Operation Approaches on δ -Open Sets

Jayashree R

Research Scholar, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

Abstract—The concept of an operation- κ on a family of δ -open sets in topological spaces is introduced. Using the operation κ , the concepts of κ -interior, κ -closure, κ -boundary and κ -exterior are studied.

I. INTRODUCTION

In 1937, Stone[5] initiated the concept of Regular closed sets. Following his work, Velicko[6] introduced the family of δ -open sets in 1968, which are stronger than the family of open sets. A subset of a topological space is called δ -open if it is the union of regular open sets. Further, Velicko investigated the characterization of H-Closed spaces in terms of arbitrary filter bases and showed that, the collection τ_{δ} of all δ -open sets, is a coarser topology on X.

In 1979, Kasahara[2] defined the concept of an operation α on a topological space and discussed the concept of an α -closed graph of a function. Following this, Jankovic[1] developed the concept of α -closed sets and further investigated functions with α -closed graphs in 1983. Later in 1991, Ogata[3] defined γ -open sets and studied the related topological properties of the associated topology τ_{γ} and τ . Being motivated by the above works, we introduce operation approaches on δ open sets and notions of κ -interior, κ -closure, κ -boundary and κ -exterior in topological spaces Further, we study the properties of these notions.

Sivakamasundari K

Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

II. Preliminaries

Definition 2.1 [5]

Let (X, τ) be a topological space. A subset A of is called *regular open* if A = int(cl(A)).

Definition 2.2 [6]

A subset A of a topological space (X, τ) is called *\delta-open* if it is the union of regular open sets.

III. κ-Operation

Definition 3.1

Let (X, τ) be a topological space. An operation $\kappa : \tau_s \to P(X)$ is a mapping from the family of δ -open sets (τ_s) to the power set of X such that $V \subseteq V^{\kappa}$ for every $V \in \tau_s$. Here V^{κ} denotes the value of V under κ .

Example 3.2

Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\tau_{\delta} = \{X, \phi, \{b\}, \{a, c\}\}$. Then $\kappa : \tau_{\delta} \rightarrow P(X)$ defined by $A^{\kappa} = \begin{cases} A & \text{if } a \in A \\ cl(A) & \text{if } a \notin A \end{cases}$ is a κ -operation on (X, τ) as $A \subseteq A^{\kappa}$, for every $A \in \tau_{\delta}$.

Definition 3.3

Let $A \subseteq (X, \tau)$. A point $x \in A$ is called a κ *interior* point of A iff there exist a δ -open neighbourhood N of x such that $N^{\kappa} \subseteq A$ and we denote the set of all such points by $Int_{\kappa}(A)$.

Therefore

 $Int_{\kappa}(A) = \{ x \in A \, / \, x \in N \in \tau_{\delta} \quad and \qquad N^{\kappa} \subseteq A \} \subseteq A$

Example 3.4

Let (X, τ) and κ be defined as in Example 3.2. Take $A = \{a, c\}$, then $Int_{\kappa}(A) = A$.

Definition 3.5

Let (X, τ) be a topological space and $\kappa : \tau_{\delta} \to P(X)$ be a κ -operation. A subset *A* of *X* is called κ -open if every point of *A* is a κ interior point.

Example 3.6

Let X, τ, κ and A be defined as in Example3.4. Then A is a κ -open set.

Remark 3.7

A is κ -open iff $A = Int_{\kappa}(A)$

Proof

Necessity: Let *A* be κ -open. In general, $Int_{\kappa}(A) \subseteq A$. So, it suffices to prove $A \subseteq Int_{\kappa}(A)$. Let $x \in A$. Since *A* is κ -open, there exists a δ -open neighbourhood *U* containing *x* such that $U^{\kappa} \subseteq A$. Then by Definition 3.3, $x \in Int_{\kappa}(A)$. Therefore $A \subseteq Int_{\kappa}(A)$. Hence $A = Int_{\kappa}(A)$.

Sufficiency: Let $x \in A = Int_k(A)$. Therefore there exists a δ -open neighbourhood U containing x such that $U^{\kappa} \subseteq A$. Since x is arbitrary, this is true for all $x \in A$. Hence A is κ -open.

Definition 3.8

A subset A of a topological space (X, τ) is called κ -closed if X - A is κ -open.

Example 3.9

Let X, τ, κ and A be defined as in Example 3.4. Then $X - A = \{b\}$ is κ -closed.

Definition 3.10

A point $x \in X$ is called a κ -closure point of $A \subseteq X$ if $U^{\kappa} \cap A \neq \phi$, for every δ -open neighbourhood U of x. The set of all κ -closure points is called κ -closure of A and is denoted by $Cl_{\kappa}(A)$.

Example 3.11

Let X, τ, κ and A be defined as in Example 3.2. Let $A = \{b, c\}$ then $Cl_{\kappa}(A) = \{a, b, c\} = X$.

Proposition 3.12

If $A \subseteq B$ then

(i) $Int_{\kappa}(A) \subseteq Int_{\kappa}(B)$

(ii)
$$Cl_{\kappa}(A) \subseteq Cl_{\kappa}(B)$$

Proof

Let $A \subseteq B \subseteq X$.

- (i) Let $x \in Int_{\kappa}(A)$ then there exists a δ open neighbourhood U of x such that $U^{\kappa} \subseteq A$. Since $A \subseteq B$, there exists a δ -open neighbourhood U of x such that $U^{\kappa} \subseteq B$. This implies $x \in Int_{\kappa}(B)$. Hence $Int_{\kappa}(A) \subseteq Int_{\kappa}(B)$.
- (ii) Let $x \in Cl_{\kappa}(A)$ then there exists a δ -open neighbourhood U of x such that $U^{\kappa} \cap A \neq \varphi$.

Since $A \subseteq B$, there exists a δ -open neighbourhood U of x such that $U^{\kappa} \cap B \neq \varphi$. Therefore $x \in \mathcal{A}_{\kappa}(B)$. Hence $\mathcal{A}_{\kappa}(A) \subseteq \mathcal{A}_{\kappa}(B)$.

Definition 3.13

A κ -operation $\kappa : \tau_{\delta} \to P(X)$ is called κ *regular* if for any δ -open neighbourhoods U and V of $x \in X$, there exists a δ -open neighbourhood W of x such that $U^{\kappa} \cap V^{\kappa} \supseteq W^{\kappa}$.

Definition 3.14

A κ -operation $\kappa : \tau_{\delta} \to P(X)$ is called κ -open if for every open neighbourhood U of $x \in X$, there exists a δ -open set B such that $x \in B$ and $U^{\kappa} \supseteq B$.

Definition 3.15

A topological space (X, τ) is called κ -regular if for each open neighbourhood U of $x \in X$, there exists a δ -open neighbourhood V of x such that $V^{\kappa} \subseteq U$.

Theorem 3.16

For subsets A, B of a topological space (X, τ) , the following properties are true.

(i)
$$Int_{\kappa}(Int_{\kappa}(A)) \subseteq Int_{\kappa}(A)$$

(ii)
$$Int_{\kappa}(A \cup B) \supseteq Int_{\kappa}(A) \cup Int_{\kappa}(B)$$

(iii)
$$Int_{\kappa}(A \cap B) = Int_{\kappa}(A) \cap Int_{\kappa}(B)$$
 if κ is
 κ -regular.

Proof

(i) We know that $Int_{\kappa}(A) \subseteq A$. That implies $Int_{\kappa}(Int_{\kappa}(A)) \subseteq Int_{\kappa}(A)$. (ii) We Know, $A \subseteq A \cup B$. This implies $Int_{\kappa}(A) \subseteq Int_{\kappa}(A \cup B)$. Also, $B \subseteq A \cup B \Rightarrow Int_{\kappa}(B) \subseteq Int_{\kappa}(A \cup B)$. Therefore $Int_{\kappa}(A) \cup Int_{\kappa}(B) \subseteq Int_{\kappa}(A \cup B)$.

(iii)
$$Int_{\kappa}(A \cap B) \subseteq Int_{\kappa}(A) \cap Int_{\kappa}(B)$$
 is

obvious. Let $x \in Int_{\kappa}(A) \cap Int_{\kappa}(B)$. This implies $x \in Int_{\kappa}(A)$ and $x \in Int_{\kappa}(B)$ Therefore there exist δ -open neighbourhood U, V of x such that $U^{\kappa} \subseteq A$ and $V \stackrel{\kappa}{=} B$. This implies $U^{\kappa} \cap V^{\kappa} \subseteq A \cap B$. Since κ is κ -regular, there exists a δ -open neighbourhood w of x such that $U^{\kappa} \cap V^{\kappa} \supset W^{\kappa}$. This implies $W^{\kappa} \subset A \cap B$. This $x \in Int_{\kappa}(A \cap B)$, Therefore proves Int $_{\kappa}(A \cap B) = Int_{\kappa}(A) \cap Int_{\kappa}(B)$.

Theorem 3.17

For a subset A of a topological space (X, τ) , then the following properties are true.

- (i) $Int_{\kappa}(X A) = X cl_{\kappa}(A)$
- (ii) $Cl_{\kappa}(X A) = X Int_{\kappa}(A)$
- (iii) $Int_{\kappa}(A) = X Cl_{\kappa}(X A)$

Proof

- (i) Let $x \in Int_{\kappa} (X A)$. There exists a δ open neighbourhood U of x such that $U^{\kappa} \subseteq X - A$. This implies $U^{\kappa} \cap A = \phi \Rightarrow x \notin Cl_{\kappa}(A)$ $\Rightarrow x \in X - Cl_{\kappa}(A)$ and conversely.
- (ii) Suppose if $x \notin Cl_{\kappa}(X A)$ Then there exists a δ -open neighbourhood U of x

such that $U^{\kappa} \cap (X - A) = \phi$. This implies $U^{\kappa} \subseteq A$ and thus $x \in Int_{\kappa}(A)$. Therefore $x \notin X - Int_{\kappa}(A)$ and conversely.

(iii) Suppose if $x \notin X - cl_{\kappa}(X - A)$ then $x \in Cl_{\kappa}(X - A)$. That implies there exists a δ -open neighbourhood U of x such that $U^{\kappa} \cap (X - A) \neq \phi$. This implies $U^{\kappa} \cap A = \phi \Rightarrow U^{\kappa} \subseteq A$. Hence $x \notin Int_{\kappa}(A)$ and conversely.

IV. κ -EXTERIOR AND κ -BOUNDARY

Definition 4.1

 κ -exterior of A, written as $E_{xt}_{\kappa}(A)$ is defined as $E_{xt}_{\kappa}(A) = Int_{\kappa}(X - A)$.

Definition 4.2

 κ -boundary of *A*, written as $Bd_{\kappa}(A)$ is defined as the set of points which neither belong to κ -interior of *A* nor κ -exterior of *A*.

Theorem 4.3

In any topological space (X, τ) , the following conditions are equivalent:

(i)
$$X - Bd_{\kappa}(A) = Int_{\kappa}(A) \cup Int_{\kappa}(X - A)$$

(ii)
$$Cl_{\kappa}(A) = Int_{\kappa}(A) \cup Bd_{\kappa}(A)$$

(iii)
$$Bd_{\kappa}(A) = Cl_{\kappa}(A) \cap Cl_{\kappa}(X - A)$$

$$= Cl_{\kappa}(A) - Int_{\kappa}(A)$$

Proof

(iii)
$$\Rightarrow$$
 (i) Int $_{\kappa}(A) \cup$ Int $_{\kappa}(X - A) =$

$$[Int_{\kappa}(A)]^{cc} \cup [Int_{\kappa}(X - A)]^{cc}$$

$$= \left[\left[Int_{\kappa} (A) \right]^{c} \cap \left[Int_{\kappa} (X - A) \right]^{c} \right]^{c}$$
$$= \left(Cl_{\kappa} (X - A) \cap Cl_{\kappa} (A) \right)^{c}$$
$$= \left[Bd_{\kappa} (A) \right]^{c} = X - Bd_{\kappa} (A) .$$

(i) \Rightarrow (ii)Wehave $X - Int_{\kappa} (X - A) = Int_{\kappa} (A) \cup Bd_{\kappa} (A)$.

By Theorem 3.17 (i), we obtain (ii).

(ii)
$$\Rightarrow$$
 (iii)By(ii), Bd_{\kappa} (A) = Cl_{\kappa} (A) - Int_{\kappa} (A) .
= Cl_{\kappa} (A) \cap (X - Int_{\kappa} (A)) = Cl_{\kappa} (A) \cap Cl_{\kappa} (X - A) ,
by Theorem 3.17 (ii).

Remark 4.4

From Theorem 4.3, we get $Bd_{\kappa}(A) = Bd_{\kappa}(X - A)$.

Proof

$$Bd_{\kappa}(A) = X - (Int_{\kappa}(X - A) \cup Int_{\kappa}(A))$$

Lemma 4.5

For a subset *A* of *X* , we have the following.

(i) A is κ -open iff $A \cap Bd_{\kappa}(A) = \phi$.

(ii) A is κ -closed iff $Bd_{\kappa}(A) \subseteq A$.

Proof

(i) Let *A* be
$$\kappa$$
 -open. Then $(X - A)$ is
 κ -closed. Therefore $Cl_{\kappa}(X - A) = X - A$. Next,
 $A \cap Bd_{\kappa}(A) = A \cap [Cl_{\kappa}(A) \cap Cl_{\kappa}(X - A)]$
 $= A \cap Cl_{\kappa}(A) \cap (X - A) = \phi$. Conversely, let
 $A \cap Bd_{\kappa}(A) = \phi$, then
 $A \cap Cl_{\kappa}(A) \cap Cl_{\kappa}(X - A) = \phi$ Or

 $Cl_{\kappa}(X - A) \subseteq X - A$ which implies X - A is κ -closed and hence A is κ -open.

(ii) Let A be κ -closed. Then $Cl_{\kappa}(A) = A$. Now

 $Bd_{\kappa}(A) = Cl_{\kappa}(A) \cap Cl_{\kappa}(X - A) \subseteq Cl_{\kappa}(A) = A.$ That is $Bd_{\kappa}(A) \subseteq A$. Conversely, let $Bd_{\kappa}(A) \subseteq A$. Then $Bd_{\kappa}(A) \cap (X - A) = \phi$. Since $Bd_{\kappa}(A) = Bd_{\kappa}(X - A)$, we have $Bd_{\kappa}(X - A) \cap (X - A) = \phi$. By (i) X - A is κ open and hence A is κ -closed.

Theorem 4.6

For any two subsets A, B of (X, τ) , if κ is regular, then

(i)
$$ext_{\kappa}(A \cup B) = ext_{\kappa}(A) \cap ext_{\kappa}(B)$$

(ii)
$$bd_{\kappa}(A \cup B) = [bd_{\kappa}(A) \cap cl_{\kappa}(X - B)] \cup [bd_{\kappa}(B) \cap cl_{\kappa}(X - A)]$$

(iii)
$$bd_{\kappa}(A \cap B) = [bd_{\kappa}(A) \cap cl_{\kappa}(B)] \cup [bd_{\kappa}(B) \cap cl_{\kappa}(A)]$$

Proof

(i)
$$ext_{\kappa} (A \cup B) = Int_{\kappa} (X - (A \cup B))$$
$$= Int_{\kappa} ((X - A) \cap (X - B))$$
$$= Int_{\kappa} (X - A) \cap Int_{\kappa} (X - B), \text{ by } (3.3),$$
since κ is regular.

$$= ext_{\kappa}(A) \cap ext_{\kappa}(B)$$

(ii) Consider

 $\begin{aligned} bd_{\kappa} \left(A \cup B \right) &= cl_{\kappa} \left(A \cup B \right) \cap cl_{\kappa} \left(X - (A \cup B) \right) \\ &= \left(cl_{\kappa} \left(A \right) \cup cl_{\kappa} \left(B \right) \right) \cap cl_{\kappa} \left(\left(X - A \right) \cap cl_{\kappa} \left(X - B \right) \right) \\ &= \left(cl_{\kappa} \left(A \right) \cup cl_{\kappa} \left(B \right) \right) \cap \left[cl_{\kappa} \left(X - A \right) \cap cl_{\kappa} \left(X - B \right) \right] \\ &= \left(cl_{\kappa} (A) \cap cl_{\kappa} (X - A) \right) \cap \left(cl_{\kappa} (X - B) \cup cl_{\kappa} (B) \right) \cap \left[cl_{\kappa} (X - A) \cap cl_{\kappa} (X - B) \right] \\ &= \left[bd_{\kappa} \left(A \right) \cap cl_{\kappa} \left(X - B \right) \right] \cup \left[bd_{\kappa} \left(B \right) \cap cl_{\kappa} \left(X - A \right) \right] \end{aligned}$

(iii)

$$\begin{split} bd_{\kappa}\left(A \cap B\right) &= cl_{\kappa}\left(A \cap B\right) \cap cl_{\kappa}\left(X - (A \cap B)\right) \\ &= \left(cl_{\kappa}\left(A\right) \cap cl_{\kappa}\left(B\right)\right) \cap cl_{\kappa}\left(\left(X - A\right) \cup cl_{\kappa}\left(X - B\right)\right) \\ &= \left(cl_{\kappa}\left(A\right) \cap cl_{\kappa}\left(B\right)\right) \cap \left[cl_{\kappa}\left(X - A\right) \cup cl_{\kappa}\left(X - B\right)\right] \\ &= \left(\left[cl_{\kappa}(A) \cap cl_{\kappa}(B)\right] \cap cl_{\kappa}(X - A)\right) \cup \left(\left[cl_{\kappa}(A) \cap cl_{\kappa}(B)\right] \cap cl_{\kappa}(X - B)\right] \\ &= \left[bd_{\kappa}\left(A\right) \cap cl_{\kappa}\left(B\right)\right] \cup \left[cl_{\kappa}\left(A\right) \cap bd_{\kappa}\left(B\right)\right] \,. \end{split}$$

We also note the following:

(i)
$$ext_{\kappa}(X - ext_{\kappa}(A)) = ext_{\kappa}(A)$$
.

(ii) $ext_{\kappa}(A \cap B) \supseteq ext_{\kappa}(A) \cup ext_{\kappa}(B)$.

Lemma 4.7

(i)
$$cl_{\kappa}(A-B) \supseteq cl_{\kappa}(A) - cl_{\kappa}(B)$$
.

(ii)
$$Int_{\kappa}(A-B) \subseteq Int_{\kappa}(A) - Int_{\kappa}(B)$$

(iii) If
$$A$$
 is κ -open, then
 $A \cap cl_{\kappa}(B) \subseteq cl_{\kappa}(A \cap B)$.

Proof

- (i) Let $x \in cl_{\kappa}(A) cl_{\kappa}(B)$. Then $x \in cl_{\kappa}(A)$ a nd $x \notin cl_{\kappa}(B)$. Therefore there exists an open neighbourhood U of x such that $U^{\kappa} \cap A \neq \varphi$, $U^{\kappa} \cap B \neq \varphi$. This gives $U^{\kappa} \cap (A - B) \neq \phi$ or $x \in cl_{\kappa}(A - B)$. This proves (i).
- (ii) follows easily from (i).
- (iii) Since A is κ -open, $A = Int_{\kappa}(A)$.

Now
$$A \cap cl_{\kappa}(B) = cl_{\kappa}(B) \cap Int_{\kappa}(A)$$

$$= cl_{\kappa}(B) - (X - Int_{\kappa}(A))$$

$$= cl_{\kappa}(B) - Cl_{\kappa}(X - A)$$

$$\subseteq cl_{\kappa} (B - (X - A))$$

 $= cl_{\kappa}(B \cap A) = cl_{\kappa}(A \cap B)$ or

 $A \cap cl_{\kappa}(B) \subseteq cl_{\kappa}(A \cap B)$. This completes the proof.

V REFERENCES

- Jankovic, D.S., On functions with αclosed graphs, Glasnic Mat., 18 (1983), 141-148.
- [2] Kasahara, S., Operation- compact spaces, Math. Japonica, 24 (1979), 97-105.
- [3] Ogata, H., Operations on topological spaces and associated topology, Math. Japonica, 36(1) (1991), 175-184.
- [4] Rehman, F.U. and Ahmad, B., Operations on Topological Spaces-I, Mathematics Today, 10 (1992), 29-36.
- [5] Stone, M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937) 374-481.
- [6] Velicko, N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103-118.