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Abstract  

Verification is used at each stage of VLSI 

design to ensure that the IC is working correctly, but 

most of the verification is done either at design time 

or at the time of designing or fabricating the IC. 

Along with verification at the design level, it is 

necessary to verify the operation of the chip after 

design and fabrication. Normally in such cases, it is 

done by placing it in the IC testing kit, which inserts 

all input combinations with comparing all output 

combinations to compare the correctness of the chip. 

But the cost of such kits is high and not easily 

available. As a result, it is essential to insert some 

extra logic inside the chip, which verifies the 

correctness of the chip. But it increases the area and 

power requirement of the chip. In this project, we 

have designed an efficient architecture of BIST to 

check the correctness of the design, which is 

simulated using the Xilinx ISE 14.5 design suite and 

VIVADO 2018.3 student version and is implemented 

on FPGA.   

 

Keywords —Verification, VLSI design, IC testing 

kit, Efficient architecture, Xilinx FPGA 

I. INTRODUCTION 

As integrated chips are becoming larger and 

more complicated nowadays, exhaustive simulation is 

a very time-consuming process, and non-exhaustive 

simulation is done for a selected set of input patterns 

for which certain faults maybe failed to be detected. 

Formal verification is a solution to the above-stated 

problem. It is a technique that utilizes static analysis 

based on some mathematical transformations to find 

the correctness of hardware or software in alternate to 

dynamic verification techniques. It is very fast, and it 

takes less effort, and its performance majorly depends 

on the type of logic on which it is placed and the way 

it is applied. 

In this technique, we deal with an abstract 

model of the system. To come up with the abstract 

model, we need formal methods as an abstract model 

of the system is easier to understand than the whole 

system. Here, we need a system model and 

specification/property to build an abstract model in 

which we can show that certain property holds good. 

In this technique, property that needs to be verified is 

decided first, and then the system model is designed 

and finally checks whether the property holds good 

when applied to the system model. 

Formal verification includes a wide range of 

technologies, among them are Theorem proving, 

Equivalence checking, and Model checking. Theorem 

proving uses some axioms or rules to prove the 

correctness, whereas Equivalence checking always 

needs two designs, and it can be applied at or across 

various levels. This technology proves that for all 

possible input stimuli, their corresponding outputs are 

functionally equivalent. 

Model checking is used for hardware 

verification. In this technology, predefined data are 

sent for which equivalent model is generated by the 

circuit under test, and then it is compared with the 

correct signature to find if there is any hardware fault 

in the design. BIST is similar to this technology. It is 

a design for testability method for testing the VLSI 

chips. The concept of BIST is to design a circuit to 

test Its own self (self-testing) and find whether the 

circuit has some fault or not. This technique makes 

electrical testing of a chip easier, faster, more 

efficient, and less expensive.  

BIST is classified in a number of ways, but 

two major classifications are Logic BIST (LBIST) 

and Memory BIST (MBIST). MBIST is used for 

testing memory cores of the device, and LBIST is an 

inbuilt circuitry that will test the structural integrity of 

the chip after it is being manufactured. It not only 

decreases the cost of testing but also allows rapid 

testing of the circuit. We have proposed an optimized 

LBIST architecture for testing logic circuits, which 

reduces the overall hardware complexity of the 

circuit. The architecture consists of three major 

blocks, which are the Test Pattern Generator (TPG), 

Circuit Under Test (CUT), and Output Response 

Analyser (ORA). Standard 8-bit LFSR is designed as 

TPG for generating the pseudo-random test patterns, 

including the all-zero state. The generated test 

patterns are sent as input to the circuit under test. We 

have designed a 4*4 multiplier and used it as a circuit 

under test to verify if there are any hardware faults. In 

ORA, we have designed an 8-bit MISR as a signature 

finder, and we have designed a comparator to 

compare the signature value and output value of 

MISR. Based on this comparison result, we say a 

circuit is faulty or fault-free. Simulation and FPGA 
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implementation of the optimized BIST architecture is 

explained in detail. 

 

II. REFERENCE STUDY 

The BIST provides an automated test 

procedure to detect faults in memory cores and logic 

circuits. [1] describes a model of BIST that can be 

used as Memory BIST (MBIST) and Logic BIST 

(LBIST). By modifying the LFSR to a structure 

called Complete Linear Feedback Shift Register 

(CLFSR) they are able to generate both address 

sequence and test data with reduced hardware 

complexity. With CLFSR, Conventional methods that 

utilize two circuits for generating addressing 

sequence and test patterns are replaced by a single 

circuit, reducing the area overhead of the BIST. 

Xilinx ISE 14.2 tool is used to verify the functionality 

of CLFSR and BIST structure [1]. Here, they have 

implemented 8,16 and 32-bit LFSR on FPGA by 

using VHDL to study the performance and analysis 

of the behavior of randomness. The comparative 

study of 8,16, and 32- bit LFSR on FPGA is done to 

understand the chip verification [2]. 

In [3], test power reducing techniques are 

used using BIST for low power circuits as BIST is an 

alternate solution for the rising cost of external 

electrical testing and increasing complexity of the 

circuit. Here test patterns are generated using LFSR 

as it is more suitable for BIST architecture. The BIST 

technique with four LFSR based TPG is incorporated 

into Universal Asynchronous Receiver Transmitter 

(UART) design before the overall design is 

synthesized. Here they have implemented UART 

with the BIST technique using different LFSR 

techniques and compared these techniques in 

SPARTAN3 XC3S200-4FT256FPGA device. LBIST 

is a DFT technique in which part of the circuit on a 

chipboard/system is used to test itself logically [4]. 

Here BIST is used for the multiplier. Conventional 

TPG is based on normal polynomials, so test patterns 

may be repetitive, limiting the test coverage, but here 

they have designed a primitive polynomial based on 

the Galois field, which generates non-repetitive test 

vectors so that LBIST will cover a wide range of 

faults. VHDL implementation of logic BIST is done 

using Xilinx's 8.2i, and simulation is done on 

ModelSim 6.3F [4]. 

In pseudo-random BIST circuits, the test 

vectors will be generated by Linear Feedback Shift 

Register. This type of TPG will generate some 

repeated test patterns, which will increase the test 

power. [5] presents an approach called Low Power-

Bit Complements Test Vector Generation (LP-

BCTVG) technique with bipartite (half fixed) and bit 

insertion techniques. In order to reduce the test 

power, this technique inserts appropriate intermediate 

vectors between adjacent test vectors generated by 

LFSR. By inverting the output bits of LP-BCTVG, 

we can reduce the bulkiness of the TPG engine by 

half. This reduces the overall power consumption 

with better fault coverage. This technique has been 

tested on several ISCAS'85, ISCAS'89, and 

ISCAS'99 benchmark circuits [5]. In this paper, the 

performance of the test achieved with BIST 

implementation has proven adequate to offset the 

disincentive of the overhead of hardware created by 

an additional BIST circuit. This provides a short test 

time compared to externally applied test and permits 

the use of less test cost equipment during the 

production process. This is designed and 

implemented using Xilinx ISE 14.2 [6]. 

Here, UART with BIST capability is 

implemented via VHDL by using FPGA technology. 

This UART's architecture with BIST will test the 

UART for its correctness. Blocks of this architecture 

are coded in VHDL. This is functionally verified by 

simulating the code in ModelSim from Mentor 

Graphics. Synthesis is performed using the Xilinx 

ISE tool and implemented on SPARTAN 3E FPGA 

[7]. In this paper, the general architecture of the 

array, column, Wallace tree, and booth multipliers are 

designed. The verification of multipliers is done by 

using BIST. BIST will check the four multipliers by 

using input patterns obtained from TPG. Later they 

verify whether they are faulty or fault-free by using 

it. The logic design of these multipliers need not be 

verified further by any other means. The advantage of 

this type of verification is it does not require any 

third-party verification. The simulation is carried out 

using ModelSim EDA tool 10.0c and synthesis on 

Xilinx ISE 14.4 design suite [8]. 

Reference [9] focuses on the implementation 

of configurable LFSR in VHDL and checks its 

performance on the basis of logic, speed, and 

memory requirement in FPGA. The device used for 

implementing the configurable linear feedback shift 

register is Xilinx Virtex-4 FPGA. For simulation and 

synthesis, they have used the Xilinx ISE 9.2i tool. In 

paper [10], they have explained how the BIST logic 

controller can be restarted for a combinational circuit 

logic using VHDL. It permits to suspend the 

generation of the signature at any desired point. This 

controller will comprise hold logic and a signature 

generation element where hold logic will be 

implemented such as an external signal (HOLD) 

which can temporarily to suspend signature 

generation in the signature generation element at a 

particular time during BIST session [10]following is 

a breakdown of the internal design details of the 

hardware simulation  

III. METHODOLOGY 

A. Basic BIST architecture 

BIST's basic structure consists of two 

functional blocks, Test Pattern Generator and 

Response Analyser operated by a test controller, 

as shown in Fig1. Testing time and complexity of 

the test circuits are two significant considerations 
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that must be taken into account during the 

development of the test rig. 

 
Fig1: Generic BIST Architecture 

 

A TPG is to generate the test vectors 

required for the test process. ORA analyses the CUT 

responses to these test vectors. Circuit Under test can 

be a logic circuit or a memory core. RA does its 

function with the need of a compacting signal circuit 

and a compactor. The test controller starts the test 

procedures and controls all test-related functions. 

CUT receives its input from other modules in normal 

operation and executes the task for which it was 

designed. During test mode, TPG applies CUT a 

series of test patterns, and test responses from the 

output of CUT are determined by the output 

response compactor. 

 

B. Proposed BIST architecture 

 

 
Fig2: Proposed BIST Architecture 

 

We have proposed an optimized LBIST 

architecture for testing logic circuits, which reduces 

the overall hardware complexity of the circuit. The 

architecture shown in Fig2 consists of three major 

blocks, which are the Test Pattern Generator (TPG), 

Circuit Under Test (CUT), and Output Response 

Analyser (ORA). We have used LFSR as TPG as 

LFSR takes less delay than counters such that its 

internal circuit is fast. Standard 8-bit LFSR is 

designed as TPG for generating the pseudo-random 

test patterns, including an all-zero state. The 

generated test patterns are sent as input to the circuit 

under test during the test mode. CUT can be either a 

logic circuit or a memory core. We have designed a 

4*4 multiplier and used it as a circuit under test to 

verify if there are any hardware faults. This multiplier 

is developed 4*1 multiplexer, and ripple carries 

adders. In ORA, we have designed an 8-bit MISR as 

a signature finder. Initially, MISR takes the output 

responses and then compresses the responses into a 

signature, and we have designed a comparator to 

compare the standard signature value and the output 

value of MISR. Based on this comparison result, we 

say a circuit is faulty or fault-free. 

 

a) Test Pattern Generator 

TPG generates test vectors and applies it as 

input to CUT during test mode. Some of the 

examples of pattern generators are ROM with stored 

patterns, a counter, and LFSR. The advantages of 

using LFSR as TPG are that the flip flops can be 

connected by few XOR gates. The internal circuit is 

very fast as the maximum delay is due to one XOR 

and one flip flop delay, takes less area when 

compared counters, and also provides high frequency. 

So here in our proposed architecture, we have used 

LFSR as Test Pattern Generator. 

An LFSR is basically a shift register that, 

when clocked, shifts the signal through the register 

from one bit to the next most significant bit. Some of 

the outputs are combined in XOR configuration to 

form a feedback mechanism. Feedback around an 

LFSR comes from the selection of points called as 

taps in the register chain and leads to XORing these 

taps back into register. It is this feedback that makes 

the register to loop through repetitive sequences of 

pseudo-random value. LFSR makes extremely good 

pseudo-random pattern generators. When the outputs 

of flip flops of LFSR are loaded with the initial value 

(seed value), and when LFSR is clocked, it will 

generate a pseudo-random pattern of 1s and 0s. 

There are two major types of LFSR. They 

are external exclusive-OR LFSR and internal 

exclusive-OR LFSR. The external XOR LFSR is also 

known as standard LFSR is a shift register XOR gates 

representing the tap positions of the feedback 

polynomials are concatenated to produce a new 

output bit. The single-bit output is given as feedback 

input to the last flip-flop in the structure. The internal 

XOR LFSR, also known as modular LFSR, is another 

form of LFSR generating the same pattern as that of 

the standard one. The only difference is that the 

connection of taps in feedback polynomials to the flip 

flops. The reason for using standard LFSR in our 

proposed architecture than any other type LFSR's is 

that it doesn't take more clock sequence and also in 

modular LFSR since the combinational circuit is used 

in between the flip flops, the possibility is more than 

setup and hold violations may occur. In conventional 

standard n-bit LFSR, the major disadvantage is that it 

can only produce 2𝑛-1 pseudo-random patterns. We 

have used an 8-bit standard Linear Feedback Shift 

Register that can generate 2𝑛 = 28 pseudo-random 

patterns and cycle repeats after a period of 2𝑛 , as 

shown in Fig 3. To start an LFSR, we must supply the 

starting values for the registers. These starting values 

are called the 'seed'. Putting them into registers is 

called seeding. LFSR can generate different pseudo-

random sequences based on the feedback polynomial. 

Feedback polynomial that is used to generate 8-bit 

standard LFSR for the period (28=256) is 

𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 1 
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Fig3: 8-Bit StandardLFSR 

 

The truth table of 8-bit standard LFSR for 

the first few states is as shown in Table I. When 

enable is 0 and clocked, outputs of the flip-flop are 

loaded with a seed value which is '11111111' and then 

when enable is made 1, LFSR will generate pseudo-

random patterns of 1's and 0's. for example refer to the 

second row of a truth table. First the feedback 

polynomial value is calculated which is (𝑥8 + 𝑥6 +
𝑥5 + 𝑥4 + 1 = 1 + 1 + 1 + 1 + 1 = 1), now these 1 is 

fed to x1 flip flop and then shifting of the LFSR takes 

place giving '01111111' state.  
 

Table I: truth table of 8-bit standard LFSR 

 

 

b) Circuit Under Test (CUT) 

We can choose any circuit to be circuit 

under test to check whether that circuit is faulty 

or fault-free. We have considered a 4*4 

multiplier to be our circuit under test (CUT). 

The pseudo-random patterns generated by LFSR 

are given as input to the circuit under test 

(CUT). The output responses from the circuit 

under test are given as input to MISR(Multiple 

Input Signature Register).  

 
Fig4: Multiplexer based 4*4 Multiplier 

 

   Here we have designed multiplexer based 

4*4 Multiplier as CUT as shown in Fig 4. The 8-bit 

test patterns are divided into two 4-bits i.e., lower 4-

bit is considered as nibble 1 (X) input, and a higher 4-

bit is considered as nibble 2 (Y) input for the CUT. 

This is done because we want both nibble 1 and 

nibble 2 inputs to be independent of each other. To 

design the 4*4 multiplier, we used 4*1 MUX, and 

ripple carry adders. The ripple carries adders are 

designed with full adders, and further full adders are 

designed with half adders. In Fig 4, The inputs of the 

Y group (4-bits) are partitioned into two sets of 2-bit 

pairs and separately feeds to two MUX as select 

lines. X values are the multiplexer inputs. Here it is 

realized that the multiplication number is created by a 

summation, the inputs X foe all the logic bits of the 

second inputs Y, taking into consideration the 

position of these ones in the select values Y. A 4*1 

MUX will permit one of the four cases (00, 01, 10, 

and 11) to pass through it. When select lines S1S0 is 

(00), all bits are zero at the MUX output. When S1S0 

is (01), the select lines allow the X digital values to 

pass through the MUX. Next, When S1S0 is (10), the 

duplicated version of the X values. By adding zero to 

the LSB of the X number, duplicates it. Finally, when 

the S1S0 is (11), the output will be the sum of X 

number and its duplicate value. 

 

c) Multiple Input Shift Register (MISR) 

The MISR takes the original output 

response from CUT and will generate a set of 

sequences that are non-repeated. It is implemented 

using Linear Feedback Shift Register as its linear in 

nature. The purpose of this MISR is to reduce the 

effort of storing standard response as storing 

responses needs memory, which in turn increases the 

area, and also it is hard to compress the responses.   
 

 
Fig5: Multiple Input Shift Register  

 

Fig5 represents the circuit implementation 

of an eight-bit multiple input signature register. Here 

based on the select1 signal, the first MISR takes all 

the output responses from CUT as input, and 

secondly, it compresses these responses into a 

signature. In order to store the standard signature 

into ROM with which we need to compare the 

output responses, is achieved by applying the output 

responses of a properly working CUT to MISR, and 

creating a signature, then this is stored in ROM as a 

standard signature by using one-time generation 
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code. The main work of the response analyzer is to 

compare the actual responses of the circuit under test 

with a standard signature. The response analyzer 

takes the non-repeated sequences from MISR and 

gives it to a comparator which compares the output 

signature of MISR and standard signature and 

reveals that CUT is fault free and vice versa. 

 

d) Comparator 

The comparator performs data comparison 

where inputs are in the form of binary numbers. It 

finds whether a given number is equal, greater, or 

less than the other one in terms of magnitude. In our 

architecture, the comparator makes the comparison 

between the standard signature stored in ROM and 

the resultant signature obtained from MISR and 

checks whether they are equal. The equality between 

the values indicates a fault-free circuit. If the values 

are not the same, it confirms that the circuit is faulty. 

 
Fig6: Black box diagram of a normal comparator 

 

Comparator, as shown in fig6, acts as a 

signature analyzer where it compares the signature 

produced by MISR with the reference signature stored 

in ROM. If the signature output from MISR equal to 

the standard signature, then the output of the 

comparator is equal to one. It implies that the CUT is 

fault-free. If not, there is a fault present in CUT. The 

signature analyzer generates two distinct signature 

values for fault-free CUT and faulty CUT. 

 

Fig7: Zybo Z7-10 Zynq 7000 board 

 

IV. RESULTS AND SIMULATIONS 

A. RTL Schematic 

We are going to see the RTL schematic of 

each block of our proposed architecture like Test 

Pattern Generator (TPG), Circuit Under Test (CUT), 

Multiple Input Signature Register (MISR), and 

comparator by using Xilinx ISE 14.5 tool and then we 

are going to see the RTL schematic of the overall 

BIST architecture obtained by using Xilinx ISE 14.5 

design suite and VIVADO 2018.3 student version. 

 

 
Fig8: RTL Schematic of a LFSR 

 

 
Fig9: RTL Schematic of 4*4 Multiplier 

 
Fig10: RTL Schematic of MISR 

 

 
Fig 11: RTL Schematic of comparator 

 

 
      Fig12: RTL Schematic of BIST Architecture 

using Xilinx ISE 14.5 
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Fig13: RTL Schematic of BIST Architecture using 

VIVADO 2018.3 

 

B. Simulation Results 

Outputs obtained for both faulty and fault-

free conditions applied to optimized BIST 

architecture is reported and analyzed, also the 

hardware utilization of the architecture and the 

architecture is shown here. Finally, our proposed 

LFSR is compared with an 8-bit LFSR designed in 

one of the reference papers, which is as shown in 

Table II. 

 
Fig 14: Using Xilinx ISE 14.5, when the signature 

of the circuit under test matches the standard 

signature, then the circuit under test is fault-free. 

 

 
Fig15: Using Xilinx ISE 14.5.when the 

signature of the circuit under test does not match 

the standard signature, then the circuit under test 

is faulty 

 
 

Fig16: Using VIVADO 2018.3, when the signature 

of the circuit under test matches the standard 

signature, then the circuit under test is fault-free. 

 

 

 
Fig 17: Using VIVADO 2018.3. when the 

signature of the circuit under test does not match 

the standard signature, then the circuit under test 

is faulty 

 

 
Summary Report of Proposed BIST architecture 

by simulating in Xilinx ISE 14.5. 
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Summary Report Proposed BIST architecture by 

simulating in VIVADO 2018.3. 

 

The hardware utilization of an 8-bit standard 

Linear Feedback Shift Register simulated using 

Xilinx ISE 14.5 is compared with a reference paper, 

which is as shown in Table II. 

 

   Table II: Comparison Table 

 

V. CONCLUSION 

 BIST architecture is implemented using 

minimum hardware requirements. The optimization is 

achieved by optimizing the LFSR and MISR by 

introducing clock gating. The architecture checks 

whether the CUT is faulty or fault-free. The hardware 

utilization is compared with one of the reference 

papers to show that our architecture is optimized. 

Each and every block of the architecture is designed 

and simulated using Xilinx ISE 14.5 design suite and 

VIVADO 2018.3 and implemented on Zybo Z7-10 

Zynq 7000 board. 
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PARAMETERS Proposed method 

Device: Spartan-

6(XC6SLX45) 

Amit Kumar 

Panda, Praveena 

Rajput 

Device: Spartan-

3S1000 

Number of 

slice 

Registers 

8 8 

Number of 

FF 

0 8 

Number of 

Slice 

LUTS 

2 1 
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