α Generalized Closed Sets in Neutrosophic Topological Spaces

D. Jayanthi

Department of Mathematics Avinashilingam (Deemed to be) University, Tamilnadu, India

Abstract: In this paper a new concept of neutrosophic closed sets called neutrosophic α generalized closed sets is introduced and their properties are thoroughly studied and analyzed. Some new interesting theorems based on the newly introduced set are presented.

Mathematics Subject Classification (2000): 54A40, 03E72

Keywords: Neutrosophic sets, neutrosophic topology, neutrosophic α generalized closed sets.

1. Introduction

The concept of neutrosophic sets was first introduced by Floretin Smarandache [3] in 1999 which is a generalization of intuitionistic fuzzy sets by Atanassov [1]. A. A. Salama and S. A. Alblowi [6] introduced the concept of neutrosophic topological spaces after Coker [2] introduced intuitionistic fuzzy topological spaces . Further the basic sets like semi open sets, pre open sets, α open sets and semi- α open sets are introduced in neutrosophic topological spaces and their properties are studied by various authors [4,5]. The purpose of this paper is to introduce and analyze a new concept of neutrosophic closed sets called neutrosophic α generalized closed sets.

2. Preliminaries:

Here in this paper the neutrosophic topological space is denoted by (X, τ) . Also the neutrosophic interior, neutrosophic closure of a neutrosophic set A are denoted by NInt(A) and NCl(A). The complement of a neutrosophic set A is denoted by C(A) and the empty and whole sets are denoted by 0_N and 1_N respectively.

Definition 2.1: Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the form $A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle: x \in X\}$ where $\mu_A(x)$, $\sigma_A(x)$ and $\nu_A(x)$ represent the degree of membership, degree of indeterminacy and the degree of non-

membership respectively of each element $x \in X$ to the set A.

A Neutrosophic set A = { $\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle$: $x \in X$ } can be identified as an ordered triple $\langle \mu_A, \sigma_A, \nu_A \rangle$ in]⁻⁰, 1⁺[on X.

Definition 2.2: Let $A = \langle \mu_A, \sigma_A, \nu_A \rangle$ be a NS on X, then the complement C(A) may be defined as

- 1. C (A) = { $\langle x, 1-\mu_A(x), 1-\nu_A(x) \rangle$: $x \in X$ }
- 2. C (A) = { $\langle x, v_A(x), \sigma_A(x), \mu_A(x) \rangle$: $x \in X$ }
- 3. C (A) = { $\langle x, v_A(x), 1 \sigma_A(x), \mu_A(x) \rangle$: $x \in X$ }

Note that for any two neutrosophic sets A and B,

- 4. $C(A \cup B) = C(A) \cap C(B)$
- 5. $C(A \cap B) = C(A) \cup C(B)$

Definition 2.3: For any two neutrosophic sets $A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), \sigma_B(x), \nu_B(x) \rangle : x \in X\}$ we may have

- $\begin{array}{ll} 1. \quad A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \ \sigma_A(x) \leq \sigma_B(x) \ \text{and} \\ \nu_A(x) \geq \nu_B(x) \ \forall \ x \in X \end{array}$
- $\begin{array}{ll} 2. \quad A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \ \sigma_A(x) \geq \sigma_B(x) \ \text{and} \\ \nu_A(x) \geq \nu_B(x) \ \forall \ x \in X \end{array}$
- $\begin{array}{ll} 3. \quad A \cap B = \langle x, \, \mu_A(x) \wedge \, \mu_B(x), \, \sigma_A(x) \wedge \sigma_B(x) \ , \\ \nu_A(x) \lor \nu_B(x) \, \rangle \end{array}$
- $\begin{array}{ll} 4. \quad A \cap B = \langle x, \ \mu_A(x) \land \ \mu_B(x), \ \sigma_A(x) \lor \sigma_B(x) \ , \\ \nu_A(x) \lor \nu_B(x) \ \rangle \end{array}$
- $\begin{aligned} 5. \quad A \cup B = \langle x, \, \mu_A(x) \lor \mu_B(x), \, \sigma_A(x) \lor \sigma_B(x) \ , \\ \nu_A(x) \land \nu_B(x) \ \rangle \end{aligned}$
- $$\begin{split} & 6. \quad A \cup B = \langle x, \, \mu_A(x) \lor \mu_B(x), \, \sigma_A(x) \land \sigma_B(x) \;, \\ & \nu_A(x) \land \nu_B(x) \; \rangle \end{split}$$

Definition 2.4: A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic subsets in X satisfies the following axioms:

- $(NT_1) \quad 0_N, 1_N \in \tau$
- $(NT_2) \quad G_1 \cap G_2 \in \tau \text{ for any } G_1, G_2 \in \tau$
- $(NT_3) \quad \cup G_i \in \tau \; \forall \; \{ \; G_i \colon i \in J \} \subseteq \tau$

In this case the pair (X, τ) is a neutrosophic topological space (NTS) and any neutrosophic set in τ is known as a neutrosophic open set (NOS) in X. A neutrosophic set A is a neutrosophic closed set (NCS)

if and only if its complement C(A) is a neutrosophic open set in X.

Here the empty set (0_N) and the whole set (1_N) may be defined as follows:

- $(0_1) \qquad 0_N = \{\langle \ x, \, 0, \, 0, \, 1\rangle {:} \ x \in X\}$
- $(0_2) \qquad 0_N = \{ \langle \ x, 0, 1, 1 \rangle : x \in X \}$
- $(0_3) \qquad 0_N = \{\langle \ x, \, 0, \, 1, \, 0\rangle {:} \ x \, \in \, X\}$
- $(0_4) \qquad 0_N = \{ \langle \ x, 0, 0, 0 \rangle \colon x \in X \}$
- $(1_1) 1_N = \{ \langle x, 1, 0, 0 \rangle : x \in X \}$
- $(1_2) \qquad 1_N = \{\langle x, 1, 0, 1 \rangle : x \in X\}$
- (1₃) $1_N = \{ \langle x, 1, 1, 0 \rangle : x \in X \}$
- $(1_4) \qquad 1_N = \{ \langle x, 1, 1, 1 \rangle : x \in X \}$

Definition 2.5: Let (X, τ) be a NTS and $A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle : x \in X\}$ be a NS in X. Then the neutrosophic interior and the neutrosophic closure of A are defined by

$$\begin{split} NInt(A) &= \bigcup \{G: G \text{ is an NOS in } X \text{ and } G \subseteq A \} \\ NCl(A) &= \bigcap \{K: K \text{ is an NCS in } X \text{ and } A \subseteq K \} \\ Note that for any NS A, NCl(C(A)) &= C(NInt(A)) \text{ and} \\ NInt(C(A)) &= C(NCl(A)). \end{split}$$

Definition 2.6: A NS A of a NTS X is said to be

- (i) a neutrosophic pre-open set (NP-OS) if $A \subseteq NInt(NCl(A))$
- (ii) a neutrosophic semi-open set (NS-OS) if $A \subseteq NCl(NInt(A))$
- (iii) a neutrosophic α -open set (N α -OS) if A \subseteq NInt(NCl(NInt(A)))
- (iv) a neutrosophic semi- α -open set (NS $_{\alpha}$ -OS) if A \subseteq NCl(α NInt(A))

Definition 2.7: A NS A of a NTS X is said to be

- (i) A neutrosophic pre-closed set (NP-CS) if $NCl(NInt(A)) \subseteq A$
- (ii) A neutrosophic semi-closed set (NS-CS) if NInt(NCl(A)) \subseteq A
- (iii) A neutrosophic α -closed set (N α -CS) if NCl(NInt(NCl(A))) \subseteq A
- (iv) A neutrosophic semi- α -closed set (NS_{α}-CS) if NInt(α NCl(A)) \subseteq A

3. α generalized closed sets in neutrosophic topological spaces

In this section we introduce neutrosophic α closure, neutrosophic α interior and α generalized closed set and its respective open set in neutrosophic topological spaces and discuss some of their properties.

Definition 3.1: A NS A in a NTS X is said to be a neutrosophic regular closed set (NRCS) if

NCl(NInt(A)) = A and neutrosophic regular open set if NInt(NCl(A)) = A.

Definition 3.2: A NS A in a NTS X is said to be a neutrosophic β closed set (N β CS) if NInt(NCl(NInt(A))) \Box A and neutrosophic β open set if A \Box NCl(NInt(NCl(A)))

Definition 3.3: Let A be a NS of a NTS (X, τ) . Then the neutrosophic α interior and the neutrosophic α closure are defined as

$$\begin{split} N_{\alpha}Int(A) &= \cup \; \{G: G \text{ is a } N\alpha\text{-}OS \text{ in } X \text{ and } G \subseteq A \} \\ N_{\alpha}Cl(A) &= \cap \; \{K: K \text{ is a } N\alpha\text{-}CS \text{ in } X \text{ and } A \subseteq K \} \end{split}$$

Result 3.4: Let A be a NS in X. Then $N_{\alpha}Cl(A) = A \cup NCl(NInt(NCl(A)))$.

Proof: Since $N_{\alpha}Cl(A)$ is а Nα-CS. $NCl(NInt(NCl(N_{\alpha}Cl(A)))) \subseteq N_{\alpha}Cl(A)$ and $A \cup$ $NCl(NInt(NCl(A))) \subseteq A \cup NCl(NInt(NCl(N_{\alpha}Cl(A))))$ Now $NCl(NInt(NCl(A \cup NCl(NInt(NCl(A))))))$ \subseteq NCl(NInt(NCl(A \cup NCl(A)))) = $NCl(NInt(NCl(NCl(A)))) = NCl(NInt(NCl(A))) \subseteq A$ NCl(NInt(NCl(A))). Therefore А U U NCl(NInt(NCl(A))) is a N α -CS in X and hence $N_{\alpha}Cl(A) \subseteq A \cup NCl(NInt(NCl(A)))$ -----(ii). From (i) and (ii), $N_{\alpha}Cl(A) = A \cup NCl(NInt(NCl(A)))$.

Definition 3.5: A NS A in a NTS X is said to be a neutrosophic α generalized closed set $(N_{\alpha g}CS)$ if $N_{\alpha}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a NOS in X. The complement C(A) of a $N_{\alpha g}CS$ A is a $N_{\alpha g}OS$ in X.

Example 3.6: Let X = {a, b} and $\tau = \{0_N, A, B, 1_N\}$ where A = $\langle x, (0.5, 0.6), (0.3, 0.2), (0.4, 0.1) \rangle$ and B = $\langle x, (0.4, 0.4), (0.4, 0.3), (0.5, 0.4) \rangle$. Then τ is a NT. Here $\mu_A(a) = 0.5$, $\mu_A(b) = 0.6$, $\sigma_A(a) = 0.3$, $\sigma_A(b)$ = 0.2, $\nu_A(a) = 0.4$ and $\nu_A(b) = 0.1$. Also $\mu_B(a) = 0.4$, $\mu_B(b) = 0.4$, $\sigma_B(a) = 0.4$, $\sigma_B(b) = 0.3$, $\nu_B(a) = 0.5$ and $\nu_B(b) = 0.4$. Let M = $\langle x, (0.5, 0.4), ((0.4, 0.4), (0.4, 0.5)) \rangle$ be any NS in X. Then M \subseteq A where A is a NOS in X. Now N_{\alpha}Cl(M) = M \cup C(B) = C(B) \subseteq A. Therefore M is a N_{\alpha\end{c}}-CS in X.

Proposition 3.7: Every NCS A is a $N_{\alpha g}$ -CS in X but not conversely in general.

Proof: Let $A \subseteq U$ where U is a NOS in X. Now $N_{\alpha}Cl(A) = A \cup NCl(NInt(NCl(A))) \subseteq A \cup NCl(A) = A \cup A = A \subseteq U$, by hypothesis. Therefore A is a $N_{\alpha g}$ -CS in X.

Example 3.8: In Example 3.6, M is a $N_{\alpha g}$ -CS in X but not a NCS in X as $NCl(M) = C(B) \neq M$.

Remark 3.9: Every NS-CS and every $N_{\alpha g}$ -CS in a NTS X are independent to each other in general.

Example 3.10: In Example 3.6, M is a $N_{\alpha g}$ -CS but not a NS-CS as NInt(NCl(M)) = B $\not\subset$ M.

Example 3.11: Let $X = \{a, b\}$ and $\tau = \{0_N, A, B, C, 1_N\}$, where $A = \langle x, (0.5, 0.4), (0.3, 0.2), (0.5, 0.6) \rangle$, $B = \langle x, (0.8, 0.7), (0.4, 0.3), (0.2, 0.3) \rangle$ and $C = \langle x, (0.2, 0.1), (0.3, 0.2), (0.8, 0.9) \rangle$. Then τ is a NT. Let $M = \langle x, (0.5, 0.3), (0.3, 0.2), (0.5, 0.7) \rangle$. Then M is a NS-CS but not a $N_{\alpha g}$ -CS as $M \subseteq A$, B and N_{α} Cl(M) = M $\cup C(A) = C(A) \not\subset A$.

Remark 3.12: Every NP-CS and every $N_{\alpha g}$ -CS in a NTS X are independent to each other in general.

Example 3.13: In Example 3.11, M is a NP-CS but not a $N_{\alpha g}$ -CS as seen in the respective example.

Example 3.14: Let $X = \{a, b\}$ and $\tau = \{0_N, A, B, 1_N\}$, where $A = \langle x, (0.5, 0.4), (0.3, 0.2), (0.5, 0.6) \rangle$ and $B = \Box x$, (0.4, 0.3), (0.3, 0.1), (0.6, 0.7) \Box Then τ is a NT. Let $M = \Box x$, (0.5, 0.5), (0.2, 0.1), (0.4, 0.4) \Box . Then M is a $N_{\alpha g}$ -CS but not a NP-CS as NCl(NInt(M)) = C(A) $\subset M$.

Proposition 3.15: Every $N\alpha$ -CS A is a $N_{\alpha g}$ -CS in X but not conversely in general.

Proof: Let $A \square U$, where U is a NOS in X. Then $N_{\alpha}Cl(A) = A \square NCl(NInt(NCl(A))) \square A \square A = A \square U$, by hypothesis. Hence A is a $N_{\alpha g}$ -CS in X.

Example 3.16: In Example 3.6, M is a $N_{\alpha g}$ -CS in X but not a N α -CS as NCl(NInt(NCl(M))) = C(B) $\not\subset$ M.

Proposition 3.17: Every NOS, N α -OS are N $_{\alpha g}$ OS but not conversely in general.

Proof: Obvious.

Example 3.18: In Example 3.6, C(M) is a $N_{\alpha g}OS$ but not a NOS, N α -OS in X.

Remark 3.19: Both NS-OS and NP-OS are independent to $N_{\alpha g}OS$ in X in general.

Example 3.20: The above Remark can been proved easily from the Examples 3.10, 3.11 and 3.13, 3.14 respectively.

Proposition 3.21: The union of any two $N_{\alpha g}CSs$ is a $N_{\alpha g}CS$ in a NTS X.

Proof: Let A and B be any two $N_{\alpha g}CSs$ in a NTS X. Let A \square B \square U where U is a NOS in X. Then A \square U and B \square U. Now $N_{\alpha}Cl(A \square B) = (A \square B) \square$ NCl(NInt(NCl(A \square B))) \square (A \square B) \square NCl(NCl(A \square B)) \square (A \square B) \square NCl(NCl(A \square B)) \square (A \square B) \square NCl(A \square B) \square NCl(A \square B) = NCl(A) \square NCl(B) \square U \square U = U, by hypothesis. Hence A \square B is a $N_{\alpha g}CS$ in X.

Remark 3.22: The intersection of any two $N_{\alpha g}CSs$ need not be a $N_{\alpha g}CS$ in a NTS X.

Example 3.23: Let $X = \{a, b\}$ and $\tau = \{0_N, A, B, 1_N\}$ where $A = \Box x$, (0.5, 0.4), (0.3, 0.2), (0.5, 0.6) \Box and $B = \Box x$, (0.8, 0.7), (0.3, 0.2), (0.2, 0.3) \Box Then τ is a NT. Let $M = \Box x$, (0.6, 0.9), (0.3, 0.2), (0.4, 0.1) \Box and $N = \Box x$, (0.9, 0.7), (0.3, 0.2), (0.1, 0.3) \Box . Then M and N are $N_{\alpha g}CSs$ in X but $M \cap N = \Box x$, (0.6, 0.7), (0.3, 0.2), (0.4, 0.3) \Box is not a $N_{\alpha g}CS$ as $M \cap N \subseteq B$ and $N_{\alpha}Cl(M \cap N) = 1_N \not\subset A$.

Proposition 3.24: Let (X, τ) be a NTS. Then for every $A \in N_{\alpha g}C(X)$ and for every $B \in NS(X)$, $A \subseteq B$ $\subseteq N_{\alpha}Cl(A)$ implies $B \in N_{\alpha g}C(X)$.

Proof: Let $B \subseteq U$ and U be a NOS in (X, τ) . Then since $A \subseteq B$, $A \subseteq U$. By hypothesis, $B \subseteq N_{\alpha}Cl(A)$. Therefore $N_{\alpha}Cl(B) \subseteq N_{\alpha}Cl(N_{\alpha}Cl(A)) = N_{\alpha}Cl(A) \subseteq$ U, since A is an $N_{\alpha g}CS$ in (X, τ) . Hence $B \in$ $N_{\alpha g}C(X)$.

Proposition 3.25: If A is a NOS and a $N_{\alpha g}CS$ in (X, τ), then A is a N α -CS in (X, τ).

Proof: Since $A \subseteq A$ and A is a NOS in (X, τ) , by hypothesis, $N_{\alpha}Cl(A) \subseteq A$. But $A \subseteq N_{\alpha}Cl(A)$. Therefore $N_{\alpha}Cl(A) = A$. Hence A is a N α -CS in (X, τ) .

Proposition 3.26: Let (X, τ) be a NTS. Then every NS in (X, τ) is a $N_{\alpha g}CS$ in (X, τ) if and only if $N\alpha$ -O $(X) = N\alpha$ -C(X).

Proof: Necessity: Suppose that every NS in (X, τ) is a $N_{\alpha g}CS$ in (X, τ) . Let $U \in NO(X)$. Then $U \in N\alpha$ -O(X) and by hypothesis, $N_{\alpha}Cl(U) \subseteq U \subseteq$ $N_{\alpha}Cl(U)$. This implies $N_{\alpha}Cl(U) = U$. Therefore $U \in$ $N\alpha$ -C(X). Hence $N\alpha$ -O(X) $\subseteq N\alpha$ -C(X). Let $A \in N\alpha$ -C(X). Then $C(A) \in N\alpha$ -O(X) $\subseteq N\alpha$ -C(X). That is $C(A) \in N\alpha$ -C(X). Therefore $A \in N\alpha$ -O(X). Hence $N\alpha$ -C(X) $\subseteq N\alpha$ -O(X). Thus $N\alpha$ -O(X) = $N\alpha$ -C(X).

Sufficiency: Suppose that $N \square -O(X) = N \square -C(X)$. Let $A \subseteq U$ and U be a NOS in (X, τ) . Then

 $U \in N \square$ -O(X) and $N_\square Cl(A) \subseteq N_\square Cl(U) = U$, since $U \in N \square$ -C(X), by hypothesis. Therefore A is an $N_\square cCS$ in X.

Proposition 3.27: If A is a NOS and a $N_{\Box g}CS$ in (X, τ), then A is a NROS in (X, τ).

Proof: Let A be a NOS and a $N_{\Box g}CS$ in (X, τ) . Then A is a $N \Box$ -CS in X. Now $NInt(NCl(A)) \Box$ $NCl(NInt(NCl(A))) \Box$ A. Since A is a NOS, A = $NInt(A) \Box$ NInt(NCl(A)). Hence NInt(NCl(A)) = A and A is a NROS in X.

Definition 3.28: A NS A in (X, τ) is a neutrosophic Q-set (NQ-S) in X if NInt(NCl(A)) = NCl(NInt(A)).

Proposition 3.29: For a NOS A in (X, τ) , the following conditions are equivalent:

(i) A is a NCS in (X, τ) ,

(ii) A is a $N_{\Box g}CS$ and a NQ-S in (X, τ) .

Proof: (i) \Rightarrow (ii) Since A is a NCS, it is a N_{$\Box g$}CS in (X, τ). Now NInt(NCl(A)) = NInt(A) = A = NCl(A) = NCl(NInt(A)), by hypothesis. Hence A is a NQ-S in (X, τ).

(ii) \Rightarrow (i) Since A is a NOS and a N_{$\Box g$}CS in (X, τ), by Theorem 3.27, A is a NROS in (X, τ). Therefore A = NInt(NCl(A)) = NCl(NInt(A)) = NCl(A), by hypothesis. Hence A is a NCS in (X, τ).

Proposition 3.30: Let (X, τ) be a NTS. Then for every $A \in N_{\Box g}O(X)$ and for every $B \in NS(X)$, $N_{\Box}Int (A) \subseteq B \subseteq A$ implies $B \in N_{\Box g}O(X)$.

Proof: Let A be any $N_{\Box g}OS$ of X and B be any NS of X. By hypothesis $N_{\Box}IntA) \subseteq B \subseteq A$. Then C(A) is a $N_{\Box g}CS$ in X and C(A) \subseteq C(B) $\subseteq N_{\Box}Cl(C(A))$. By Theorem 3.24, C(B) is a $N_{\Box g}CS$ in (X, τ). Therefore B is a $N_{Ag}OS$ in (X, τ). Hence $B \in N_{\Box g}O(X)$.

Proposition 3.31: Let (X, τ) be a NTS. Then for every $A \in NS(X)$ and for every $B \in NS-O(X)$, $B \subseteq$

 $A \subseteq NInt(NCl(B))$ implies $A \in N_{\Box g}O(X)$.

Proof: Let B be a NS-OS in (X, τ) . Then B \subseteq NCl(NInt(B)). By hypothesis, A \subseteq NInt(NCl(B)) \subseteq NInt(NCl(NInt(B)))) \subseteq NInt(NCl(NInt(B)))) \subseteq NInt(NCl(NInt(A))). Therefore A is a N \square -OS and by Proposition 3.17, A is a N \square gOS in (X, τ) . Hence A \in N \square gO(X).

Proposition 3.32: A NS A of a NTS (X, τ) is a $N_{\Box g}OS$ in (X, τ) if and only if $F \subseteq N_{\Box}Int(A)$ whenever F is a NCS in (X, τ) and $F \subseteq A$.

Proof: Necessity: Suppose A is a $N_{\Box g}OS$ in (X, τ) . Let F be a NCS in (X, τ) such that $F \subseteq A$. Then C(F) is a NOS and C(A) \subseteq C(F). By hypothesis C(A) is a $N_{\Box g}CS$ in (X, τ) , we have $N_{\Box}Cl(C(A)) \subseteq$ C(F). Therefore $F \subseteq N_{\Box}Int(A)$.

Sufficiency: Let U be a NOS in (X, τ) such that C(A) \subseteq U. By hypothesis, C(U) \subseteq N_□Int(A). Therefore N_□Cl(C(A)) \subseteq U and C(A) is an N_{□g}CS in (X, τ) . Hence A is a N_{□g}OS in (X, τ) .

References:

- 1. Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 87-96.
- Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88, 1997, 81-89.
- Floretin Smarandache, Neutrosophic set:- A generalization of Intuitionistic fuzzy set, Jour. of Defense Resources Management, 2010, 107-116.
- Ishwarya, P and Bageerathi, K., On Neutrosophic semiopen sets in Neutrosophic topological spaces, International Jour. of Math. Trends and Tech. 2016, 214-223.
- Qays Hatem Imran, Smaandache, F., et. al., On Neutrosophic semi alpha open sets, Neutrosophic sets and systems, 2017, 37-42.
- Salama, A. A., and Alblowi, S. A., Neutrosophic set and Neutrosophic topological spaces, IOSR Jour. of Mathematics, 2012, 31-35.