Fuzzy γ^* Generalized Continuous Mappings

Keerthana.R

Department of Mathematics Avinashilingam (Deemed to be) University, Coimbatore, Tamilnadu, India.

Abstract: In this paper we have introduced fuzzy γ^* generalized continuous mappings and investigated some of their properties.

Keywords: fuzzy topology, fuzzy $\gamma^*T_{1/2}$ space, fuzzy $\gamma^*_cT_{1/2}$ space, fuzzy $\gamma^*_pT_{1/2}$ space, fuzzy γ^* generalized continuous mappings.

1. Introduction

The concept of fuzzy set and fuzzy set operations were introduced by Zadeh [10]. The fuzzy topological space using the concept of fuzzy sets was introduced by Chang [3]. In this paper we have introduced fuzzy γ^* generalized continuous mappings and investigated some of their properties.

2. Preliminaries

Definition 2.1: [10] Let X be a non-empty set. A fuzzy set A in X is characterized by its membership function $\mu_A : X \rightarrow [0, 1]$ and $\mu_A(x)$ is interpreted as the degree of member of element x in a fuzzy set A, for each $x \in$

Jayanthi.D

Department of Mathematics Avinashilingam (Deemed to be) University, Coimbatore, Tamilnadu, India.

X. It is clear that A is determined by the set of tuples of A = {(x, $\mu_A(x)$) : x \in X }.

Definition 2.2: [10] Let A and B be two fuzzy sets A = { $(x, \mu_A(x)) : x \in X$ } and B = { $(x, \mu_B(x)) : x \in X$ }. Then, their union A \lor B, intersection A \land B and complement A^c are also fuzzy sets with membership functions defined as follows :

- (a) $\mu_{A}{}^{c}(x) = 1 \mu_{A}(x), \forall x \in X,$
- (b) $\mu_{A \vee B}(x) = \max{\{\mu_A(x), \mu_B(x)\}}, \forall x \in X,$
- (c) $\mu_{A \wedge B}(x) = \min \{\mu_A(x), \mu_B(x)\}, \forall x \in X.$

Further,

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x), \forall x \in X$,
- (b) A = B if and only if $\mu_A(x) = \mu_B(x), \forall x \in X.$

Definition 2.3: [3] A family τ of fuzzy sets is called fuzzy topology (FT) for X if it satisfy the three axioms:

(a) $\overline{0}, \overline{1} \in \tau$ (b) $\forall A, B \in \tau \Rightarrow A \land B \in \tau$ (c) $\forall (A_j)_{j \in J} \in \tau \Rightarrow \bigvee_{j \in J} A_j \in \tau$

The pair (X, τ) is called a fuzzy topological space (FTS). The elements of τ are called fuzzy open sets in X and their respective complements are called fuzzy closed sets of (X, τ) .

Definition 2.4: [6] A fuzzy set A in a FTS (X, τ) is said to be a

- (a) fuzzy γ closed set (F γ CS) if cl(int(A)) \wedge int(cl(A)) \leq A
- (b) fuzzy γ open set (F γ OS) if A \leq int(cl(A)) V cl(int(A))

Definition 2.5: [6] Let A be a fuzzy set in a FTS X. Then we define the γ interior and γ closure as

 $\gamma cl(A) = \Lambda \{ B : B \ge A, B \text{ is a}$ fuzzy γ closed set in X} $\gamma int(A) = V \{ B : B \le A, B \text{ is a}$

Properties 2.6: [6] Let A be a fuzzy set in a FTS X. Then

$$\gamma cl(A^c) = (\gamma int(A))^c$$

 $\gamma int(A^c) = (\gamma cl(A))^c$

fuzzy γ open set in X}.

Definition 2.7: [7] A fuzzy set A is quasicoincident with a fuzzy set B, denoted by A_qB , if there exists $x \in X$ such that A(x)+B(x) > 1. **Definition 2.8:** [7] If A and B are not quasicoincident then we write $A_{\bar{q}}B$ and $A \le B \iff A_{\bar{q}}(1-B)$.

Definition 2.9: [9] A fuzzy point \tilde{p} in a set X is also a fuzzy set with membership function:

$$\mu_{\widetilde{p}}(x) = \begin{cases} r, & \text{for } x = y \\ 0, & \text{for } x \neq y \end{cases}$$

where $x \in X$ and $0 < r \le 1$, y is called the support of \tilde{p} and r the value of \tilde{p} . We denote this fuzzy point by x_r or \tilde{p} . A fuzzy point x_r is said to be belonged to a fuzzy subset \tilde{A} in X, denoted by $x_r \in \tilde{A}$ if and only if $r \le \mu_{\tilde{A}}(x)$.

Definition 2.10:[5] An fuzzy set A of a FTS (X, τ) is said to be a fuzzy γ^* generalized closed set (F γ^* GCS) if cl(int(A)) \wedge int(cl(A)) \leq U, whenever A \leq U and U is a fuzzy open set in X.

The complement A^c of a $F\gamma^*GCS$ A in a FTS (X, τ) is called fuzzy γ^* generalized open set ($F\gamma^*GOS$) in X.

The family of all $F\gamma$ *GOSs of a FTS (X, τ) is denoted by $F\gamma$ *GO(X).

Definition 2.11: [8] Let f be a function from a FTS (X, τ_1) into a FTS (Y, τ_2). The map f is said to be fuzzy continuous if every U \in τ_2 , f⁻¹ (U) $\in \tau_1$.

3. Fuzzy γ* Generalized Continuous Mappings

In this section we have introduced fuzzy γ^* generalized continuous mappings and investigated some of their properties.

Definition 3.1: A mapping f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ is called a fuzzy γ^* generalized continuous (F γ^* G continuous) mapping if f⁻¹(V) is a F γ^* GCS in (X, τ_1) for every FCS V of (Y, τ_2) .

Example 3.2: Let X = {a, b} and Y = {u, v}. Then $\tau_1 = \{\overline{0}, \overline{1}, G_1\}$ and $\tau_2 = \{\overline{0}, \overline{1}, G_2\}$ are FTs on X and Y respectively, where G₁ = $\langle x, (0.5_a, 0.5_b) \rangle$ and G₂ = $\langle y, (0.6_u, 0.6_v) \rangle$. Then (X, τ_1) and (Y, τ_2) are FTSs. Define a mapping f: (X, τ_1) \rightarrow (Y, τ_2) by f(a) = u, f(b) = v. The fuzzy set G₂^c = $\langle y, (0.4_u, 0.4_v) \rangle$ is a FCS in Y. Then f ¹(G₂^c) = $\langle x, (0.4_a, 0.4_b) \rangle$ is a F γ *GCS in (X, τ_1) as f¹(G₂^c) \leq G₁ and cl(int(f¹(G₂^c)))) \land int(cl(f¹(G₂^c))) = $\overline{0} \leq$ G₁, where G₁ is a FOS in X. Therefore f is a fuzzy γ *G continuous mapping.

Theorem 3.3: Every fuzzy continuous mapping is a fuzzy γ^*G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy continuous mapping. Let V be a FCS in Y. Then f⁻¹(V) is a FCS in X. Since every FCS is a F γ *GCS [5], f⁻¹(V) is a F γ *GCS in X. Hence f is a fuzzy γ *G continuous mapping. **Example 3.4:** In Example 3.2, $f^{1}(G_{2}^{c})$ is a fuzzy $\gamma^{*}G$ continuous mapping but not a fuzzy continuous mapping in X, as G_{2}^{c} is a FCS in Y but $f^{-1}(G_{2}^{c})$ is not a FCS in X.

Theorem 3.5: Every fuzzy semi continuous mapping is a fuzzy γ *G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy semi continuous mapping [1]. Let V be a FCS in Y. Then f ⁻¹(V) is a FSCS in X. Since every FSCS is a F γ *GCS [5], f ⁻¹(V) is a F γ *GCS in X. Hence f is a fuzzy γ *G continuous mapping.

Example 3.6: In Example 3.2, $f^{1}(G_{2}^{c})$ is a fuzzy $\gamma^{*}G$ continuous mapping but not a fuzzy semi continuous mapping in X, as G_{2}^{c} is a FSCS in Y but $f^{1}(G_{2}^{c})$ is not a FSCS in X.

Theorem 3.7: Every fuzzy pre continuous mapping is a fuzzy γ *G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy pre continuous mapping [2]. Let V be a FCS in Y. Then f⁻¹(V) is a FPCS in X. Since every FPCS is a F γ *GCS [5], f⁻¹(V) is a F γ *GCS in X. Hence f is a fuzzy γ *G continuous mapping. **Example 3.8:** Let X = {a, b} and Y = {u, v}. Then $\tau_1 = \{\overline{0}, \overline{1}, G_1\}$ and $\tau_2 = \{\overline{0}, \overline{1}, G_2\}$ are FTs on X and Y respectively, where G₁ = $\langle x, (0.5_a, 0.5_b) \rangle$ and G₂ = $\langle x, (0.4_a, 0.4_b) \rangle$ and G₃ = $\langle y, (0.6_u, 0.5_v) \rangle$. Then (X, τ_1) and (Y, τ_2) are FTSs. Define a mapping f: (X, τ_1) \rightarrow (Y, τ_2) by f(a) = u, f(b) = v. Then f is a fuzzy γ *G continuous mapping but not a fuzzy pre continuous mapping as cl(int(f⁻¹(G₃^c))) = G₁^c $\leq f^{-1}(G_3^{c})$.

Theorem 3.9: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a mapping and f⁻¹(A) be a FRCS in X for every FCS A in Y. Then f is a fuzzy γ^*G continuous mapping but not conversely in general.

Proof: Let A be a FCS in Y and f⁻¹(A) is a FRCS in X. Since every FRCS is a $F\gamma^*GCS$ [5], f⁻¹(A) is a $F\gamma^*GCS$ in X. Hence f is a fuzzy γ^*G continuous mapping.

Example 3.10: In Example 3.8, $f^{1}(G_{3}^{c})$ is a fuzzy $\gamma^{*}G$ continuous mapping but not a mapping as in Theorem 3.9.

Theorem 3.11: Every fuzzy α continuous mapping is a fuzzy γ *G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy α continuous mapping [2]. Let V be a FCS in

Y. Then f⁻¹(V) is a F α CS in X. Since every F α CS is a F γ *GCS [5], f⁻¹(V) is a F γ *GCS in X. Hence f is a fuzzy γ *G continuous mapping.

Example 3.12: Let X = {a, b} and Y = {u, v}. Then $\tau_1 = \{\overline{0}, \overline{1}, G_1\}$ and $\tau_2 = \{\overline{0}, \overline{1}, G_2\}$ are FTs on X and Y respectively, where G₁ = $\langle x, (0.5_a, 0.5_b) \rangle$ and G₂ = $\langle x, (0.6_a, 0.6_b) \rangle$ and G₃ = $\langle y, (0.5_u, 0.6_v) \rangle$. Then (X, τ_1) and (Y, τ_2) are FTSs. Define a mapping f: (X, τ_1) \rightarrow (Y, τ_2) by f(a) = u, f(b) = v. Then f is a fuzzy γ *G continuous mapping but not a fuzzy α continuous mapping as cl(int(cl(f⁻¹(G₃^c)))) = G₁^c \leq f⁻¹(G₃^c).

Theorem 3.13: Every fuzzy γ continuous mapping is a fuzzy γ *G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy γ continuous mapping [4]. Let V be a FCS in Y. Then $f^{-1}(V)$ is a F γ CS in X. Since every F γ CS is a F γ *GCS [5], $f^{-1}(V)$ is a F γ *GCS in X. Hence f is a fuzzy γ *G continuous mapping.

Example 3.14: Let $X = \{a, b\}$ and $Y = \{u, v\}$. Then $\tau_1 = \{\overline{0}, \overline{1}, G_1\}$ and $\tau_2 = \{\overline{0}, \overline{1}, G_2\}$ are FTs on X and Y respectively, where $G_1 = \langle x, (0.3_a, 0.3_b) \rangle$ and $G_2 = \langle x, (0.5_a, 0.5_b) \rangle$ and $G_3 = \langle y, (0.6_u, 0.6_u) \rangle$

0.6_v)⟩. Then (X, τ_1) and (Y, τ_2) are FTSs. Define a mapping f: (X, τ_1) → (Y, τ_2) by f(a) = u, f(b) = v. Then f is a fuzzy γ *G continuous mapping but not a fuzzy γ continuous mapping as cl(int(f¹(G₃^c))) ∧ int(cl(f¹(G₃^c))) = G₂ \leq f¹(G₃^c).

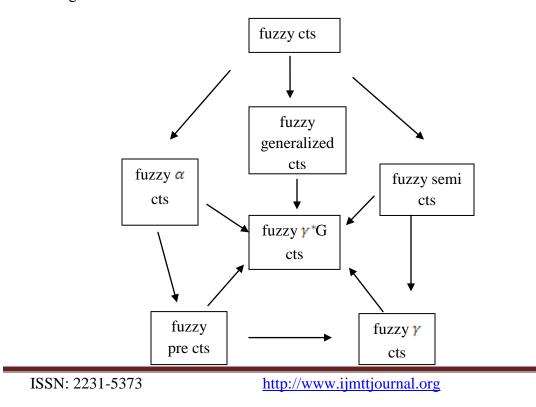
Theorem 3.15: Every fuzzy g continuous mapping is a fuzzy γ *G continuous mapping but not conversely in general.

Proof: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy g continuous mapping [3]. Let V be a FCS in Y. Then f⁻¹(V) is a FGCS in X. Since every FGCS is a F γ *GCS [5], f⁻¹(V) is a F γ *GCS

in X. Hence f is a fuzzy γ^*G continuous mapping.

Example 3.16: Let X = {a, b} and Y = {u, v}. Then $\tau_1 = \{\overline{0}, \overline{1}, G_1\}$ and $\tau_2 = \{\overline{0}, \overline{1}, G_2\}$ are FTs on X and Y respectively, where $G_1 = \langle x, (0.6_a, 0.5_b) \rangle$ and $G_2 = \langle x, (0.4_a, 0.4_b) \rangle$ and $G_3 = \langle y, (0.4_u, 0.5_v) \rangle$. Then (X, τ_1) and (Y, τ_2) are FTSs. Define a mapping f: (X, τ_1) \rightarrow (Y, τ_2) by f(a) = u, f(b) = v. Then f is a fuzzy γ^*G continuous mapping but not a fuzzy g continuous mapping as $cl(f^{-1}(G_3^{c})) = G_2^{-c} \leq G_1$.

The relation between various types of fuzzy continuity is given in the following diagram. In this diagram 'cts' means continuous



Page 83

Theorem 3.17: A mapping f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy γ^*G continuous mapping if and only if the inverse image of each FOS in Y is a $F\gamma^*GOS$ in X.

Proof: Necessity: Let A be a FOS in Y. Then A^c is a FCS in Y. Since f is a fuzzy γ^*G continuous mapping, $f^{-1}(A^c)$ is a $F\gamma^*GCS$ in X. Since $f^{-1}(A^c) = (f^{-1}(A))^c$, $f^{-1}(A)$ is a $F\gamma^*GOS$ in X.

Sufficiency: Let A be a FCS in Y. Then A^c is a FOS in Y. By hypothesis $f^1(A^c)$ is a $F\gamma^*GOS$ in X. Since $f^1(A^c) = (f^1(A))^c$, $f^1(A)$ is a $F\gamma^*GCS$ in X. Hence f is a fuzzy γ^*G continuous mapping.

Theorem 3.18: If f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy γ^*G continuous mapping then for each FP $\mu_{\tilde{p}}(x)$ of X and each A $\in \tau_2$ such that $f(\mu_{\tilde{p}}(x)) \in A$, there exists a F γ^* GOS B of X such that $\mu_{\tilde{p}}(x) \in B$ and $f(B) \leq A$.

Proof: Let $\mu_{\tilde{p}}(x)$ be a FP of X and $A \in \tau_2$ such that $f(\mu_{\tilde{p}}(x)) \in A$. Put $B = f^{-1}(A)$. Then by hypothesis, B is a $F\gamma^*GOS$ in X such that $\mu_{\tilde{p}}(x) \in B$ and $f(B) = f(f^{-1}(A)) \leq A$.

Theorem 3.19: If f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy γ^*G continuous mapping then for each FP $\mu_{\tilde{p}}(x)$ of X and each $A \in \tau_2$ such that $f(\mu_{\tilde{p}}(x))_q A$, there exists a $F\gamma^*GOS B$ of X such that $\mu_{\tilde{p}}(x))_q B$ and $f(B) \leq A$.

Proof: Let $\mu_{\tilde{p}}(x)$ be a FP of X and $A \in \tau_2$ such that $f(\mu_{\tilde{p}}(x))_q A$. Put $B = f^{-1}(A)$. Then by hypothesis, B is a $F\gamma^*GOS$ in X such that $\mu_{\tilde{p}}(x)_q B$ and $f(B) = f(f^{-1}(A)) \leq A$.

Definition 3.20: If every $F\gamma$ *GCS in (X, τ) is a $F\gamma$ CS in (X, τ), then the space can be called as a fuzzy γ * T_{1/2} (F γ * T_{1/2})space.

Example 3.21: Let X = {a, b} and $\tau = {\overline{0}, \overline{1}, G_1, G_2}$ be a FT on X, where $G_1 = \langle x, (0.6_a, 0.5_b) \rangle$, $G_2 = \langle x, (0.6_a, 0.6_b) \rangle$. Then $\tau = {\overline{0}, \overline{1}, G_1, G_2}$ is a FT on X and the space (X, τ) is a fuzzy $\gamma *T_{1/2}$ space.

Definition 3.22: A FTS (X, τ) is a fuzzy $\gamma *_{c}T_{1/2}$ (F $\gamma *_{c}T_{1/2}$) space if every F $\gamma *$ GCS is a FCS in X.

Definition 3.23: A FTS (X, τ) is a fuzzy $\gamma^*{}_pT_{1/2}(F\gamma^*{}_pT_{1/2}$ in short) space if every $F\gamma^*GCS$ is a FPCS in X.

Theorem 3.24: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy γ^*G continuous mapping, then

- (i) f is a fuzzy γ continuous mapping if X is a F $\gamma^*T_{1/2}$ space
- (ii) f is a fuzzy continuous mapping if X is a $F\gamma^*{}_cT_{1/2}$ space
- (iii) f is a fuzzy pre continuous mapping if X is a $F\gamma *_{p}T_{1/2}$ space

Proof: (i) Let V be a FCS in Y. Then $f^{-1}(V)$ is a $F\gamma^*GCS$ in X, by hypothesis. Since X is a $F\gamma^*T_{1/2}$ space, $f^{-1}(V)$ is a $F\gamma CS$ in X. Hence f is a fuzzy γ continuous mapping.

(ii) Let V be a FCS in Y. Then $f^{-1}(V)$ is a $F\gamma^*GCS$ in X, by hypothesis. Since X is a $F\gamma^*_cT_{1/2}$ space, $f^{-1}(V)$ is a FCS in X. Hence f is a fuzzy continuous mapping.

(iii) Let V be a FCS in Y. Then $f^{-1}(V)$ is a $F\gamma^*GCS$ in X, by hypothesis. Since X is a $F\gamma^*{}_pT_{1/2}$ space, $f^{-1}(V)$ is a FPCS in X. Hence f is a fuzzy pre continuous mapping.

Theorem 3.25: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a fuzzy γ^*G continuous mapping and g: $(Y, \tau_2) \rightarrow (Z, \tau_3)$ be a fuzzy continuous mapping then $g \circ f : (X, \tau_1) \rightarrow (Z, \tau_3)$ is a fuzzy γ^*G continuous mapping.

Proof: Let V be a FCS in Z. Then $g^{-1}(V)$ is a FCS in Y, by hypothesis. Since f is a fuzzy γ^*G continuous mapping, $f^{-1}(g^{-1}(V))$ is a F γ^*GCS in X. Hence $g \circ f$ is a fuzzy γ^*G continuous mapping.

Theorem 3.26: The composition of two fuzzy γ^*G continuous mapping is a fuzzy γ^*G continuous mapping if Y is a $F\gamma^*_cT_{1/2}$ space.

Proof: Let V be a FCS in Z. Then $g^{-1}(V)$ is a $F\gamma^*GCS$ in Y, by hypothesis. Since Y is a

 $F\gamma^*{}_cT_{1/2}$ space, $g^{-1}(V)$ is a FCS in Y. Therefore $f^{-1}(g^{-1}(V))$ is a $F\gamma^*GCS$ in X, by hypothesis. Hence $g \circ f$ is a fuzzy γ^*G continuous mapping.

Theorem 3.27: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a mapping. Then the following conditions are equivalent if X and Y are $F\gamma^*T_{1/2}$ spaces:

- (i) f is a fuzzy γ*G continuous mapping
- (ii) $f^{-1}(B)$ is a $F\gamma^*GOS$ in X for each FOS B in Y
- (iii) for each FP $\mu_{\tilde{p}}(x)$ in X and for every FOS B in Y such that $f(\mu_{\tilde{p}}(x)) \in B$, there exists a F γ *GOS A in X such that $\mu_{\tilde{p}}(x) \in A$ and $f(A) \leq B$.

Proof: (i) \Leftrightarrow (ii) is obvious from the Theorem 3.17.

(ii) \Rightarrow (iii) Let B be any FOS in Y and let $\mu_{\tilde{p}}(x) \in X$. Given $f(\mu_{\tilde{p}}(x)) \in B$. By hypothesis $f^{-1}(B)$ is a $F\gamma^*GOS$ in X. Take A $= f^{-1}(B)$. Then $\mu_{\tilde{p}}(x) \in f^{-1}(B) = A$. This implies $\mu_{\tilde{p}}(x) \in A$ and $f(A) = f(f^{-1}(B)) \leq B$.

(iii) \Rightarrow (ii) Let A be a FCS in Y. Then its complement, say B is a FOS in Y. Let $\mu_{\tilde{p}}(x)$ \in X and $f(\mu_{\tilde{p}}(x)) \in B$. Then there exists a $F\gamma^*GOS$, say C in X such that $\mu_{\tilde{p}}(x) \in C$ and $f(C) \leq B$. Therefore $\mu_{\tilde{p}}(x) \in C \leq f^{-1}(B)$ and hence $f^{-1}(B)$ is a $F\gamma^*GOS$ in X, by Theorem 3.18. That is $f^{1}(A^{c})$ is a $F\gamma^{*}GOS$ in X and hence $f^{1}(A)$ is a $F\gamma^{*}GCS$ in X. Thus f is a fuzzy $\gamma^{*}G$ continuous mapping.

Theorem 3.28: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a mapping. Then the following conditions are equivalent if X and Y are $F\gamma^*T_{1/2}$ spaces:

- (i) f is a fuzzy γ*G continuous mapping
- (ii) $cl(int(f^{-1}(B))) \land int(cl(f^{-1}(B))) \le f^{-1}(cl(B))$ for each FCS B in Y
- (iii) $f^{1}(int(B)) \leq cl(int(f^{1}(B))) \vee$ int(cl(f^{1}(B))) for each FOS B in Y
- (iv) $f(int(cl(A)) \land cl(int(A))) \le cl(f(A))$ for each FS A of X.

Proof: (i) \Rightarrow (ii) Let B be a FCS in Y. Then $f^{1}(B)$ is a $F\gamma^{*}GCS$ in X. Since X is a $F\gamma^{*}T_{1/2}$ space, $f^{1}(B)$ is a $F\gamma CS$ in X. Therefore $cl(int(f^{1}(B))) \land int(cl(f^{1}(B))) \leq$ $f^{1}(B) = f^{1}(cl(B)).$

(ii) \Rightarrow (iii) can be easily proved by taking complement in(ii).

(iii) \Rightarrow (iv) Let $A \in X$. Then B = f(A) in Y and therefore $A \leq f^{1}(f(A)) \leq f^{1}(B)$. Here int(f(A)) = int(B) is a FOS in Y. Then (iii) implies that $f^{1}(int(B)) \leq cl(int(f^{1}(int(B))))$ \lor int($cl(f^{1}(int(B)))) \leq cl(int(f^{1}(B))) \lor$ int($cl(f^{1}(B)))$. Now ($cl(int(A^{c})) \lor$
$$\begin{split} & \operatorname{int}(\operatorname{cl}(A^c)))^c &\leq (\operatorname{cl}(\operatorname{int}(f^1(B^c)) \vee \\ & \operatorname{int}(\operatorname{cl}(f^1(B^c))))^c \leq (f^1(\operatorname{int}(B^c)))^c. \text{ Therefore} \\ & \operatorname{int}(\operatorname{cl}(A)) \wedge \operatorname{cl}(\operatorname{int}(A)) \leq f^1(\operatorname{cl}(B)). \text{ Now} \\ & f(\operatorname{int}(\operatorname{cl}(A)) \wedge \operatorname{cl}(\operatorname{int}(A))) \leq f(f^1(\operatorname{cl}(B))) \leq \\ & \operatorname{cl}(f(A)). \end{split}$$

(iv) \Rightarrow (i) Let B be any FCS in Y, then f¹(B) is a FS in X. By hypothesis f(int(cl(f¹(B)))) \land cl(int(f¹(B)))) \leq cl(f(f¹(B))) \leq cl(B) = B. Now (int(cl(f¹(B))) \land cl(int(f¹(B)))) \leq f¹(f(int(cl(f¹(B))) \land cl(int(f¹(B)))) \leq f¹(B). This implies f¹(B) is a F γ CS and hence it is a F γ *GCS in X. Thus f is a fuzzy γ *G continuous mapping.

Theorem 3.29: A mapping f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ is a fuzzy γ^*G continuous mapping if $cl(int(cl(f^1(A)))) \leq f^1(cl(A))$ for every FS A in Y.

Proof: Let A be a FCS in Y. By hypothesis, $cl(int(cl(f^{1}(A)))) \leq f^{1}(cl(A)) = f^{1}(A)$. Therefore $f^{1}(A)$ is a F α CS and hence it is a F γ *GCS. Thus f is a fuzzy γ *G continuous mapping.

Theorem 3.30: Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a mapping from a FTS X into a FTS Y. Then the following conditions are equivalent if X is a $F\gamma^*T_{1/2}$ space:

i. f is a fuzzy γ^* G continuous mapping

ii. $cl(int(f^{1}(A))) \land int(cl(f^{1}(A))) \le f^{1}(cl(A))$ for every FS A in Y

Proof: (i) \Rightarrow (ii) Let A be a FS in Y. Then cl(A) is a FCS in Y. By hypothesis, f ¹(cl(A)) is a $F\gamma^*GCS$ in X. Since X is a $F\gamma^*T_{1/2}$ space, $f^{-1}(cl(A))$ is a $F\gamma CS$ in X. $cl(int(f^{1}(cl(A))))$ Therefore Λ $int(cl(f^{-1}(cl(A))))$ \leq $f^{-1}(cl(A)).$ Now $cl(int(f^{-1}(A)))$ $int(cl(f^{-1}(A)))$ ٨ \leq $cl(int(f^{-1}(cl(A)))) \land int(cl(f^{-1}(cl(A)))) \leq$ $f^{1}(cl(A)).$

(ii) \Rightarrow (i) Let A be a FCS in Y. By hypothesis $cl(int(f^{-1}(A))) \land int(cl(f^{-1}(A))) \le f^{-1}(cl(A)) = f^{-1}(A)$. This implies $f^{-1}(A)$ is a F γ CS in X and hence it is a F γ *GCS. Thus f is a fuzzy γ *G continuous mapping.

References

- K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl, , 1981, pp. 14-32.
- [2] A. S. Bin Shanana, On fuzzy strongly semi-continuity and fuzzy precontinuity, Fuzzy sets and systems, 1991,pp. 303-308.

- [3] C. L .Chang, Fuzzy Topological Spaces, Journal of Mathematical Analysis Appl, 1968, pp. 182-190.
- [4] I. M., Hanafy. Fuzzy γ-open sets and fuzzy γ-continuity, J. Fuzzy Math., 1999, pp. 419-430.
- [5] R. Keerthana and D. Jayanthi. On fuzzy γ^* generalized closed sets in fuzzy topological spaces, International Journal of Mathematics Trends and Technology, 2017, pp. 439-444.
- [6] LuayA. Al. Swidi and AmedS. A. Oon, On fuzzy γ open sets and fuzzy γ closed sets, Americal Journal of scientific research, 2011, pp. 62-67.
- [7] Pao-Ming Pu, and Ying-Ming Liu, Fuzzy Topology-I, Neighbourhood structure of fuzzy point and Moore-smith Convergence, J. Math. Anal. Appl. 1980, pp. 571-599..
- [8] Pao-Ming Pu, and Ying-Ming Liu, Fuzzy Topology-II, Product and Quotient spaces, J. Math. Anal. Appl, 1980, pp. 20-37.
- [9] S. N. L. Rekhasrivastava, and Arun. K. Srivastasva, Fuzzy Hausdorff Topological Spaces, Math. Anal. Appl., 1981, pp. 497-506.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control, 1965, pp.338-353.