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    Abstract-This paper present a impact of pulse integration 

in radar receiver on SNR and probability of detection. In 

practical radar system noncoherent integration gain is 

always smaller than the number of noncoherent integrated 

pulse. Here detection of  Swerling Targets I, II,  III,  IV at 

probability of Detection 0.8, for pulses integration of 1, 5, 10, 

25, 75 has been proposed. The performance of the 

conventional radar for moving target detection have been 

evaluated analytically mainly focusing on the Swerling 

model and their integration loss during the signal processing 

related with the threshold voltage level of matched filter. 

Finally, possible sub optimum solutions are found, through 

which considerable streamlining of processing structures 

can be achieved.  
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I.INTRODUCTION 

RADAR theory has been a vibrant scientific field for the last 

few decade or so [1]–[3]. Radar theory deals with many 

different and diverse problems. However, the two most 

important problems are the detection and range estimation 

problems. The importance of these two problems is not limited 

to radars, and other engineering disciplines like sonar and 

communication deal with very similar problems [4]. Over the 

years, radar systems have developed considerably. These 

developments can be attributed to the increase in computation 

power and advances in hardware design. The detection 

probability is influenced by many random factors, such as the 

radar system’s parameters, the natural environment and most of 

all, as well as the RCS fluctuation characteristic of the target. 

II. PULSE INTEGRATION 

When a target is located within the radar beam during a single 

scan, it may reflect several pulses. By adding the returns from 

all pulses returned by a given target during a single scan, the 

radar sensitivity (SNR) can be increased. The number of 

returned pulses depends on the antenna scan rate and the radar  

 

 

PRF. More precisely, the number of pulses returned from a 

given target is given by  

           Pulse integration= 𝑛𝑝  =
𝜃𝑎𝑇𝑠𝑐𝑓𝑟

2𝜋
                               (1) 

Where 𝜃𝑎  is the azimuth antenna beamwidth, 𝑇𝑠𝑐  is the scan 

time, and 𝑓𝑟  is the radar PRF. The number of reflected pulses 

can be expressed as 

  𝑛𝑝  = 
𝜃𝑎𝑓𝑟

𝜃𝑠𝑐𝑎𝑛 𝜃𝑠𝑐𝑎𝑛 
                            (2) 

Where 𝜃𝑠𝑐𝑎𝑛  is the antenna scan rate in degrees per second. Note 

that when using eq  1, 𝜃𝑎  is expressed in radians, while when 

using eq 2, it is expressed in degrees. As an example, consider a 

radar with an azimuth antenna beamwidth 𝜃𝑎=3𝑜 , antenna scan 

rate 𝜃𝑠𝑐𝑎𝑛  = 45𝑜 /sec (antenna scan time, 𝑇𝑠𝑐= 8sec), and a PRF 

𝑓𝑟= 300Hz. Using either  (1) or   (2). Yields 𝑛𝑝=20 pulses. 

 
Fig.1. Simplified block diagram of a radar detector when noncoherent 

integration is used. 

The process of adding radar returns from many pulses is called 

radar pulse integration. Pulse integration can be performed on 

the quadrature components prior to the envelope detector.  This 

is called coherent integration or predetection integration. 

Coherent  integration preserves the phase relationship between 

the received pulses. Thus a buildup in the signal amplitude is 

achieved. Alternatively, pulse integration performed after the 

envelope detector (where the phase relation is destroyed) is 

called noncoherent or postdetection integration. 

 A. Noncoherent Integration. 

When the phase of the integrated pulses is not known so that 

coherent integration is no longer possible, another form of pulse 

integration is done. In this case pulse integration is performed 

by adding (integrating) the individual pulses envelope or the 

square of their envelope. Thus, the term noncoherent integration 
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is adopted. The performance difference (measured in SNR) 

between the linear envelope detector and quadratic (square law) 

detector is practically negligible. Robertson [4] showed that this 

difference is typically less than 0.2 db, he showed that the 

performance difference is higher than 0.2dB only for cases when 

𝑛𝑝 > 100 and 𝑃𝐷 < 0.01. Both of these conditions are of no 

practical significance in radar applications. 

III. SWERLING MODELS 

B. Detection of Swerling I Targets 

The echo pulses received from a target on any one scan are of 

constant amplitude throughout the entire scan but are 

independent(uncorrelated) from scan to scan. This assumption 

ignores the effect of the antenna beam shape on the echo 

amplitude. The chi-square probability density function with 2N 

degree of freedom is given as                            

                 fX x =
N

 N−1 ! σx
2
 

Nx

σx
 

N−1

exp  −
Nx

σx
                        (3) 

Where 𝜎𝑥  is the standard deviation for the RCS value. Using this 

equation, the pdf associated with Swerling I and II targets can be 

obtained by letting N=1, which yields a Rayleigh pdf, Letting 

N=2 yields the pdf for Swerling III and IV type targets.The 

exact formula for the probability of detection for Swerling I type 

targets was derived by Swerling. It is 

                     PD= e−
v T

1+SNR            ;  𝑛𝑃 = 1                                (4)         

𝑃𝐷=1− 𝐼(𝑣𝑇 ,𝑛𝑃 − 1) +   1 +
1

𝑛𝑝𝑆𝑁𝑅    
 
𝑛𝑝−1

𝐼 

              
𝑣𝑇

1 +  
1

𝑛𝑝𝑆𝑁𝑅

,𝑛𝑃 − 1  × 𝑒
−𝑣𝑇/(1 + 𝑛𝑝𝑆𝑁𝑅 ) ;  𝑛𝑃 > 1          (5)                  

Figure 2 shows a plot of the probability of detection as a 

function of SNR for 𝑛𝑝=1, 5, 10, 25, 75. and 𝑃𝑓𝑎= 10−9  for 

both Swerling I and V (Swerling 0) type fluctuations. Note that 

it requires more SNR, with fluctuation, to achieve the same 𝑃𝐷  

as in the case with no fluctuation.  

Fig. 2. Probability of detection versus SNR, Swerling I , Pfa =10−9. 

 

Table I: Effect of pulse integration on SNR for Swerling I. 

 

 

 

 

 

 

 

 

C. Detection of Swerling II Targets 

Swerling case 2 – with the same density function as Swerling I 

but the fluctuations are more rapid than in Swerling I and are 

taken to be independent from pulse to pulse rather than from 

scan to scan.In the case of Swerling II targets, the probability of 

detection is given by  

  𝑃𝐷= 1 − 𝐼  
𝑣𝑇

(1+𝑆𝑁𝑅)
 ,𝑛𝑝               ; 𝑛𝑝  ≤ 50                         (6) 

for the case when 𝑛𝑝 >50 the probability of detection is 

computed using the Gram-Charlier series. 

𝑃𝐷  ≅  
𝑒𝑟𝑓𝑐 (𝑉/ 2)

2
−   

𝑒−𝑉
2/2

 2𝜋
 C3 𝑉

2 − 1 + C4V  3 − 𝑉2 −

 C6V 𝑉4 − 10𝑉2 + 15                                                                    (7)

          

Where the constants C3,  C4, and C6 are the Gram-Charlier series 

coeffiecients, and the variable V is 

                  V=  
𝑣𝑇−𝑛𝑝(1+𝑆𝑁𝑅 )

                                                            (8) 

Values for C3,  C4, and C6 and  is 
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np=1

np=5

np=10

np=25

np=75

Number of integrated 

pulses (np) 

Signal to noise ration  

SNR (dB) 

1 19.447 

5 13.467 

10 11.121 

25 8.230 

75 5.034 
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 C3 = −
1

3 np
     ,   C4 =

1

4𝑛𝑝
  ,  C6 =

C3
2

2
   ,   =  np(1 + SNR)

                                                          (9) 

                                   

   Fig. 3.    Probability of detection versus SNR, Swerling II, 𝑃𝑓𝑎=10−9. 

Table II: Effect of pulse integration on SNR forSwerling II model. 

D. Detection of Swerling III Targets 

The fluctuation is assumed to be independent form scan to scan, 

as in case of swerling I, but the probability density function is 

given by the chi-square distribution with four degree of 

freedom. 

                                                    

𝑓𝑋 𝑥 =  
4𝑥

𝜎𝑥
2 𝑒𝑥𝑝  −

2𝑥

𝜎𝑥
                          𝑥 ≥ 0                           (10) 

The exact formulas, developed my Marcum, for the probability 

of detection for Swerling III type targets when 𝑛𝑝 = 1,2. 

   P D = 𝑒𝑥𝑝  
−𝑣𝑇

1+𝑛𝑃𝑆𝑁𝑅/2
  1 +

2

𝑛𝑃𝑆𝑁𝑅
 
𝑛𝑃−2

× 𝐾0                   (11) 

        𝐾0 = 1 +
𝑣𝑇

1+𝑛𝑃𝑆𝑁𝑅/2
−

2

𝑛𝑃𝑆𝑁𝑅
(𝑛𝑃 − 2)                           (12) 

For 𝑛𝑃 > 2 the expression is 

  P D =
𝑣𝑇
𝑛𝑃−1

 𝑒−𝑉𝑇

 1+𝑛𝑃𝑆𝑁𝑅/2  𝑛𝑃−2 !
+ 1− 𝐼 𝑣𝑇 ,𝑛𝑃 − 1 + 𝐾0 ×

                𝐼  
𝑣𝑇

1+2/𝑛𝑃𝑆𝑁𝑅
,𝑛𝑃 − 1                                                 (13)                             

 
Fig. 4. Probability of detection versus SNR,Swerling III, 𝑃𝑓𝑎=10−9. 

 

Table III: Effect of pulse integration on SNR for Swerling III model. 

 

 

 

 

 

 

 

 
 

 

E.  Detection of Swerling IV Targets 

The expression for the probability of detection for Swerling IV 

targets for 𝑛𝑃 < 50 is 

 
𝑃𝐷=1− 𝛾0+ 

𝑆𝑁𝑅
2
 𝑛𝑝𝛾1+ 

𝑆𝑁𝑅
2
 

2
  
𝑛𝑝  𝑛𝑝−1 

2!
 𝛾2+ … + 

𝑆𝑁𝑅
2
 
𝑛𝑝
𝛾𝑛𝑝  

                                                                  1+
𝑆𝑁𝑅

2
 
−𝑛𝑝

                                                         14 

 

  
                  𝛾

𝑖
= 𝐼  

𝑣𝑇

1 +
𝑆𝑁𝑅

2

,𝑛𝑝 + 𝑖                                     (15) 

For the case when 𝑛𝑝 ≥ 50, the Gram-Charlier series can be 

used to calculate the probability of detection. 

𝑃𝐷  ≅ 
𝑒𝑟𝑓𝑐 (𝑉/ 2)

2
−  

𝑒−𝑉
2/2

 2𝜋
[C3(𝑉2 − 1)+ C4V (3 −𝑉2) 

− C6V(𝑉4 −10𝑉2 + 15)] 

Where the constants C3,  C4, and C6 are the Gram-Charlier series 

coefficients, 

𝐶3 =
1

3 𝑛𝑃

2𝛽3−1

 2𝛽2− 1 1.5   ,  C6 =
C3

2

2
,  𝐶4 =

1

4𝑛𝑝

2𝛽4−1

 2𝛽2−1 2   

  =  𝑛𝑝 2𝛽2−1   ,  𝛽 = 1 + (𝑆𝑁𝑅)/2                              (16) 
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np = 1

np=5

np = 10

np = 25

np = 75

Number of integrated 

pulses (np) 

Signal to noise ration  

SNR (dB) 

1 19.447 

5 9.242 

10 6.268 

25 2.929 

75 0.100 

Number of integrated 

pulses(np) 

Signal to noise ration 

SNR (dB) 

1 16.867 

5 10.876 

10 8.526 

25 5.627 

75 2.423 
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Fig. 5.  Probability of detection versus SNR, Swerling IV, 𝑃𝑓𝑎=10−9. 

 

Table IV: Effect of pulse integration on SNR for Swerling IV model. 

 

 

 

 

 

 

 

 

 

F.  Detection of Swerling V Targets 

For Swerling 0 ( Swerling V) target fluctuations, the probability 

of detection is calculated using Gram-Charlier Series 

𝑃𝐷  ≅ 
𝑒𝑟𝑓𝑐 (𝑉/ 2)

2
−  

𝑒−𝑉
2/2

 2𝜋
[C3(𝑉2 − 1)+ C4V (3 −𝑉2) 

− C6V(𝑉4 −10𝑉2 + 15)] 

C3 = −
𝑆𝑁𝑅+1/3

 𝑛𝑝  2𝑆𝑁𝑅+1 1.5
   ,  C4 =

𝑆𝑁𝑅+1/4

𝑛𝑝  2𝑆𝑁𝑅+1 2   ,                                     

             C6 =
C3

2

2
,     =  𝑛𝑝 2𝑆𝑁𝑅+1                       (17) 

 
Fig. 6. Probability of detection versus SNR, Swerling 0 (Swerling V), 𝑃𝑓𝑎=10−9 

Table V: Effect of pulse integration on SNR for Swerling V model. 

 
 

 

 

 

 

 

 

IV. IMPROVEMENT FACTOR AND INTEGRATION 

LOSS 

The non coherent integration gain is always smaller than the 

number of non coherently integrated pulses. This loss in 

integration is referred to as post detection or square-law detector 

loss. 

Define  SNR NCI  as the SNR required to achieve a specific 𝑃𝐷  

given a particular 𝑃𝑓𝑎  when 𝑛𝑝  pulses are integrated 

noncoherently. Also denote the single pulse SNR as  𝑆𝑁𝑅 1. It 

follows that 

           SNR NCI = (SNR)1 × I nP                                          (18) 

Where I nP  is called the integration improvement factor. An 

empirically derived expression for the improvement factor that 

is accurate within 0.8dB reported in Peebles [5] as 

    I nP  𝑑𝐵 = 6.79 1 + 0.253𝑃𝐷  

 1 +

log  
1
𝑃𝑓𝑎

 

46.6
 log 𝑛𝑝    

 1 − 0.140 log 𝑛𝑝 + 0.018310 log 𝑛𝑝 
2
                           (19)    

The integration loss in dB is defined as 

             𝐿𝑁𝐶𝐼  𝑑𝐵 = 10 log𝑛𝑝 −  𝐼(𝑛𝑝) 
𝑑𝐵

                                  (20) 

Fig.7. Plot for the improvement factor and integration loss versus number of 

noncoherently integrated pulses. 
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pd=.8, Pfa=1e-9

Number of integrated 

pulses (np) 

Signal to noise ration  

SNR (dB) 

1 15.646 

5 7.684 

10 5.111 

25 2.067 

75 0.100 

Number of integrated 

pulses (np) 

Signal to noise ration  

SNR (dB) 

  1 12.155 

5 7.931 

10 5.549 

25 2.609 

75 0.100 
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Table VI: Improvement factor of pulse integration. 

It can be observed from the above table that with increase in 

number of integration pulses leads to improvement in detection 

of target.  

V CONCLUSION 

Traditional RADAR system have more ambiguity in 

recognition analysis of target without pulse integration of echo 

signal from the target. With  pulse integration swerling I model 

has optimum value of SNR for integrated pulses from scan to 

scan according to a chi-square probability density function with 

two degree of freedom then swerling III model of four degree of 

freedom for 75 pulses. Similarly from the plot of 10 pulse 

integration value for swerling II target fluctuation independently 

from pulse to pulse according to a chi-square probability density 

function with two degree of freedom have higher SNR value 

then swerling IV model with four degree of freedom. 
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Number of integrated 

pulses (np) 

Improvement factor 

(dB) 

1 0 

5 6.203 

10 8.555 

25 11.439 

75 14.645 
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