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I. INTRODUCTION

The classical paper of L. A. Zadeh[7] in
the year 1965, comprises of the concepts of
fuzzy sets and fuzzy set operations. Thereafter
the paper of C. L. Chang[2] in 1968 paved the
way for tremendous growth of the numerous
fuzzy topological concepts.

K. K. Azad[1] introduced the concept of
fuzzy regular open sets and fuzzy regular closed
sets in fuzzy topological spaces. Z. Petricevic[4]
introduced the concept of fuzzy -open sets and
fuzzy 6-closed sets in fuzzy topological spaces.
In 2004, D.N. Georgiou[3] presented the notion
of (A, 8)-closed sets in general
topology. Thereafter this notion grasped higher
significance due its nature of being partially d-
open and partially d-closed. This work is an
extension of (A, &)-closed sets to fuzzy

topology.

Il. PREREQUISITES

Definition 2.1 : A fuzzy subset A of a fuzzy
topological space (X, F) is called

(i) fuzzy regular open[1] if int(cl(A))=A.

(if) fuzzy &-open[4] if A=/ A;, where Ajisa

iel

fuzzy regular open set for each i in (X, F).
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A fuzzy subset A of a fuzzy topological
space (X, F) is called fuzzy regular
closed[1](resp. fuzzy d-closed[4]) if 1-A'is
fuzzy regular open(resp. fuzzy 6-open).

Let the family of all fuzzy regular open, fuzzy
regular closed, fuzzy &-open and fuzzy o-closed
sets be represented by FRO(X, F), FRC(X, F),
FSO(X, F) and FSC(X, F) respectively.

Definition 2.2 :[4] The &-closure of a fuzzy set
A is the intersection of all fuzzy regular closed
sets containing A(shortly, Cls(A)). A fuzzy point
Vi € Cls(A) iff every fuzzy regular open set
which is g-coincident with x; is
also g-coincident with A.

Definition 2.3:[4] A fuzzy mapping f: X — Y is
called fuzzy super-continuous if (V) is a
fuzzy &-open set on X for any fuzzy open set
VonYy.

I11. FAs-SETS AND FV4-SETS
Definition 3.1 : A fuzzy subset FA;(A) of a
fuzzy topological space (X, F) is defined as
FAs(A) = A {D €F30(X, F) |
A<D}.

Definition 3.2 : A fuzzy subset A of a fuzzy
topological space (X, F) is called a FA;-set if
FAg(A)zA
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Theorem 3.3 : For fuzzy subsets A, B and A (i
€ |1 =[0,1]) of a fuzzy topological space (X, F),
the following are true.

() A<FALA).
(i) FAS(FA3(A)) = FA5(A).

(i) IfA<B then FAi(A) < FA4(B).
(iv)  FAs( A {A}) = A {FAA)}

iel

(V) FAs(v {A}) =V {FAs(A)}

iel iel

Proof : (i), (ii) and (iii) follow from Definition
3.1

(iv) Suppose that x € A {FAs(A)} then there
iel

exists ig € I such that x & FAs(Aig). This

implies that there exists a fuzzy 6-open set

D such that x ¢ D and Ajp< D. Since A
iel

AiSAiOSDandxﬁD,Wehave X

€ FAs(A {AD).
iel
(vi) From (i) and (iii), Ai < FAs(A) < FA4(
v A), for each i € I. This implies v/
iel iel
(FA5(A)) < FA;( v A). Conversely,
iel
suppose that x € v/ (FAs(Aj)). Then
iel
X & FAs(A)), for all i € 1. This implies that
there exists S; € Fd8O(X, F) such
that A;j< S;jand x ¢ S;, for all i € I.

Since v Ai<v S and v S is a
iel iel iel

fuzzy d-open set not containing X.

Hence x & FA4( Vv {A}). Thus
FAs(\V A}) =V {FAs(A)}

iel iel

Remark : The following Example shows that the
converse of (iv) in Theorem 3.3 is not true in general.

Example 3.4: Let X = {a, b} and F={{0, 1,
(0.2, 0.5p), (0.5, 0.8p)}. Then FSO(X, F) = {0,
1,(0.2,0.5)}. Let A;=(0.1,0.6) and A, = (0.3,
0.3). Then A; A A, =(0.1,0.3). Also, FAs(Ar)
= FA3(A;) = 1 and FA;(AL A Ay = (0.2, 0.5)
which implies FA;(A1 A Ay # FA;(A) A
FAs(A2).

Corollary 3.5:

(l) FAs(A) is a FAs-set.
(i) If A is a fuzzy §-open set, then A is a
FAs-set.

Proof :

(i) Follows from (ii) of Theorem 3.3.
(i) Follows from Definition 3.2.

Theorem 3.6 : In a fuzzy topological space (X,
F), the following are true.

(i)  Arbitrary Intersection of FAjs-sets is a
FA;-set.
(if)  Arbitrary Union of FAs-sets is a FA;-set.

Proof:

(i) Let A;, where i € 1 be FAs-sets.
FAs(A A)
iel
=FA5(A1/\ Az/\ VAN An/\ )
< FAS(A) A FA3(A2)
A N\ FAA)A ...
(By Theorem 3.3 (iv))

AN Ao LN AN L
(Since each is a FA;-set)

= A A
iel

Also by Theorem 3.3(i),
A A< FA;;( VAN A,)

iel iel
Hence arbitrary intersection of FA;z-Sets is a
FAg-set.
(ii) Follows directly from Theorem 3.3(v).

Definition 3.7 : A fuzzy subset FV;(A) of a
fuzzy topological space (X, F) is defined as

FV5(A) = v {CEFsC(X, F) | C
<A}.

Definition 3.8 : A fuzzy subset A of a fuzzy
topological space (X, F) is called a FV;-set if
FVs(A) = A.

Theorem 3.9 : For fuzzy subsets A, B and A; (i
€ |1 = [0,1]) of a fuzzy topological space (X, F),
the following are true.

()  FViA)<A.
(i)  FV5(FV5(A)) = FV5(A).
(iii) If A <B then FV4(A) < FV4(B).

(iv)  FVs(A {A}) =A {FVs(A)}.

iel iel
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)  FVs(v {A}) =V {FVs(A)}.
iel iel
(vi) If Ais a fuzzy §-closed set then A is a
FV;s-set.
(vii) FA;3(1-A) = 1- FV;(A) and
FVs(1-A) = 1- FA5(A).

Proof : (i) to (vi) Similar to Theorem 3.3 and
Corollary 3.5.

(vii)  1- FV5(A)
1-V {C|C€eFSC(X,F)andC<A}
A {1-C|1-C € FSO(X, F) and
1-C > 1-A}
= A {D]|DeFsO(X, F)and
1-A <D}

=FA;(1-A).
Similarly, we can prove the other equality.
Corollary 3.10 : FV;5(A) is a FV;-set.
Proof : Follows from (ii) of Theorem 3.9.

Definition 3.11 : Amap f: (X, F) — (Y, ) is
called a fuzzy A;-continuous(briefly FA;-
continuous) function if the inverse image of
every fuzzy closed set in (Y, ¢) is a fuzzy As-Set
in (X, F).

Theorem 3.12 : Foramap f: (X, F) — (Y, &),
the following are equivalent.

(i) fis FAs-continuous;
(ii) Inverse image of every fuzzy open set in
(Y, ¢) is fuzzy Vs-set in (X, F).

Proof : Follows from Theorem 3.9(vii).
IV. FUzZzY (A, §)-CLOSED SETS

Definition 4.1 : A fuzzy subset A of a fuzzy
topological space (X, F) is called a fuzzy
(A, d)-closed (briefly F(A, 6)-closed) set if
A =K A L, where K is a FAsset and L is a
fuzzy d8-closed set.

The family of all fuzzy (A, §)-closed sets in (X,
F) is denoted by F(A, 8)C(X, F).

Theorem 4.2 : The following are equivalent for
a fuzzy subset A of a fuzzy topological space (X,
F).

(i)  AisF(A, d)-closed;

(i)  A=KA Cls(A), where K is a FA;-set;

(i)  A=FAs;(A) A Cl;(A);

(iv) A = FAs(A) A\ L, where L is a fuzzy
d-closed set.

Proof:

(i) = (i) Let A=K A L, where K is a FA;-set
and L is a fuzzy d-closed set. Now, A < L
= Cl3(A) < L. Aso, A < KA Cls(A) <K
/A L=A Therefore A=K A Cls(A).

(if) = (iii) Let A = K A CI5(A), where K is a
FA;-set. Now, A <K = FA5A) < FA3(K) =
K = FA;s(A) < K. Therefore A < FAs(A) A
Cls(A) < KA Cls(A) = A. Hence A =
FAs(A) A\ Cls(A).

(iif) = (iv) Let A = FA3(A) A Cls(A) and put
Cls(A) = L. Hence A = FA3(A) A L, where
L is a fuzzy 6-closed set.

(iv) = (i) Follows from Definition 4.1.

Theorem 4.3 : Every fuzzy 6-closed(resp. FA;-)
set is a F(A, 8)-closed set but not conversely.

Proof : Follows from Definition 4.1 and the fact
that 1 is F(A, d)-closed(resp. fuzzy 6-closed).

Example 4.4 : Let X = {a, b} and F ={{0, 1,
(0.2, 0.5,), (0.5, 0.8,)}. Then(0.2, 0.5,) is
F(A, d)-closed but not fuzzy d&-closed and
(0.8,, 0.5y)is F(A, 8)-closed but not a FA;-set.

Theorem 4.5 : Every fuzzy 3-dense[6] set which
is also F(A, d)-closed is a FA;-set.

Proof : Let (X, F) be a fuzzy topological space
and A be a fuzzy d-dense as well as F(A, 6)-
closed set in (X, 7). Then by
Theorem 4.2, A = K A Cl;(A), where K is a
FAs-set. Since A is fuzzy 6-dense, Cl;(A)=1[6]
and hence A = K, where K is a FA;-set.

Theorem 4.6 : Let (X, F) be a fuzzy topological
spaces. If A is fuzzy open then cl(A) is
F(A, 9)-closed.
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Proof : If A is fuzzy open then cl(A) is fuzzy
regular closed[5] and therefore fuzzy 6-closed.
Further, the proof follows from Theorem 4.3.

Theorem 4.7 : Let (X, F) be a fuzzy topological
space. Then

(i) Arbitrary intersection of F(A, 8)-closed sets
is F(A, 8)-closed in (X, F).

(if) Arbitrary union of F(A, &)-open sets is
F(A, 8)-open in (X, F).

Proof:

(i) Let A; be a F(A, d)-closed set for each i € 1.
Then A; = Ki A L;, where K;is a FAs-set
and L; is a fuzzy 4-closed set for each i € I.
Now A Ai: A (K,/\ L,) :(/\ K|) N\ (

iel iel iel

A Lj). Since any intersection of

iel

FA;-
sets is a FAs-set and fuzzy d-closed sets is
fuzzy o-closed, A A; is a F(A, d)-closed

iel
set.
(ii) Let A; be a F(A, 8)-open set for each i € 1.
Then X\A; is a F(A, 8)-closed set for each

iel.X\v A= A (X\A). Therefore by

(i), v AjisF(A, d)-open.
iel
Definition 4.8 : A fuzzy subset A of a fuzzy
topological space (X, F) is called a fuzzy
(A, d)-open (briefly F(A, &)-open) set if
A=KV L, where KisaFV;ssetand L is a
fuzzy 5-open set.

Equivalently, the complement of a fuzzy
(A, 8)-closed set is called fuzzy (A, d8)-open.

The family of all fuzzy (A, d)-open sets in (X,
F) is denoted by F(A, 3)O(X, F).

Theorem 4.9 : The following are equivalent for
a fuzzy subset A of a fuzzy topological space (X,
F).

(i)  AisF(A, 6)-open;

(i) A=K V ints(A), where K is a FV;-set;

(iii) A=FV5A)V ints(A);

(iv) A =FV5(A)V L, where L is a fuzzy 6-
open set.

Proof : Similar to Theorem 4.2.

Definition 4.10 : Fuzzy (A, d)-closure (briefly
F(A, d)cl(A)) of a fuzzy subset A is defined as
F(A, d)cl(A) = A {D € F(A, 3)C(X, F)

A<D}.

Theorem 4.11 : For fuzzy subsets A and B of a
fuzzy topological space (X, F), the following
conditions are true.

(i) A<FE(A,d)cl(A).
(i) If A<B,then
F(A, d)cl(A) < F(A, d)cl(B).
(iii) F(A, 6)cl(0) = 0 and F(A, d)cl(1) = 1.
(iv) F(A, 8)cl(A) is a fuzzy (A, d)-closed set.
(v) Aisfuzzy (A, d)-closed iff
F(A, d)cl(A) = A.

Proof : Straight forward.

Definition 4.12 : A function f: X —Y is said to
be fuzzy (A, 8)-continuous(briefly F(A, 9)-
continuous) function if f(B) is a F(A, 8)-closed
in X for each fuzzy closed set[4] Bin Y.

Theorem 4.13 : If a fuzzy function f: X —Y is
said to be fuzzy (A, d)-continuous then for each
fuzzy set A in X, f(F(A, 8)cl(A)) < cl(f(A)).

Proof : cl(f(A)) is fuzzy closed in Y. By
hypothesis, FX(cl(f(A))) is E(A, 8)-closed in X.
Now, f(A) <cl(f(A) = A<f
L(f(A)) < F(CI(f(A) = F(A, 8)cl(A) <
F(A, 8)cl(F'(cI(f(A)))) = Fi(cI(f(A))) = f(F(A,
)cl(A)) < cl(f(A)).

Proposition 4.14 Every fuzzy super-
continuous(resp. FAj-continuous) function is
F(A, d)-continuous but not conversely.

Proof : Follows from Theorem 4.3.

Example 27 : Let X =Y = {a, b} and F =(={{0,
1, (0.2, 0.5,), (0.5, 0.8p)}.

Define f: (X, F) — (Y, {) as follows:
_((@b), ifa=0.2andb =05
f(a,b) = {(b, 2,

otherwise.
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Then f{(0.2,, 0.5,)}=(0.2,, 0.5,) is F(A, &)-open
but not fuzzy &-open. Hence f is F(A, 9)-
continuous but not fuzzy super-continuous.

Example 28 : Let X =Y ={a, b} and F =(={{0,
1, (0.2, 0.5,), (0.5,, 0.8p)}.

Define f: (X, F) — (Y, £) as follows:

b,a), ifa=0.5andb =0.8
f — ( ) )
(ab) { 1, otherwise.

Then f{(0.5,, 0.8,)}=(0.8,, 0.5p) is F(A, &)-open
but not a FAs-set. Hence f is F(A, 8)-continuous
but not FA;-continuous.
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