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ABSTRACT 

The communication theory has the issue of 

error correction, and detection has great practical 

importance. Error correction codes permit the 

detection and correction of errors that result from 

noise or other impairments during transmission from 

the transmitter to the receiver. Error correction 

schemes permit error localization and also give the 

possibility of correcting them. Error correction and 

detection schemes find use in implementations of 

reliable data transfer over noisy transmission links, 

data storage media (including dynamic RAM, 

compact discs), and other applications where data 

integrity is important. Error correction avoids 

retransmission of the data, which can degrade system 

performance.  

Hamming code is an error-correction code 

that can be used to detect single and double-bit errors 

and correct single-bit errors that can occur when 

binary data is transmitted from one device into 

another. Hamming codes provide for FEC using a 

"block parity" mechanism that can be inexpensively 

implemented. In general, their use allows the 

correction of single-bit errors and detection of two-bit 

errors per unit data, called a code word.  

 

Keywords: communication, memory, code correction, 

Hamming code 

 

I. INTRODUCTION 

A. Error correction codes 

In computer science and information theory, the issue 

of error correction and detection has great practical 

importance. Error correction codes ( ECCs) permit 

detection and correction of errors that result from 

noise or other impairments during transmission from 

the transmitter to the receiver. Given some data, ECC 

methods enable you to check whether data has been 

corrupted, providing the difference between a 

functional and nonfunctional system. Error correction 

schemes permit error localization and also give the 

possibility of correcting them. Error correction and 

detection schemes find use in implementations of 

reliable data transfer over noisy transmission links, 

data storage media (including dynamic RAM, 

compact discs), and other applications where the 

integrity of data is important. Error correction avoids 

retransmission of the data, which can degrade system 

performance [1] [2] [3]. 

 

a) RAM Devices 

RAM devices do not, as such, support error control 

codes. There are no mandatory requirements for ECC 

support on RAM/DRAM devices. Memory suppliers 

are generally not in favor of implementing a complex 

logic function like ECC onto a RAM die [4] [5]. It is 

costly, inefficient, and leads to an expensive memory 

subsystem. Where enhanced reliability is a 

requirement, the standard technique is to use a more 

comprehensive interface. In the context of SDRAMs, 

DIMMs come in two widths: 64 and 72 bits. The 72-

bit DIMMs are targeted for use with ECCs, because of 

the extra 8 bits. The extra 8 bits are merely extra data 

bits. In reality, you can use any of the bits. An extra 8 

bits of parity on 64 bits of data allows you to employ 

a two-bit error detection. Single bit correcting 

Hamming code.  

 

b) Hamming code 
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Hamming code is an error-correction code that can be 

used to detect single and double-bit errors and correct 

single-bit errors that can occur when binary data is 

transmitted from one device into another. Hamming 

codes provide for FEC using a"block parity" 

mechanism that can be inexpensively implemented. In 

general, their use allows the correction of single-bit 

errors and detection of two-bit errors per unit data, 

called a code word.  

The fundamental principle embraced by Hamming 

codes is parity. Hamming codes, as mentioned before, 

are capable of correcting one error or detecting two 

errors but not capable of doing both simultaneously. 

You may choose to use Hamming codes as an error 

detection mechanism to catch both single and double-

bit errors or correct a single error. This is 

accomplished by using more than one parity bit, each 

computed on a different combination of bits in the 

data [6] [7] [8]. 

This project design and development of (11, 7, 1) 

Hamming code using the VLSI coding method. Here, 

'11' corresponds to the total number of Hamming code 

bits in a transmittable unit comprising data bits and 

redundancy bits, 7 is the number of data bits, while '1' 

denotes the maximum number of error bits in the 

transmittable unit. This code fits nicely into small 

field-programmable gate arrays (FPGAs), complex 

programmable logic devices (CPLDs), and 

application-specific integrated circuits (ASICs). It is 

ideally suited to communication applications that need 

error-control [9][10][11]. 

 

B. Error correction 

The use of simple parity allows the detection of 

single-bit errors in a received message. Correcting 

these errors requires more information since the 

position of the corrupted bit must be identified if it is 

to be corrected. (If a corrupted bit can be detected, it 

can be corrected by simply complementing its value.) 

Correction is not possible with one parity bit since 

any bit error in any position produces precisely the 

same information, i.e., error. If more bits are included 

in a message, and if those bits can be arranged such 

that different corrupted bits produce different error 

results, then corrupted bits could be identified. [12]. 

 

a) Forward error correction (FEC) 

Digital communication systems, particularly those 

used in the military, need to perform accurately and 

reliably even in noise and interference. Among many 

possible ways to achieve this goal, forward error 

correction coding is the most effective and 

economical. Forward error correction coding (also 

called 'channel coding') is a type of digital signal 

processing that improves the data's reliability by 

introducing a known structure into the data sequence 

prior to transmission.  

This structure enables the receiving system to detect 

and possibly correct errors caused by corruption from 

the channel and the receiver. As the name implies, this 

coding technique enables the decoder to correct the 

mistakes without requesting the original information. 

Hamming code is a typical example of forwarding 

error correction.  

In a communication system that employs forward 

error-correction coding, the digital information source 

sends a data sequence to an encoder. The encoder 

inserts redundant (or parity) bits, thereby outputting a 

more extended sequence of code bits, called a ‘code 

word.' These code words can then be transmitted to a 

receiver, which uses a suitable decoder to extract the 

original data sequence. 

 
II. IMPLEMENTATION 

In Hamming's code, p is interpreted as an integer, 

which is 0 if no error occurred, and otherwise is the 1-

origined index of the bit that is in error. Let k be the 

number of information bits, and m the number of 

check bits used. Because the m check bits must check 

themselves as well as the information bits, the value 

of p, interpreted as an integer, must range from 0 to 

which is distinct values. Because m bits can 

distinguish cases, we must have 

2m ≥m+k+1 

Where 

k = Number of “information” or “message” bits. 

m = Number of parity-check bits (“check bits,” for 

short). 

n = Code length, n = m + k. 

u = Information bit vector, u0, u1, … uk–1 

p = Parity check bit vector, p0, p1, …, pm–1. 
s = Syndrome vector, s0, s1, …, sm–1. 

This is known as the Hamming rule. It applies to any 

single error correcting (SEC) binary FEC block code 

in which all of the transmitted bits must be checked. 

A. PARITY BITS 

A parity bit is the extra bit included to make 

the total number of 1’s in the resulting codeword 

either even or odd. For a 7-bit number, there are 7 

possible one-bit errors. 64 different binary 

permutations can be recognized in a string of length 6 

bits. However, another state is needed to represent the 

case when a detectable error has not occurred. The 

number of parity bits, m, needed to detect and correct 

a single-bit error in a data string of length n is given 

by the following equation: 

m = log2n +1 

The ECC block uses the Hamming code with 

an additional parity bit, which can detect single and 

double-bit errors, and correct single-bit errors. The 

extra parity bit applies to all bits after the Hamming 

code check bits have been added. This extra parity bit 

represents the parity of the codeword. If one error 

occurs, the parity changes. If two errors occur, the 

parity stays the same. In general, the number of parity 

bits, m, needed to detect a double-bit error or detect 

and correct a single-bit error in a data string of length 

n, is given by the following equation: 
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m = log2n +2 

B. METHODOLOGY OF OPERATION OF A 

SIMPLE ( 7, 4, 1 ) HAMMING CODE  

The purpose of Hamming codes is to create a set of 

parity bits that overlap such that a single-bit error (the 

bit is logically flipped in value) in a data bit or a 

parity bit can be detected and corrected. While 

multiple overlaps can be created, the general method 

is presented and shown in Table 2.2.1 

Table 2.2.1 Parity Bits cover 

 
Table 2.2.1 describes the parity bits cover, which 

transmitted bits in the encoded-word. For example, p2 

covers bits 2, 3, 6, & 7. It also details which 

transmitted by which parity bit by reading the column. 

For example, d1 is covered by p1 and p2 but not p3. 

  

C. HAMMING MATRICES 

Hamming codes can be computed in linear algebra 

terms through matrices because Hamming codes are 

linear codes. For Hamming codes, two Hamming 

matrices can be defined as the code generator matrix 

G and the parity-check matrix H and shown as  

  

As mentioned above, rows 1, 2, & 3 of G should look 

familiar as they map the data bits to their parity bits.  

1. p1 covers d1, d2, d4 

2.  p2 covers d1, d3, d4 

3.  p3 covers d2, d3, d4 

The remaining rows (4, 5, 6, 7) map the data 

to their position in encoded form, and there is only 1 

in that row, so it is an identical copy. These four rows 

are linearly independent and form the identity matrix 

(by design, not coincidence). Also, as mentioned 

above, the three rows of  H should be familiar. These 

rows are used to compute the syndrome vector at the 

receiving end, and if the syndrome vector is the null 

vector (all zeros), then the received word is error-free; 

if non-zero, then the value indicates which bit has 

been flipped.   

The 4 data bits assembled as a vector P and 

is pre-multiplied by G (i.e., Gp) and taken modulo 2 

to yield the encoded value that is transmitted. The 

original 4 data bits are converted to 7 bits [ hence the 

name "Hamming(7,4)" ] with 3 parity bits added to 

ensure even parity using the above data bit coverage. 

  

D. CHANNEL CODING 

Suppose we have to transmit this data over a noisy 

communications channel. Specifically, a binary 

symmetric channel meaning that error corruption does 

not favor either zero or one (it is symmetric in causing 

errors). Furthermore, all source vectors are assumed to 

be equiprobable. We take the product of G and p, with 

entries modulo 2, to determine the transmitted 

codeword x: 

 
 

 

E. PARITY CHECK 

Any error occurs during transmission, and then the 

received codeword r is identical to the transmitted 

codeword x:  

r = x 

The receiver multiplies H and r to obtain the 

syndrome vector Z, which indicates whether an error 

has occurred and for which codeword bit. Performing 

this multiplication (again, entries modulo 2) :  

 
Since the syndrome z is the null vector, the 

receiver can conclude that no error has occurred. This 

conclusion is based on the observation that when the 

data vector is multiplied by, a change of basis occurs 

into a vector subspace that is the kernel of. As long as 

nothing happens during transmission, it will remain in 

the kernel, and the multiplication will yield the null 

vector.  

 

F. ERROR CORRECTION 

Otherwise, suppose a single bit error has occurred. 

Mathematically, we can write.  

 
modulo 2, where ei is the i

th
 unit vector, that is, a zero 

vector with a 1 in the i
th

, counting from 1. 
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Thus the above expression signifies a single bit error 

in the i
th

 place. 

Now, if we multiply this vector by H: 

 
Since x is the transmitted data, it is without error, and 

as a result, the product of H and x is zero. Thus 

 
Now, H's product with the i

th
 standard basis vector 

picks out that column of H, we know the error occurs 

in the place where this column of H occurs. For 

example, suppose we have introduced a bit error on 

bit #5 

 
Now,

 
which corresponds to the fifth column of H. 

Furthermore, since the general algorithm used was the 

intention in its construction. The syndrome of 101 

corresponds to the binary value of 5, indicating the 

fifth bit was corrupted. Thus, an error has been 

detected in bit 5 and corrected (simply flip or negate 

its value):  

 
This corrected received value indeed now matches the 

transmitted value X from above.  

 

 

G. DECODING 

Once the received vector has been determined to be 

error-free or corrected if an error occurred (assuming 

only zero or one-bit errors are possible), the received 

data needs to be decoded back into the original 4 bits. 

First, define a matrix R :  

 
Then the received value, pr is 

 

and using the running example from above 

 
Which is the same as the transmitted 4 Bit data? 

Consider another message having four data bits (D), 

which is transmitted as a 7-bit codeword by adding 

three error control bits. This would be called a (7,4) 

code. The three bits to be added are three EVEN 

Parity bits (P), where the parity of each is computed 

on different subsets of the message bits, as shown 

below.  

  
 

H. BITS 
The three parity bits (1,2,4) are related to the data bits 

(3,5,6,7), as shown. In this diagram, each overlapping 

circle corresponds to one parity bit and defines the 

four bits contributing to that parity computation. For 

example, data bit 3 contributes 

to parity bits 1 and 2. Each circle (parity bit) 

encompasses four bits, and each circle must have 

EVEN parity. Given four data bits, the three parity 

bits can easily be chosen to ensure this condition.  

It can be observed that changing any one bit 

numbered 1..7 uniquely affects the three parity bits. 

Changing bit 7 affects all three parity bits, while an 

error in bit 6 affects only parity bits 2 and 4, and an 

error in a parity bit affects only that bit. The location 

of any single bit error is determined directly upon 

checking the three parity circles.  

 

   
      Figure 1. Parity Circle 

 

I. Hamming Distance  

The Hamming Code allows error correction because 

the minimum distance between any two valid 

codewords is 3. In the figure below, two valid 

codewords in 8 possible 3-bit codewords are arranged 
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to distance 3 between them. It takes 3-bit changes 

(errors) to move from one valid codeword 000 to the 

other 111. Suppose the codeword 000 is transmitted, 

and a single bit error occurs. In that case, the received 

word must be one of {001,010,100}, any of which is 

easily identified as an invalid codeword, and which 

could only have been 000 before transmission. 

 

J. The Distance Argument 

Looking again at the Venn diagram (above), it can be 

observed that a change in any of the data bits (3,5,6,7) 

necessary changes at least two other bits in the 

codeword. For example, given a valid Hamming 

codeword, a change in bit 3 changes three bits (1,2,3) 

such that the new codeword is a distance (d=3) from 

the initial word. The Hamming code words' clever 

arrangement ensures that this is the case for every 

valid codeword in the set.  

 
       Figure 2: Venn Diagram 

III. BLOCK DIAGRAM 

Encoding is performed by multiplying the original 

message vector by the generator matrix; decoding is 

performed by multiplying the codeword vector by the 

parity check matrix H. All additions are performed 

modulo 2. In hardware, this process equates to 

XORing a particular set of data elements and is 

computationally inexpensive. Suppose an error 

occurs, and one of the parity or data bits change 

during transmission. In that case, the ECC decoder-

corrector gives the bit syndrome of the data bit 

affected by recalculating the parity bits and XORing 

them with the transmitted parity bits (computing the 

syndrome). Then the decoder-corrector allows the 

correction of a single-bit error. ECC detects errors 

through the process of data encoding and decoding. 

For example, when ECC is applied in a transmission 

application, data read from the source are encoded 

before being sent to the receiver. The output (code 

word) from the encoder consists of the raw data 

appended with the number of parity bits. The exact 

number of parity bits appended depends on the 

number of bits in the input data. The generated code 

word is then transmitted to the destination. 

The receiver receives the code word and decodes it. 

Information obtained by the decoder determines 

whether or not an error is detected. The decoder 

detects single-bit and double-bit errors, but can fix 

only single-bit errors in the corrupted data. This kind 

of ECC is called Single Error Correction Double Error 

Detection (SECDED). 

 

 
Figure  3:  Block Diagram  of  Hamming  encoder and 

decoder 

 

This Hamming code design provides two 

modules, HAMMING ENCODER 

and HAMMING DECODER, to implement the ECC 

functionality. The data input to the HAMMING 

ENCODER module is encoded to generate a code 

word that is a combination of the data input and the 

generated parity bits. The generated code word is 

transmitted to the HAMMING DECODER module 

for decoding just before reaching its destination block. 

The HAMMING DECODER module 

generates a syndrome vector to determine if there is 

any error in the received code word. It fixes the data if 

and only if the single-bit error is from the data bits.  

 

A. DESCRIPTION OF THE HAMMING 

ENCODER  

The HAMMING_ENCODER Module takes in and 

encodes the data using the Hamming Coding scheme. 

The Hamming Coding scheme derives the parity bits 

and appends them to the original data to produce the 

output code word. The number of parity bits appended 

depends on the width of the data. Table 2.2 shows the 

number of parity bits appended for different ranges of 

data widths. The Total Bits column represents the 

total number of input data bits and appended parity 

bits. 

B. DESCRIPTION OF THE HAMMING 

DECODER  

The HAMMING_DECODER Module 

decodes the input data (codeword) by extracting the 

parity bits and data bits from the code word. The 

parity bits and data bits are recalculated based on the 

Hamming Coding scheme to generate a syndrome 

code. The generated syndrome code provides the 

status of the data received. The ECC detects single-bit 

and double-bit errors, but only single-bit errors are 

corrected. 

The incoming 7-bit data along with the 4-bit 

parity are XOR'd together to generate the 4-bit 

syndrome (S1 through S4). In order to correct a single 

bit error, a 7-bit correction mask is created. Each bit 

of this mask is generated based on the result of the 
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syndrome from previous stage. When no error is 

detected, all bits of the mask become zero. When a 

single bit error is detected, the corresponding mask 

masks out the rest of the bits except for the error bit. 

The subsequent stage then XORs the mask with the 

original data. As a result, the error bit is reversed (or 

corrected) to the correct state. If a double bit error is 

detected, all mask bits become zero. The error type 

and corresponding correction mask are created during 

the same clock cycle. 

In the data correction stage, the mask is 

XOR'd together with the original incoming data to flip 

the error bit to the correct state, if needed. When there 

are no bit errors or double bit errors, all the mask bits 

are zeros. As a result, the incoming data goes through 

the ECC unit without changing the original data.  

 

IV. RESULTS 

The Coding is implanted and results are verified using 

Verilog HDL coding Technique for the Hamming 

code encoder and decoder. Encoder (11,7,1) converts 

a 7-bit ASCII code into an 11-bit code word while the 

Decode is the (11, 7, 1) Hamming code decoder that 

converts an 11-bit code word back into a 7-bit ASCII 

code after correcting the single bit error, if any. Both 

these programs have been developed in Verilog HDL 

and simulated using Vivado software and code is 

downloaded to FPGA Spartan 3E for further 

implementation.  

 
Figure 4: Simulation Result of Encoder 

 

The figure 4 shows the simulation result of Hamming 

encoder for the original 8 bit input word. No error 

while transmitting the original code bits. 

 
Figure 5: Simulation Result of Decoder 

 

The figure 5 shows the simulation result of Hamming 

Decoder for the Received data and no error is 

occurred while receiving the data.  

Similar way the transmission can be done using 

different bits with errors and without errors and 

further the code is downloaded for FPGA Spartan 3E 

for Validation and efficient transmission purpose. 

 

V. CONCLUSION 

Error Correction Code (ECC) is a method of error 

detection and correction in digital data transmission. 

This project presented design and development of (11, 

7, 1) Hamming code using Verilog hardware 

description language (HDL). Here, ‘11’ corresponded 

to the total number of Hamming code bits in a 

transmittable unit comprising data bits and 

redundancy bits, 7 was the number of data bits while 

‘1’ denoted the maximum number of error bits in the 

transmittable unit. 

In a communication system that employs forward 

error-correction coding, the digital information source 

sends a data sequence to an encoder. The encoder 

inserts redundant (or parity) bits, thereby outputting a 

longer sequence of code bits, called a code word. 

These code words can then be transmitted to a 

receiver, which uses a suitable decoder to extract the 

original data sequence. 

The Verilog HDL code is implemented well into 

small field-programmable gate arrays (FPGAs), 

complex programmable logic devices (CPLDs) and 

application specific integrated circuits (ASICs) and 

therefore is ideally suited to communication 

applications that need error-control. 
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