecture design of VLC

encoder for high data rate video/image coding,” Circuits and

Syst. 4 (1999) 398.

[11] A. Mukherjee, N. Ranganathan, and M. Bassiouni: “Efficient

VLSI designs for data transformations of tree-based codes,”

IEEE Trans. Circuits and Syst. 38 [3] (1991) 306.

[12] T. Kumaki, et al.: “CAM-based VLSI architecture for Huffman

coding with real-time optimization of the code word table

[image coding example],” IEEE International Symposium on

Circuits and Systems IEEE, (2005)5202 Vol. 5.

[13] Chen, Bei, et al. "Huffman Coding Method Based on Number

Character." International Conference on Machine Learning

and Cybernetics IEEE, 2007:2296-2299.

