
SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 29

A VLSI IMPLEMENTATION OF

HAMMING CODE ALGORITHM USING

FPGA ARCHITECTURE
Vijayakumara Y M

#1
, Byregowda B K

#2
, Pradeep Kumar S

#2
, Raghav S

#2
, Nataraja M

#2
, Dr. S N

Sheshappa
#2

#1
 Assistant Professor, Department of Information Science and Engineering, Sir MVIT, VTU University

#2
Assistant Professor, Department of Information Science and Engineering, Sir MVIT, VTU University

#2
Assistant Professor, Department of Electronics and Telecommunication, Sir MVIT, VTU University

#2
Associate Professor, Department of Information Science and Engineering, Sir MVIT, VTU University

#2
Assistant Professor, Department of Mechanical Engineering, Sir MVIT, VTU University

#2
Associate Professor, Department of Information Science and Engineering, Sir MVIT, VTU University

Department of ISE, Sir MVIT, Bangalore – 562157, Karnataka, India

Department of ISE, Sir MVIT, Bangalore – 562157, Karnataka, India

Department of ETE, Sir MVIT, Bangalore – 562157, Karnataka, India

Department of ISE, Sir MVIT, Bangalore – 562157, Karnataka, India

Department of ME, Sir MVIT, Bangalore – 562157, Karnataka, India

Department of ISE, Sir MVIT, Bangalore – 562157, Karnataka, India

ABSTRACT

The communication theory has the issue of

error correction, and detection has great practical

importance. Error correction codes permit the

detection and correction of errors that result from

noise or other impairments during transmission from

the transmitter to the receiver. Error correction

schemes permit error localization and also give the

possibility of correcting them. Error correction and

detection schemes find use in implementations of

reliable data transfer over noisy transmission links,

data storage media (including dynamic RAM,

compact discs), and other applications where data

integrity is important. Error correction avoids

retransmission of the data, which can degrade system

performance.

Hamming code is an error-correction code

that can be used to detect single and double-bit errors

and correct single-bit errors that can occur when

binary data is transmitted from one device into

another. Hamming codes provide for FEC using a

"block parity" mechanism that can be inexpensively

implemented. In general, their use allows the

correction of single-bit errors and detection of two-bit

errors per unit data, called a code word.

Keywords: communication, memory, code correction,

Hamming code

I. INTRODUCTION

A. Error correction codes

In computer science and information theory, the issue

of error correction and detection has great practical

importance. Error correction codes (ECCs) permit

detection and correction of errors that result from

noise or other impairments during transmission from

the transmitter to the receiver. Given some data, ECC

methods enable you to check whether data has been

corrupted, providing the difference between a

functional and nonfunctional system. Error correction

schemes permit error localization and also give the

possibility of correcting them. Error correction and

detection schemes find use in implementations of

reliable data transfer over noisy transmission links,

data storage media (including dynamic RAM,

compact discs), and other applications where the

integrity of data is important. Error correction avoids

retransmission of the data, which can degrade system

performance [1] [2] [3].

a) RAM Devices

RAM devices do not, as such, support error control

codes. There are no mandatory requirements for ECC

support on RAM/DRAM devices. Memory suppliers

are generally not in favor of implementing a complex

logic function like ECC onto a RAM die [4] [5]. It is

costly, inefficient, and leads to an expensive memory

subsystem. Where enhanced reliability is a

requirement, the standard technique is to use a more

comprehensive interface. In the context of SDRAMs,

DIMMs come in two widths: 64 and 72 bits. The 72-

bit DIMMs are targeted for use with ECCs, because of

the extra 8 bits. The extra 8 bits are merely extra data

bits. In reality, you can use any of the bits. An extra 8

bits of parity on 64 bits of data allows you to employ

a two-bit error detection. Single bit correcting

Hamming code.

b) Hamming code

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 30

Hamming code is an error-correction code that can be

used to detect single and double-bit errors and correct

single-bit errors that can occur when binary data is

transmitted from one device into another. Hamming

codes provide for FEC using a"block parity"

mechanism that can be inexpensively implemented. In

general, their use allows the correction of single-bit

errors and detection of two-bit errors per unit data,

called a code word.

The fundamental principle embraced by Hamming

codes is parity. Hamming codes, as mentioned before,

are capable of correcting one error or detecting two

errors but not capable of doing both simultaneously.

You may choose to use Hamming codes as an error

detection mechanism to catch both single and double-

bit errors or correct a single error. This is

accomplished by using more than one parity bit, each

computed on a different combination of bits in the

data [6] [7] [8].

This project design and development of (11, 7, 1)

Hamming code using the VLSI coding method. Here,

'11' corresponds to the total number of Hamming code

bits in a transmittable unit comprising data bits and

redundancy bits, 7 is the number of data bits, while '1'

denotes the maximum number of error bits in the

transmittable unit. This code fits nicely into small

field-programmable gate arrays (FPGAs), complex

programmable logic devices (CPLDs), and

application-specific integrated circuits (ASICs). It is

ideally suited to communication applications that need

error-control [9][10][11].

B. Error correction

The use of simple parity allows the detection of

single-bit errors in a received message. Correcting

these errors requires more information since the

position of the corrupted bit must be identified if it is

to be corrected. (If a corrupted bit can be detected, it

can be corrected by simply complementing its value.)

Correction is not possible with one parity bit since

any bit error in any position produces precisely the

same information, i.e., error. If more bits are included

in a message, and if those bits can be arranged such

that different corrupted bits produce different error

results, then corrupted bits could be identified. [12].

a) Forward error correction (FEC)

Digital communication systems, particularly those

used in the military, need to perform accurately and

reliably even in noise and interference. Among many

possible ways to achieve this goal, forward error

correction coding is the most effective and

economical. Forward error correction coding (also

called 'channel coding') is a type of digital signal

processing that improves the data's reliability by

introducing a known structure into the data sequence

prior to transmission.

This structure enables the receiving system to detect

and possibly correct errors caused by corruption from

the channel and the receiver. As the name implies, this

coding technique enables the decoder to correct the

mistakes without requesting the original information.

Hamming code is a typical example of forwarding

error correction.

In a communication system that employs forward

error-correction coding, the digital information source

sends a data sequence to an encoder. The encoder

inserts redundant (or parity) bits, thereby outputting a

more extended sequence of code bits, called a ‘code

word.' These code words can then be transmitted to a

receiver, which uses a suitable decoder to extract the

original data sequence.

II. IMPLEMENTATION

In Hamming's code, p is interpreted as an integer,

which is 0 if no error occurred, and otherwise is the 1-

origined index of the bit that is in error. Let k be the

number of information bits, and m the number of

check bits used. Because the m check bits must check

themselves as well as the information bits, the value

of p, interpreted as an integer, must range from 0 to

which is distinct values. Because m bits can

distinguish cases, we must have

2m ≥m+k+1

Where

k = Number of “information” or “message” bits.

m = Number of parity-check bits (“check bits,” for

short).

n = Code length, n = m + k.

u = Information bit vector, u0, u1, … uk–1

p = Parity check bit vector, p0, p1, …, pm–1.
s = Syndrome vector, s0, s1, …, sm–1.

This is known as the Hamming rule. It applies to any

single error correcting (SEC) binary FEC block code

in which all of the transmitted bits must be checked.

A. PARITY BITS

A parity bit is the extra bit included to make

the total number of 1’s in the resulting codeword

either even or odd. For a 7-bit number, there are 7

possible one-bit errors. 64 different binary

permutations can be recognized in a string of length 6

bits. However, another state is needed to represent the

case when a detectable error has not occurred. The

number of parity bits, m, needed to detect and correct

a single-bit error in a data string of length n is given

by the following equation:

m = log2n +1

The ECC block uses the Hamming code with

an additional parity bit, which can detect single and

double-bit errors, and correct single-bit errors. The

extra parity bit applies to all bits after the Hamming

code check bits have been added. This extra parity bit

represents the parity of the codeword. If one error

occurs, the parity changes. If two errors occur, the

parity stays the same. In general, the number of parity

bits, m, needed to detect a double-bit error or detect

and correct a single-bit error in a data string of length

n, is given by the following equation:

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 31

m = log2n +2

B. METHODOLOGY OF OPERATION OF A

SIMPLE (7, 4, 1) HAMMING CODE

The purpose of Hamming codes is to create a set of

parity bits that overlap such that a single-bit error (the

bit is logically flipped in value) in a data bit or a

parity bit can be detected and corrected. While

multiple overlaps can be created, the general method

is presented and shown in Table 2.2.1

Table 2.2.1 Parity Bits cover

Table 2.2.1 describes the parity bits cover, which

transmitted bits in the encoded-word. For example, p2

covers bits 2, 3, 6, & 7. It also details which

transmitted by which parity bit by reading the column.

For example, d1 is covered by p1 and p2 but not p3.

C. HAMMING MATRICES

Hamming codes can be computed in linear algebra

terms through matrices because Hamming codes are

linear codes. For Hamming codes, two Hamming

matrices can be defined as the code generator matrix

G and the parity-check matrix H and shown as

As mentioned above, rows 1, 2, & 3 of G should look

familiar as they map the data bits to their parity bits.

1. p1 covers d1, d2, d4

2. p2 covers d1, d3, d4

3. p3 covers d2, d3, d4

The remaining rows (4, 5, 6, 7) map the data

to their position in encoded form, and there is only 1

in that row, so it is an identical copy. These four rows

are linearly independent and form the identity matrix

(by design, not coincidence). Also, as mentioned

above, the three rows of H should be familiar. These

rows are used to compute the syndrome vector at the

receiving end, and if the syndrome vector is the null

vector (all zeros), then the received word is error-free;

if non-zero, then the value indicates which bit has

been flipped.

The 4 data bits assembled as a vector P and

is pre-multiplied by G (i.e., Gp) and taken modulo 2

to yield the encoded value that is transmitted. The

original 4 data bits are converted to 7 bits [hence the

name "Hamming(7,4)"] with 3 parity bits added to

ensure even parity using the above data bit coverage.

D. CHANNEL CODING

Suppose we have to transmit this data over a noisy

communications channel. Specifically, a binary

symmetric channel meaning that error corruption does

not favor either zero or one (it is symmetric in causing

errors). Furthermore, all source vectors are assumed to

be equiprobable. We take the product of G and p, with

entries modulo 2, to determine the transmitted

codeword x:

E. PARITY CHECK

Any error occurs during transmission, and then the

received codeword r is identical to the transmitted

codeword x:

r = x

The receiver multiplies H and r to obtain the

syndrome vector Z, which indicates whether an error

has occurred and for which codeword bit. Performing

this multiplication (again, entries modulo 2) :

Since the syndrome z is the null vector, the

receiver can conclude that no error has occurred. This

conclusion is based on the observation that when the

data vector is multiplied by, a change of basis occurs

into a vector subspace that is the kernel of. As long as

nothing happens during transmission, it will remain in

the kernel, and the multiplication will yield the null

vector.

F. ERROR CORRECTION

Otherwise, suppose a single bit error has occurred.

Mathematically, we can write.

modulo 2, where ei is the i

th
 unit vector, that is, a zero

vector with a 1 in the i
th

, counting from 1.

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 32

Thus the above expression signifies a single bit error

in the i
th

 place.

Now, if we multiply this vector by H:

Since x is the transmitted data, it is without error, and

as a result, the product of H and x is zero. Thus

Now, H's product with the i

th
 standard basis vector

picks out that column of H, we know the error occurs

in the place where this column of H occurs. For

example, suppose we have introduced a bit error on

bit #5

Now,

which corresponds to the fifth column of H.

Furthermore, since the general algorithm used was the

intention in its construction. The syndrome of 101

corresponds to the binary value of 5, indicating the

fifth bit was corrupted. Thus, an error has been

detected in bit 5 and corrected (simply flip or negate

its value):

This corrected received value indeed now matches the

transmitted value X from above.

G. DECODING

Once the received vector has been determined to be

error-free or corrected if an error occurred (assuming

only zero or one-bit errors are possible), the received

data needs to be decoded back into the original 4 bits.

First, define a matrix R :

Then the received value, pr is

and using the running example from above

Which is the same as the transmitted 4 Bit data?

Consider another message having four data bits (D),

which is transmitted as a 7-bit codeword by adding

three error control bits. This would be called a (7,4)

code. The three bits to be added are three EVEN

Parity bits (P), where the parity of each is computed

on different subsets of the message bits, as shown

below.

H. BITS
The three parity bits (1,2,4) are related to the data bits

(3,5,6,7), as shown. In this diagram, each overlapping

circle corresponds to one parity bit and defines the

four bits contributing to that parity computation. For

example, data bit 3 contributes

to parity bits 1 and 2. Each circle (parity bit)

encompasses four bits, and each circle must have

EVEN parity. Given four data bits, the three parity

bits can easily be chosen to ensure this condition.

It can be observed that changing any one bit

numbered 1..7 uniquely affects the three parity bits.

Changing bit 7 affects all three parity bits, while an

error in bit 6 affects only parity bits 2 and 4, and an

error in a parity bit affects only that bit. The location

of any single bit error is determined directly upon

checking the three parity circles.

 Figure 1. Parity Circle

I. Hamming Distance

The Hamming Code allows error correction because

the minimum distance between any two valid

codewords is 3. In the figure below, two valid

codewords in 8 possible 3-bit codewords are arranged

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 33

to distance 3 between them. It takes 3-bit changes

(errors) to move from one valid codeword 000 to the

other 111. Suppose the codeword 000 is transmitted,

and a single bit error occurs. In that case, the received

word must be one of {001,010,100}, any of which is

easily identified as an invalid codeword, and which

could only have been 000 before transmission.

J. The Distance Argument

Looking again at the Venn diagram (above), it can be

observed that a change in any of the data bits (3,5,6,7)

necessary changes at least two other bits in the

codeword. For example, given a valid Hamming

codeword, a change in bit 3 changes three bits (1,2,3)

such that the new codeword is a distance (d=3) from

the initial word. The Hamming code words' clever

arrangement ensures that this is the case for every

valid codeword in the set.

 Figure 2: Venn Diagram

III. BLOCK DIAGRAM

Encoding is performed by multiplying the original

message vector by the generator matrix; decoding is

performed by multiplying the codeword vector by the

parity check matrix H. All additions are performed

modulo 2. In hardware, this process equates to

XORing a particular set of data elements and is

computationally inexpensive. Suppose an error

occurs, and one of the parity or data bits change

during transmission. In that case, the ECC decoder-

corrector gives the bit syndrome of the data bit

affected by recalculating the parity bits and XORing

them with the transmitted parity bits (computing the

syndrome). Then the decoder-corrector allows the

correction of a single-bit error. ECC detects errors

through the process of data encoding and decoding.

For example, when ECC is applied in a transmission

application, data read from the source are encoded

before being sent to the receiver. The output (code

word) from the encoder consists of the raw data

appended with the number of parity bits. The exact

number of parity bits appended depends on the

number of bits in the input data. The generated code

word is then transmitted to the destination.

The receiver receives the code word and decodes it.

Information obtained by the decoder determines

whether or not an error is detected. The decoder

detects single-bit and double-bit errors, but can fix

only single-bit errors in the corrupted data. This kind

of ECC is called Single Error Correction Double Error

Detection (SECDED).

Figure 3: Block Diagram of Hamming encoder and

decoder

This Hamming code design provides two

modules, HAMMING ENCODER

and HAMMING DECODER, to implement the ECC

functionality. The data input to the HAMMING

ENCODER module is encoded to generate a code

word that is a combination of the data input and the

generated parity bits. The generated code word is

transmitted to the HAMMING DECODER module

for decoding just before reaching its destination block.

The HAMMING DECODER module

generates a syndrome vector to determine if there is

any error in the received code word. It fixes the data if

and only if the single-bit error is from the data bits.

A. DESCRIPTION OF THE HAMMING

ENCODER

The HAMMING_ENCODER Module takes in and

encodes the data using the Hamming Coding scheme.

The Hamming Coding scheme derives the parity bits

and appends them to the original data to produce the

output code word. The number of parity bits appended

depends on the width of the data. Table 2.2 shows the

number of parity bits appended for different ranges of

data widths. The Total Bits column represents the

total number of input data bits and appended parity

bits.

B. DESCRIPTION OF THE HAMMING

DECODER

The HAMMING_DECODER Module

decodes the input data (codeword) by extracting the

parity bits and data bits from the code word. The

parity bits and data bits are recalculated based on the

Hamming Coding scheme to generate a syndrome

code. The generated syndrome code provides the

status of the data received. The ECC detects single-bit

and double-bit errors, but only single-bit errors are

corrected.

The incoming 7-bit data along with the 4-bit

parity are XOR'd together to generate the 4-bit

syndrome (S1 through S4). In order to correct a single

bit error, a 7-bit correction mask is created. Each bit

of this mask is generated based on the result of the

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 34

syndrome from previous stage. When no error is

detected, all bits of the mask become zero. When a

single bit error is detected, the corresponding mask

masks out the rest of the bits except for the error bit.

The subsequent stage then XORs the mask with the

original data. As a result, the error bit is reversed (or

corrected) to the correct state. If a double bit error is

detected, all mask bits become zero. The error type

and corresponding correction mask are created during

the same clock cycle.

In the data correction stage, the mask is

XOR'd together with the original incoming data to flip

the error bit to the correct state, if needed. When there

are no bit errors or double bit errors, all the mask bits

are zeros. As a result, the incoming data goes through

the ECC unit without changing the original data.

IV. RESULTS

The Coding is implanted and results are verified using

Verilog HDL coding Technique for the Hamming

code encoder and decoder. Encoder (11,7,1) converts

a 7-bit ASCII code into an 11-bit code word while the

Decode is the (11, 7, 1) Hamming code decoder that

converts an 11-bit code word back into a 7-bit ASCII

code after correcting the single bit error, if any. Both

these programs have been developed in Verilog HDL

and simulated using Vivado software and code is

downloaded to FPGA Spartan 3E for further

implementation.

Figure 4: Simulation Result of Encoder

The figure 4 shows the simulation result of Hamming

encoder for the original 8 bit input word. No error

while transmitting the original code bits.

Figure 5: Simulation Result of Decoder

The figure 5 shows the simulation result of Hamming

Decoder for the Received data and no error is

occurred while receiving the data.

Similar way the transmission can be done using

different bits with errors and without errors and

further the code is downloaded for FPGA Spartan 3E

for Validation and efficient transmission purpose.

V. CONCLUSION

Error Correction Code (ECC) is a method of error

detection and correction in digital data transmission.

This project presented design and development of (11,

7, 1) Hamming code using Verilog hardware

description language (HDL). Here, ‘11’ corresponded

to the total number of Hamming code bits in a

transmittable unit comprising data bits and

redundancy bits, 7 was the number of data bits while

‘1’ denoted the maximum number of error bits in the

transmittable unit.

In a communication system that employs forward

error-correction coding, the digital information source

sends a data sequence to an encoder. The encoder

inserts redundant (or parity) bits, thereby outputting a

longer sequence of code bits, called a code word.

These code words can then be transmitted to a

receiver, which uses a suitable decoder to extract the

original data sequence.

The Verilog HDL code is implemented well into

small field-programmable gate arrays (FPGAs),

complex programmable logic devices (CPLDs) and

application specific integrated circuits (ASICs) and

therefore is ideally suited to communication

applications that need error-control.

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 35

Acknowledgments

 We would like to thank Mr Pradeep kumar S, Dr

Seshappa and Mr Bhyregowda B K for continuous

support and financial assistance for developing a

project.

VI. REFERENCES
[1] E. Khan , S. Lehmann ; H. Gunji , M. Ghanbari, “Iterative

error detection and correction of coded video for wireless

networks” IEEE Transactions on Circuits and Systems for
Video Technology Year: 2004, Volume: 14, Issue: 12 .

[2] P. Perry ; Mingche Li ; Mao-Chao Lin ; Zhen Zhang,

“Runlength limited codes for single error-detection and
single error-correction with mixed type errors”, IEEE

Transactions on Information Theory Year: 1998, Volume:

44, Issue: 4.

[3] Ashwini kumari P, , Byregowda B K, Vijayakumara Y M,

Ravikumar H R , Dr S N Sheshappa, Pradeep kumar S"A

Hardware Implementation Of Hazardous Gases Detection
Using Robot" International Journal of Engineering Trends

and Technology 67.7 (2019): 24-30.

[4] Liwen Liu, YiqiZhuang, LiZhang, HualianTang,
SiwanDong, “Proactive correction coset decoding scheme

based on SEC-DED code for multibit asymmetric errors in

STT-MRAM”, Elsevier, Microelectronics Journal Volume
82, December 2018, Pages 92-100

[5] C. W. Slayman, "Cache and memory error detection,

correction, and reduction techniques for terrestrial servers
and workstations," in IEEE Transactions on Device and

Materials Reliability, vol. 5, no. 3, pp. 397-404, Sept. 2005,

doi: 10.1109/TDMR.2005.856487.

[6] S. S. Sarnin, N. F. Nairn and W. N. S. W. Muhamad,

"Performance evaluation of phase shift keying modulation

technique using BCH code, Cyclic code and Hamming code
through AWGN channel model in communication

system," The 3rd International Conference on Information

Sciences and Interaction Sciences, Chengdu, 2010, pp. 60-

65, doi: 10.1109/ICICIS.2010.5534715.

[7] J. Metzner, "Correction of Two (or Often More) Vector

Symbol Errors With the Outer Structure of a Hamming
Single Error Correcting Code," in IEEE Communications

Letters, vol. 18, no. 12, pp. 2069-2072, Dec. 2014, doi:

10.1109/LCOMM.2014.2363665.

[8] S. G and R. N, "VLSI design of Parity check Code with

Hamming Code for Error Detection and Correction," 2019

International Conference on Intelligent Computing and
Control Systems (ICCS), Madurai, India, 2019, pp. 15-20,

doi: 10.1109/ICCS45141.2019.9065790.

[9] Anlei Wang and N. Kaabouch, "FPGA based design of a

novel enhanced error detection and correction

technique," 2008 IEEE International Conference on
Electro/Information Technology, Ames, IA, 2008, pp. 25-29,

doi: 10.1109/EIT.2008.4554262.

[10] J. Singh and J. Singh, "A Comparative Study of Error
Detection and Correction Coding Techniques," 2012 Second

International Conference on Advanced Computing &

Communication Technologies, Rohtak, Haryana, 2012, pp.

187-189, doi: 10.1109/ACCT.2012.2.

[11] T. Anwar, P. K. Lala and J. P. Parkerson, "A novel FPGA

Architecture with Built-in Error Correction," 2007 IEEE
Instrumentation & Measurement Technology Conference

IMTC 2007, Warsaw, 2007, pp. 1-4, doi:

10.1109/IMTC.2007.379193.

[12] S. Muppalla and K. R. Vaddempudi, "A novel VHDL

implementation of UART with single error correction and

double error detection capability," 2015 International
Conference on Signal Processing and Communication

Engineering Systems, Guntur, 2015, pp. 152-156, doi:

10.1109/SPACES.2015.7058236.

[13] R.Divyasharon and Dr.D.Sridharan, "Implementation of low

power wireless sensor node with fault tolerance mechanism"

SSRG International Journal of Electronics and
Communication Engineering 3.4 (2016): 1-5.

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org
https://ieeexplore.ieee.org/author/37269049600
https://ieeexplore.ieee.org/author/37269037900
https://ieeexplore.ieee.org/author/37269036100
https://ieeexplore.ieee.org/author/37269041200
https://ieeexplore.ieee.org/document/1355952/
https://ieeexplore.ieee.org/document/1355952/
https://ieeexplore.ieee.org/document/1355952/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=29775
https://ieeexplore.ieee.org/author/37287877400
https://ieeexplore.ieee.org/author/38128160300
https://ieeexplore.ieee.org/author/37366138800
https://ieeexplore.ieee.org/author/38128891900
https://ieeexplore.ieee.org/document/681335/
https://ieeexplore.ieee.org/document/681335/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=14976
https://www.sciencedirect.com/science/article/abs/pii/S0026269218304385#!
https://www.sciencedirect.com/science/article/abs/pii/S0026269218304385#!
https://www.sciencedirect.com/science/article/abs/pii/S0026269218304385#!
https://www.sciencedirect.com/science/article/abs/pii/S0026269218304385#!
https://www.sciencedirect.com/science/article/abs/pii/S0026269218304385#!
https://www.sciencedirect.com/science/journal/00262692
https://www.sciencedirect.com/science/journal/00262692/82/supp/C
https://www.sciencedirect.com/science/journal/00262692/82/supp/C

