
SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 36

FPGA Implementation of Optimized BIST

Architecture for Testing of Logic Circuits
Ramya R

#1
, Madhura R

#2

1
Postgraduate Student, Department of Electronics and Communications Engineering, Dayananda Sagar

College of Engineering, Bangalore, Karnataka, India
2
Assistant Professor, Department of Electronics and Communication Engineering, Dayananda Sagar College of

Engineering, Bangalore, Karnataka, India

Abstract

Verification is used at each stage of VLSI

design to ensure that the IC is working correctly, but

most of the verification is done either at design time

or at the time of designing or fabricating the IC.

Along with verification at the design level, it is

necessary to verify the operation of the chip after

design and fabrication. Normally in such cases, it is

done by placing it in the IC testing kit, which inserts

all input combinations with comparing all output

combinations to compare the correctness of the chip.

But the cost of such kits is high and not easily

available. As a result, it is essential to insert some

extra logic inside the chip, which verifies the

correctness of the chip. But it increases the area and

power requirement of the chip. In this project, we

have designed an efficient architecture of BIST to

check the correctness of the design, which is

simulated using the Xilinx ISE 14.5 design suite and

VIVADO 2018.3 student version and is implemented

on FPGA.

Keywords —Verification, VLSI design, IC testing

kit, Efficient architecture, Xilinx FPGA

I. INTRODUCTION

As integrated chips are becoming larger and

more complicated nowadays, exhaustive simulation is

a very time-consuming process, and non-exhaustive

simulation is done for a selected set of input patterns

for which certain faults maybe failed to be detected.

Formal verification is a solution to the above-stated

problem. It is a technique that utilizes static analysis

based on some mathematical transformations to find

the correctness of hardware or software in alternate to

dynamic verification techniques. It is very fast, and it

takes less effort, and its performance majorly depends

on the type of logic on which it is placed and the way

it is applied.

In this technique, we deal with an abstract

model of the system. To come up with the abstract

model, we need formal methods as an abstract model

of the system is easier to understand than the whole

system. Here, we need a system model and

specification/property to build an abstract model in

which we can show that certain property holds good.

In this technique, property that needs to be verified is

decided first, and then the system model is designed

and finally checks whether the property holds good

when applied to the system model.

Formal verification includes a wide range of

technologies, among them are Theorem proving,

Equivalence checking, and Model checking. Theorem

proving uses some axioms or rules to prove the

correctness, whereas Equivalence checking always

needs two designs, and it can be applied at or across

various levels. This technology proves that for all

possible input stimuli, their corresponding outputs are

functionally equivalent.

Model checking is used for hardware

verification. In this technology, predefined data are

sent for which equivalent model is generated by the

circuit under test, and then it is compared with the

correct signature to find if there is any hardware fault

in the design. BIST is similar to this technology. It is

a design for testability method for testing the VLSI

chips. The concept of BIST is to design a circuit to

test Its own self (self-testing) and find whether the

circuit has some fault or not. This technique makes

electrical testing of a chip easier, faster, more

efficient, and less expensive.

BIST is classified in a number of ways, but

two major classifications are Logic BIST (LBIST)

and Memory BIST (MBIST). MBIST is used for

testing memory cores of the device, and LBIST is an

inbuilt circuitry that will test the structural integrity of

the chip after it is being manufactured. It not only

decreases the cost of testing but also allows rapid

testing of the circuit. We have proposed an optimized

LBIST architecture for testing logic circuits, which

reduces the overall hardware complexity of the

circuit. The architecture consists of three major

blocks, which are the Test Pattern Generator (TPG),

Circuit Under Test (CUT), and Output Response

Analyser (ORA). Standard 8-bit LFSR is designed as

TPG for generating the pseudo-random test patterns,

including the all-zero state. The generated test

patterns are sent as input to the circuit under test. We

have designed a 4*4 multiplier and used it as a circuit

under test to verify if there are any hardware faults. In

ORA, we have designed an 8-bit MISR as a signature

finder, and we have designed a comparator to

compare the signature value and output value of

MISR. Based on this comparison result, we say a

circuit is faulty or fault-free. Simulation and FPGA

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 37

implementation of the optimized BIST architecture is

explained in detail.

II. REFERENCE STUDY

The BIST provides an automated test

procedure to detect faults in memory cores and logic

circuits. [1] describes a model of BIST that can be

used as Memory BIST (MBIST) and Logic BIST

(LBIST). By modifying the LFSR to a structure

called Complete Linear Feedback Shift Register

(CLFSR) they are able to generate both address

sequence and test data with reduced hardware

complexity. With CLFSR, Conventional methods that

utilize two circuits for generating addressing

sequence and test patterns are replaced by a single

circuit, reducing the area overhead of the BIST.

Xilinx ISE 14.2 tool is used to verify the functionality

of CLFSR and BIST structure [1]. Here, they have

implemented 8,16 and 32-bit LFSR on FPGA by

using VHDL to study the performance and analysis

of the behavior of randomness. The comparative

study of 8,16, and 32- bit LFSR on FPGA is done to

understand the chip verification [2].

In [3], test power reducing techniques are

used using BIST for low power circuits as BIST is an

alternate solution for the rising cost of external

electrical testing and increasing complexity of the

circuit. Here test patterns are generated using LFSR

as it is more suitable for BIST architecture. The BIST

technique with four LFSR based TPG is incorporated

into Universal Asynchronous Receiver Transmitter

(UART) design before the overall design is

synthesized. Here they have implemented UART

with the BIST technique using different LFSR

techniques and compared these techniques in

SPARTAN3 XC3S200-4FT256FPGA device. LBIST

is a DFT technique in which part of the circuit on a

chipboard/system is used to test itself logically [4].

Here BIST is used for the multiplier. Conventional

TPG is based on normal polynomials, so test patterns

may be repetitive, limiting the test coverage, but here

they have designed a primitive polynomial based on

the Galois field, which generates non-repetitive test

vectors so that LBIST will cover a wide range of

faults. VHDL implementation of logic BIST is done

using Xilinx's 8.2i, and simulation is done on

ModelSim 6.3F [4].

In pseudo-random BIST circuits, the test

vectors will be generated by Linear Feedback Shift

Register. This type of TPG will generate some

repeated test patterns, which will increase the test

power. [5] presents an approach called Low Power-

Bit Complements Test Vector Generation (LP-

BCTVG) technique with bipartite (half fixed) and bit

insertion techniques. In order to reduce the test

power, this technique inserts appropriate intermediate

vectors between adjacent test vectors generated by

LFSR. By inverting the output bits of LP-BCTVG,

we can reduce the bulkiness of the TPG engine by

half. This reduces the overall power consumption

with better fault coverage. This technique has been

tested on several ISCAS'85, ISCAS'89, and

ISCAS'99 benchmark circuits [5]. In this paper, the

performance of the test achieved with BIST

implementation has proven adequate to offset the

disincentive of the overhead of hardware created by

an additional BIST circuit. This provides a short test

time compared to externally applied test and permits

the use of less test cost equipment during the

production process. This is designed and

implemented using Xilinx ISE 14.2 [6].

Here, UART with BIST capability is

implemented via VHDL by using FPGA technology.

This UART's architecture with BIST will test the

UART for its correctness. Blocks of this architecture

are coded in VHDL. This is functionally verified by

simulating the code in ModelSim from Mentor

Graphics. Synthesis is performed using the Xilinx

ISE tool and implemented on SPARTAN 3E FPGA

[7]. In this paper, the general architecture of the

array, column, Wallace tree, and booth multipliers are

designed. The verification of multipliers is done by

using BIST. BIST will check the four multipliers by

using input patterns obtained from TPG. Later they

verify whether they are faulty or fault-free by using

it. The logic design of these multipliers need not be

verified further by any other means. The advantage of

this type of verification is it does not require any

third-party verification. The simulation is carried out

using ModelSim EDA tool 10.0c and synthesis on

Xilinx ISE 14.4 design suite [8].

Reference [9] focuses on the implementation

of configurable LFSR in VHDL and checks its

performance on the basis of logic, speed, and

memory requirement in FPGA. The device used for

implementing the configurable linear feedback shift

register is Xilinx Virtex-4 FPGA. For simulation and

synthesis, they have used the Xilinx ISE 9.2i tool. In

paper [10], they have explained how the BIST logic

controller can be restarted for a combinational circuit

logic using VHDL. It permits to suspend the

generation of the signature at any desired point. This

controller will comprise hold logic and a signature

generation element where hold logic will be

implemented such as an external signal (HOLD)

which can temporarily to suspend signature

generation in the signature generation element at a

particular time during BIST session [10]following is

a breakdown of the internal design details of the

hardware simulation

III. METHODOLOGY

A. Basic BIST architecture

BIST's basic structure consists of two

functional blocks, Test Pattern Generator and

Response Analyser operated by a test controller,

as shown in Fig1. Testing time and complexity of

the test circuits are two significant considerations

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 38

that must be taken into account during the

development of the test rig.

Fig1: Generic BIST Architecture

A TPG is to generate the test vectors

required for the test process. ORA analyses the CUT

responses to these test vectors. Circuit Under test can

be a logic circuit or a memory core. RA does its

function with the need of a compacting signal circuit

and a compactor. The test controller starts the test

procedures and controls all test-related functions.

CUT receives its input from other modules in normal

operation and executes the task for which it was

designed. During test mode, TPG applies CUT a

series of test patterns, and test responses from the

output of CUT are determined by the output

response compactor.

B. Proposed BIST architecture

Fig2: Proposed BIST Architecture

We have proposed an optimized LBIST

architecture for testing logic circuits, which reduces

the overall hardware complexity of the circuit. The

architecture shown in Fig2 consists of three major

blocks, which are the Test Pattern Generator (TPG),

Circuit Under Test (CUT), and Output Response

Analyser (ORA). We have used LFSR as TPG as

LFSR takes less delay than counters such that its

internal circuit is fast. Standard 8-bit LFSR is

designed as TPG for generating the pseudo-random

test patterns, including an all-zero state. The

generated test patterns are sent as input to the circuit

under test during the test mode. CUT can be either a

logic circuit or a memory core. We have designed a

4*4 multiplier and used it as a circuit under test to

verify if there are any hardware faults. This multiplier

is developed 4*1 multiplexer, and ripple carries

adders. In ORA, we have designed an 8-bit MISR as

a signature finder. Initially, MISR takes the output

responses and then compresses the responses into a

signature, and we have designed a comparator to

compare the standard signature value and the output

value of MISR. Based on this comparison result, we

say a circuit is faulty or fault-free.

a) Test Pattern Generator

TPG generates test vectors and applies it as

input to CUT during test mode. Some of the

examples of pattern generators are ROM with stored

patterns, a counter, and LFSR. The advantages of

using LFSR as TPG are that the flip flops can be

connected by few XOR gates. The internal circuit is

very fast as the maximum delay is due to one XOR

and one flip flop delay, takes less area when

compared counters, and also provides high frequency.

So here in our proposed architecture, we have used

LFSR as Test Pattern Generator.

An LFSR is basically a shift register that,

when clocked, shifts the signal through the register

from one bit to the next most significant bit. Some of

the outputs are combined in XOR configuration to

form a feedback mechanism. Feedback around an

LFSR comes from the selection of points called as

taps in the register chain and leads to XORing these

taps back into register. It is this feedback that makes

the register to loop through repetitive sequences of

pseudo-random value. LFSR makes extremely good

pseudo-random pattern generators. When the outputs

of flip flops of LFSR are loaded with the initial value

(seed value), and when LFSR is clocked, it will

generate a pseudo-random pattern of 1s and 0s.

There are two major types of LFSR. They

are external exclusive-OR LFSR and internal

exclusive-OR LFSR. The external XOR LFSR is also

known as standard LFSR is a shift register XOR gates

representing the tap positions of the feedback

polynomials are concatenated to produce a new

output bit. The single-bit output is given as feedback

input to the last flip-flop in the structure. The internal

XOR LFSR, also known as modular LFSR, is another

form of LFSR generating the same pattern as that of

the standard one. The only difference is that the

connection of taps in feedback polynomials to the flip

flops. The reason for using standard LFSR in our

proposed architecture than any other type LFSR's is

that it doesn't take more clock sequence and also in

modular LFSR since the combinational circuit is used

in between the flip flops, the possibility is more than

setup and hold violations may occur. In conventional

standard n-bit LFSR, the major disadvantage is that it

can only produce 2𝑛-1 pseudo-random patterns. We

have used an 8-bit standard Linear Feedback Shift

Register that can generate 2𝑛 = 28 pseudo-random

patterns and cycle repeats after a period of 2𝑛 , as

shown in Fig 3. To start an LFSR, we must supply the

starting values for the registers. These starting values

are called the 'seed'. Putting them into registers is

called seeding. LFSR can generate different pseudo-

random sequences based on the feedback polynomial.

Feedback polynomial that is used to generate 8-bit

standard LFSR for the period (28=256) is

𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 1

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 39

Fig3: 8-Bit StandardLFSR

The truth table of 8-bit standard LFSR for

the first few states is as shown in Table I. When

enable is 0 and clocked, outputs of the flip-flop are

loaded with a seed value which is '11111111' and then

when enable is made 1, LFSR will generate pseudo-

random patterns of 1's and 0's. for example refer to the

second row of a truth table. First the feedback

polynomial value is calculated which is (𝑥8 + 𝑥6 +
𝑥5 + 𝑥4 + 1 = 1 + 1 + 1 + 1 + 1 = 1), now these 1 is

fed to x1 flip flop and then shifting of the LFSR takes

place giving '01111111' state.

Table I: truth table of 8-bit standard LFSR

b) Circuit Under Test (CUT)

We can choose any circuit to be circuit

under test to check whether that circuit is faulty

or fault-free. We have considered a 4*4

multiplier to be our circuit under test (CUT).

The pseudo-random patterns generated by LFSR

are given as input to the circuit under test

(CUT). The output responses from the circuit

under test are given as input to MISR(Multiple

Input Signature Register).

Fig4: Multiplexer based 4*4 Multiplier

 Here we have designed multiplexer based

4*4 Multiplier as CUT as shown in Fig 4. The 8-bit

test patterns are divided into two 4-bits i.e., lower 4-

bit is considered as nibble 1 (X) input, and a higher 4-

bit is considered as nibble 2 (Y) input for the CUT.

This is done because we want both nibble 1 and

nibble 2 inputs to be independent of each other. To

design the 4*4 multiplier, we used 4*1 MUX, and

ripple carry adders. The ripple carries adders are

designed with full adders, and further full adders are

designed with half adders. In Fig 4, The inputs of the

Y group (4-bits) are partitioned into two sets of 2-bit

pairs and separately feeds to two MUX as select

lines. X values are the multiplexer inputs. Here it is

realized that the multiplication number is created by a

summation, the inputs X foe all the logic bits of the

second inputs Y, taking into consideration the

position of these ones in the select values Y. A 4*1

MUX will permit one of the four cases (00, 01, 10,

and 11) to pass through it. When select lines S1S0 is

(00), all bits are zero at the MUX output. When S1S0

is (01), the select lines allow the X digital values to

pass through the MUX. Next, When S1S0 is (10), the

duplicated version of the X values. By adding zero to

the LSB of the X number, duplicates it. Finally, when

the S1S0 is (11), the output will be the sum of X

number and its duplicate value.

c) Multiple Input Shift Register (MISR)

The MISR takes the original output

response from CUT and will generate a set of

sequences that are non-repeated. It is implemented

using Linear Feedback Shift Register as its linear in

nature. The purpose of this MISR is to reduce the

effort of storing standard response as storing

responses needs memory, which in turn increases the

area, and also it is hard to compress the responses.

Fig5: Multiple Input Shift Register

Fig5 represents the circuit implementation

of an eight-bit multiple input signature register. Here

based on the select1 signal, the first MISR takes all

the output responses from CUT as input, and

secondly, it compresses these responses into a

signature. In order to store the standard signature

into ROM with which we need to compare the

output responses, is achieved by applying the output

responses of a properly working CUT to MISR, and

creating a signature, then this is stored in ROM as a

standard signature by using one-time generation

Clo
ck

enab
le

Q
8

Q
7

Q
6

Q
5

Q
4

Q
3

Q
1

Q
0

1 0 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 1 1 1

3 1 0 0 1 1 1 1 1 1

4 1 0 0 0 1 1 1 1 1

5 1 0 0 0 0 1 1 1 1

6 1 1 0 0 0 0 1 1 1

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 40

code. The main work of the response analyzer is to

compare the actual responses of the circuit under test

with a standard signature. The response analyzer

takes the non-repeated sequences from MISR and

gives it to a comparator which compares the output

signature of MISR and standard signature and

reveals that CUT is fault free and vice versa.

d) Comparator

The comparator performs data comparison

where inputs are in the form of binary numbers. It

finds whether a given number is equal, greater, or

less than the other one in terms of magnitude. In our

architecture, the comparator makes the comparison

between the standard signature stored in ROM and

the resultant signature obtained from MISR and

checks whether they are equal. The equality between

the values indicates a fault-free circuit. If the values

are not the same, it confirms that the circuit is faulty.

Fig6: Black box diagram of a normal comparator

Comparator, as shown in fig6, acts as a

signature analyzer where it compares the signature

produced by MISR with the reference signature stored

in ROM. If the signature output from MISR equal to

the standard signature, then the output of the

comparator is equal to one. It implies that the CUT is

fault-free. If not, there is a fault present in CUT. The

signature analyzer generates two distinct signature

values for fault-free CUT and faulty CUT.

Fig7: Zybo Z7-10 Zynq 7000 board

IV. RESULTS AND SIMULATIONS

A. RTL Schematic

We are going to see the RTL schematic of

each block of our proposed architecture like Test

Pattern Generator (TPG), Circuit Under Test (CUT),

Multiple Input Signature Register (MISR), and

comparator by using Xilinx ISE 14.5 tool and then we

are going to see the RTL schematic of the overall

BIST architecture obtained by using Xilinx ISE 14.5

design suite and VIVADO 2018.3 student version.

Fig8: RTL Schematic of a LFSR

Fig9: RTL Schematic of 4*4 Multiplier

Fig10: RTL Schematic of MISR

Fig 11: RTL Schematic of comparator

 Fig12: RTL Schematic of BIST Architecture

using Xilinx ISE 14.5

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 41

Fig13: RTL Schematic of BIST Architecture using

VIVADO 2018.3

B. Simulation Results

Outputs obtained for both faulty and fault-

free conditions applied to optimized BIST

architecture is reported and analyzed, also the

hardware utilization of the architecture and the

architecture is shown here. Finally, our proposed

LFSR is compared with an 8-bit LFSR designed in

one of the reference papers, which is as shown in

Table II.

Fig 14: Using Xilinx ISE 14.5, when the signature

of the circuit under test matches the standard

signature, then the circuit under test is fault-free.

Fig15: Using Xilinx ISE 14.5.when the

signature of the circuit under test does not match

the standard signature, then the circuit under test

is faulty

Fig16: Using VIVADO 2018.3, when the signature

of the circuit under test matches the standard

signature, then the circuit under test is fault-free.

Fig 17: Using VIVADO 2018.3. when the

signature of the circuit under test does not match

the standard signature, then the circuit under test

is faulty

Summary Report of Proposed BIST architecture

by simulating in Xilinx ISE 14.5.

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

SSRG International Journal of VLSI & Signal Processing (SSRG - IJVSP) - Volume 7 Issue 2 - May to Aug 2020

ISSN: 2394 – 2584 www.internationaljournalssrg.org Page 42

Summary Report Proposed BIST architecture by

simulating in VIVADO 2018.3.

The hardware utilization of an 8-bit standard

Linear Feedback Shift Register simulated using

Xilinx ISE 14.5 is compared with a reference paper,

which is as shown in Table II.

 Table II: Comparison Table

V. CONCLUSION

 BIST architecture is implemented using

minimum hardware requirements. The optimization is

achieved by optimizing the LFSR and MISR by

introducing clock gating. The architecture checks

whether the CUT is faulty or fault-free. The hardware

utilization is compared with one of the reference

papers to show that our architecture is optimized.

Each and every block of the architecture is designed

and simulated using Xilinx ISE 14.5 design suite and

VIVADO 2018.3 and implemented on Zybo Z7-10

Zynq 7000 board.

REFERENCES
[1] Preethy K John, Rony Antony P, “Optimized BIST

Architecture for Memory Cores and Logic Circuits using

CLFSR”, IEEE,2017

[2] Amit Kumar Panda, Praveena Rajput, Bhawna Shukla,”

FPGA Implementation of 8,16,32 bit LFSR with Maximum

Length Feedback Polynomial using VHDL”. 2012.

[3] P. Ramesh, Dr. D.N Rao, Dr. K. Srinivasa Rao, “Power

Reduction Testing Techniques of BIST, LFSR & ATPG for
Low Power Circuits”,2017.

[4] Pushpraj Singh Tanwar, Priyanka Srivatsava, “VHDL

Implementation of Logic BIST Architecture for Multiplier
Circuit for Test Coverage in VLSI Chips”, 2014.

[5] J. Praveen, M.N. Shanmukha Swamy, “BIST-Based Low

Power Test Vector Generator and Minimising bulkiness of
VLSI Architecture”, 2018.

[6] Ben John, Christy Mathew Philip, Agi Joseph, “Design and

Implementation of (Built in Self Test) BIST for VLSI

Circuits using Verilog”, 2015.

[7] L. Supriya, J. Lingaiah, G.Kalyan “FPGA Implementation

of BIST (Built in Self Test) Enabled UART for Real Time

Interface Applications”, 2015.

[8] Anju Rajput, “Designing of BIST Architecture of Generic

Multipliers”, 2014.

[9] Shivshankar Mishra, Ram Racksha Tripathi, Devendra Kr.
Tripathi,” Implementation of Configurable Linear Feedback

Shift Register in VHDL”, 2016.

[10] Jamuna S, Dr. V K Agarwal, “Implementation of BIST
Structure using VHDL for VLSI Circuits”, International

Journal of Engineering and Technology, Issue no. 6, pp.

5041-5048, 2011.

[11] Mehboob Hasan Ahmed, Rutuja Jagtap, Roopal Pantode,
and Prof. S. S. Phule, "An FPGA Chip Identification

Generator using Configurable Ring Oscillator" SSRG
International Journal of Electronics and Communication

Engineering 3.4 (2016): 10-14.

PARAMETERS Proposed method

Device: Spartan-

6(XC6SLX45)

Amit Kumar

Panda, Praveena

Rajput

Device: Spartan-

3S1000

Number of

slice

Registers

8 8

Number of

FF

0 8

Number of

Slice

LUTS

2 1

file:///C:/Users/ma14667/Desktop/www.internationaljournalssrg.org

