
SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 1

Light weight security coding using PRESENT

algorithm for cryptography application

B. Akhil
1
, Md Muzammil Shareef

2
, B. Shalini

3
,Dr.SK.Fairooz

4
, Shaik Mohammed Rafi

5

123UG Scholar , Sreyas Institute of Engineering & Technology, Hyderabad.

4 Dr. SK.Fairooz , Associate Professor , Dept of ECE, Sreyas Institute of Engineering & Technology, Hyderabad.

5 Shaik Mohammed Rafi, Assistant Professor , Dept of ECE, Sreyas Institute of Engineering & Technology,

Hyderabad.

Abstract: In this article, we are developing a security approach using a lightweight algorithm called "PRESNT".

This security encryption is a round update process with 31 iterations and updates. Hardware requirements to
develop multiple iterations of security are resource limiting, and PRESENT has a significant reduction in resource

use. In this work, the focus is on implementing using Xilinx FPGA installation. It is proposed to implement the

PRESENT algorithm using VHDL, timing process testing, coding verification and decoding.

Keywords: Present, PFGA ,VHDL ,Cryptography ,Xilinx.

I. INTRODUCTION

The need to send secure data poses different scenarios

and features in each type of application. In each case,

the two main components that go into design and

determine reliability and durability are hardware and

software. In wireless applications with lower data
transmission (performance) rates, devices tend to be

custom and inexpensive.

At this point, it would be reasonable to ask why we

might want to design a new block cipher. After all, it

has become a "accepted" fact that flow blades may be

more compact. Indeed, with the eSTREAM project

[15], renewed efforts are made to understand the design

of embedded flow codes, and many promising

proposals offer attractive performance features. But we

look at a few reasons why we think about coding

merged blocks. First of all, primitive block encoding is
very versatile and by operating block encoding in

counter mode (for example) we get current encoding.

But second, and perhaps most importantly, the art of

block coding seems to be a little better understood than

stream encoding. For example, although there is a rich

theory supporting the use of linear linear shift offset

records, it is not easy to combine these building blocks

to provide a safe rendering. We suspect that carefully

designed block coding may be a less risky task than

coding the newly designed stream.

Block-based encodings [10, 11] are one of the most

widely used coding systems [12], where you can find
endless algorithms with different properties. Most of

them were implemented in programmable logic devices

[9, 11, 13, 14]. One of these algorithms is AES

(Advanced Encryption Standard), which is a mandatory

reference because it is a block-based encryption

standard [5, 13, 15], as well as many others listed in

many works that compare its characteristics. And scales

[1,11]. Another mandatory reference is the elliptic

curve coding [17, 18] due to its background and the
need to give the project a solid mathematical

foundation. With that in mind and knowing that the

implementation of these algorithms can be done using

different techniques and devices, this research aims to

implement block-based coding that meets a lightweight

philosophy and can be easily achieved in terms of

hardware. . Therefore, the current algorithm [4, 8, 9,] is

chosen to be implemented in devices, then studies will

be conducted to determine the main metrics.

Hardware actions provide quick solutions for

applications where data traffic is higher and require
real-time encryption [14].The organization of paper is

section II Existing work, section III Proposed work,

section IV as Simulation results and section V as

conclusions.

II. Existing Work

 Although work on low-cost encryption is

increasing, the number of documents related to very

light encryption is surprisingly limited. While we focus

on designing the algorithm, we will not refer to work on

low-cost authentication and communication protocols.

Some of the most comprehensive work on integrated
implementation is currently being carried out within the

eSTREAM project. As part of this initiative, new

current blades have been proposed that are suitable for

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 2

efficient deployment of devices. While this work

continues, some promising candidates

Emerging [7,]. While the offsets are complex,

implementation documents indicate that approximately

1300-2600 Gateway equivalent (GE) will be required

for the largest codes embedded in the eSTREAM
project.

For modern blades, the White Paper [15] provides a

very comprehensive analysis of a low-cost AES

application. However, the resources required for this

coding are around 3600 GE, which is an indirect result

of the fact that Rijndael is designed for software

efficiency on 8 and 32 bit processors. The requirements

for implementing the small tea cipher algorithm [13,

14] are unknown, but the initial estimate is that the tea

needs 2100GE and needs at least xtea 2, 2000 GE.

III. PROPOSED WORK
PRESENT is one of the most popular block-based

lightweight encryption algorithms due to its specific

design that has an easy application, both in hardware

and software [4, 8]. The hardware can be implemented

in some of the smallest FPGAs on the market, with

remarkably high performance [9].

A) Structure of the PRESENT algorithm

Figure 1 describes the basic structure of the current

algorithm where its blocks are displayed and how each

of its 31 rounds is executed [4].

Figure 1. Block diagram of Encoding the cipher text

using Present algorithm

Figure 2. Round of the PRESENT algorithm

B) Byte substitution layer: Sbox Layer
 It consists of a non-linear substitution that is

applied independently to each bite of the state matrix

that generates a new bite. This shift consists of

replacing each bite as a result of applying the S-Box

Replacement Table [4,8]. This replacement block

applies to the 16 bites that add up to 64 bits of

information, which is the standard size for cipher

blocks.

Table 1. Substitution box S-box of the PRESENT

algorithm

When designing the cipher algorithm, the highest

entropy is searched for within the data being replaced.
In this case, the word size is 4 bits, since it is a

completely simple algorithm that can be implemented

in a single LUT in FPGA.

C) Bits permutation: p Layer
 It is a mixture layer where bit-by-bit

substitution is performed in a 64-bit information block

where bit i is moved from round to position P (i), and

the substitution order is shown in Table 2.

Table 2. Substitution order

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 3

D) Password expansion function: add Round Key
 PRESENT may contain passwords ranging

from 80 to 128 bits. However, this design and

implementation will only consider 80 bits that will be

stored in a record K of this size and will be numbered
K79, K78 ... K0. In each round, the most important 64

bits of the new calculated password will only be

confused after applying the password expansion

function so that the new password Ki = K79, K78

K0 is determined by rotating the following bit:

𝐾𝑖 =K63 K62K0 =K79 K78K0 (1)

 After performing this spin in the input block,

the following operations must be performed for each

new Ki-generated sub-password:

Rotate bits for the input password:

[K79 K78K0] =[K18 K17K20𝐾19] (2)
 Substitution using S-Box for the nibble from

k78 to k76 of the password:

 [K79 K78 K77K76]=𝑆 [K79 K78 K77K76] (3)

 Add or combine nibbles k19 to k15 of

password with pie counter, by adding finite field GF

(21) or XOR process:

[K19 K18 K17K16𝐾15]=

[K19 K18K17K16𝐾15] ⨁𝑅𝑜𝑢𝑛𝑑 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 (4)
 This function allows the generation of blocks

of useful information as secondary passwords from the

system password K. The first Nk words from this array

contain the password used for encryption, where the

user password is set to the W array while the rest of the

words are generated from these first Nk words [4, 8].

This function takes consecutive bytes of the sequence

derived from the password expansion function and

assigns it to each Ki sub-password, to form blocks of

the same size as the array of status. This means that it

takes Nb*4 bytes for each round, here Nb is 16.

 The password (password expansion) for the
decryption process is created in the same way as for the

decryption process. The difference is in the password

selection function. In the decryption process, the

password list blocks are taken from the final values to

the initial values, which is the user's personal password.

This means that the last sub-password that Ki used to

decode will be the first to decode [4,8]. Therefore, the

encryption process must include all rounds of password

creation to start from this last Ki password, and perform

the reverse process until reaching the original password.

Therefore, the circular counter should be descending
and mix in each round with the previously indicated

sting.

IV. Simulation Results
 Upon completion of implementation, the

devices are measured on each functional block of the

description and compared to the reference, which was

created by the people who uploaded the algorithm. It

has been determined that there has been a significant

improvement in hardware usage.

A 128-bit block of data is considered for the, Designed

system given as

Plain Text : "3243f6a8885a308d313198a2e0370734".

The Initial Key considered is
“2b7e151628aed2a6abf7158809cf4f3c” and the

encrypted output is

“3925841d02dc09fbdc118597196a0b32”. The

encrypted output is a input to the decryption. After the

Whole Process The Obtained Decrypted data is given

as DEC_output:

"3243f6a8885a308d313198a2e0370734". This Shows

That the Data is Recovered exactly as Input

(Plaintext) . The Intermediate Keys ,subbytes output

,shift rows Output and mixcolumn outputs .

Fig 4.1 Simulation Results of Encryption

Figure 4.2 Simulation Results of Decryption

The figure shows the simulation result showing light

security coding using PRESENT security algorithm

with 32 iterations as the update value.

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 4

.

Fig 4.3 Showing the implementation of proposed design

on to the targeted FPGA

Figure depicts resource use for FPGA (Xcv300-

6bg432) and its guidance for light security encryption

implemented using the PRESENT algorithm. The

directive is implemented using the FPGA editor. Note

that the proposed lightweight security coding uses a

relatively smaller resource using the PRESENT

algorithm compared to the secure algorithms in the
target FPGA.

Fig. 4.4 logical placement for the implemented Light

weight security coding

Figure Showing the Logical Block

implementation in a CLB taken from the proposed

design as shown above, targeting (Xcv300-6bg432)

FPGA generated on FPGA Editor tool.

Fig4.5 Floor plan for the proposed design developed on

FPGA Floor planner tool.

Figure shows the floor planning of the

implemented system for Light weight security coding

using PRESENT algorithm onto the targeted FPGA. The

floor planning gives the net list interconnects between each

two node in a given programmed FPGA architecture.

Fig 4.6 chip view for the proposed design developed

on FPGA floor Planner tool.

Figure shows the virtual chip configuration for

the implemented Light weight security coding using
PRESENT algorithm . The figure shows the dedicated

pins, VCC and GND pins for the implemented design.

V. Conclusions
 Reduced hardware use by 30% compared to

previous FPGA applications. Hardware implementation

using the standard VHDL programming language

decreased 26.89% in resource use on Xilinx Spartan 3

FPGA. It is worth noting that the reference application

uses the VHDL standard and can be copied to any third-

party FPGA, thus we expect equivalent reduction on it.

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 - 2584 www.internationaljournalssrg.org Page 5

VI. REFERENCES
[1] J. Attridge, “An overview of hardware security

modules”, SANS Institute, Info Sec Reading

Room, 1 (2002), no. 1, 1-10.

[2] H. A. Alkhzaímí and M. M. Lauridsen,

“Cryptanalysis of the Simon family of block
ciphers”, Technical University of Denmark,

Vol. 1, 2013, no. 1, 1-26.

[3] P. Valla and J. Kaps, “Lightweight

cryptography for FPGAs”, Reconfigurable

Computing and FPGAs, 2009. ReConFig ’09.

International Conference on, 2009, 225- 230.

[4] A. Bogdanov, L. Knudsen, G. Leander, and C.

Paarl, A. Poschmann, M. J. B. Robshaw, Y.

Seurin, C. Vikkelsoe, “PRESENT: An Ultra-

Lightweight Block Cipher, Chapter in

Cryptographic Hardware and Embedded

Systems - CHES 2007, Springer-Verlag Berlin
Heidelberg, 2007, Ch. 5, 450-466.

[5] R. Azuero, E. Jacinto and J. Castano, “A low-

memory implementation of 128 aes for 32 bits

architectures”, in En Congreso Argentino de

Sistemas Embebidos CASE 2012, 2012, 67-73.

[6] M. Kumar and A. Singhal, “Efficient

implementation of advanced encryption

standard (AES) for ARM based platforms”, 1st

International Conference on Recent Advances

in Information Technology (RAIT), 2012, 23-

27.
[7] K. M. Abdellatif, R. Chotin-Avot and H.

Mehrez, “Lightweight and compact solutions

for secure reconfiguration of FPGAs”, 2013

International Conference on Reconfigurable

Computing and FPGAs (ReConFig), 2013, 1-

4.

[8] J. Pospiil and M. Novotny, “Evaluating

cryptanalytical strength of lightweight cipher

PRESENT on reconfigurable hardware”, 15th

Euromicro Conference on Digital System

Design (DSD), 2012, 560-567.

[9] E. Kavun and T. Yalcin, “RAM-based ultra-

lightweight FPGA implementation of

PRESENT”, 2011 International Conference on

Reconfigurable Computing and FPGAs

(ReConFig), 2011, 280-285.

[10] A. Aysu, E. Gulcan and P. Schaumont, “Simon
says: Break area records of block ciphers on

FPGAs," IEEE Embedded Systems Letters, 6

(2014), no. 2, 37-40.

[11] S. Feizi, A. Ahmadi and A. Nemati, “A

hardware implementation of Simon

cryptography algorithm”, 2014 4th

International Conference on Computer and

Knowledge Engineering (ICCKE), 2014, 245-

250.

[12] Shuangqing Wei, J. Wang, R Yin, and J. Yuan,

“Trade-off between security and performance

in block ciphered systems with erroneous
ciphertexts”, 8 (2013), no. 4, 636-645.

[13] C.-P. Fan and J.-K. Hwang, “Implementations

of high throughput sequential and fully

pipelined AES processors on FPGA”,

International Symposium on Intelligent Signal

Processing and Communication Systems,

2007. ISPACS 2007, 353-356.

[14] Chih-Peng Fan and Jun-Kui Hwang,

“Implementations of high throughput

sequential and fully pipelined AES processors

on FPGA”, International Symposium on
Intelligent Signal Processinq and

Comunication Systems ISPACS 2007, 2007,

353-356.

[15] J. J. Tay, M. M. Wong and I. Hijazin,

“Compact and low power AES block cipher

using lightweight key expansion mechanism

and optimal number of s- boxes”, 2014

International Symposium on Intelligent Signal

Processing and Communication Systems

(ISPACS), 2014, 108-114.

