Study Of Strength Properties Of Concrete By Partial Replacement Of Fine Aggregate By Steel Slag

Venkateshwari.N M.E- structural Engineering, PSR College of Engineering, Sivakasi.

Bharahi.S M.E- structural Engineering, PSR College of Engineering, Sivakasi.

Dhanalakshmi.A Assistant Professor. PSR College of Engineering, Sivakasi.

replacing fine aggregate with steel slag. This study is done because of by testing of cement, fine and coarse aggregate. The detail of the scarcity of fine aggregate and it also reduces waste disposal. In this test results are given below. compressive strength, flexural strength and tensile strength. Steel slag were added in varying percentages of 10%, 20% and 30%. Six cubes were casted for compressive strength of concrete at age of 7 days and 28 days. Three cylinder and prism were casted for split tensile and flexural strength of concrete at age of 28 days. The results indicated that use of steel slag reduces usage of natural fine aggregates, waste disposal and also gives strength.

Keywords- steel slag, fine aggregate, flexural, tensile, compressive

INTRODUCTION I.

Steel slag is a by-product obtained from melting steel scrap from the impurities and fluxing agents, which form the liquid slag floating over the liquid steel in arc or induction furnaces or other melting units. Waste management is one of the most common and challenging problem in the world. The steel making industry has generated substantial solid waste. Steel slag is a residue obtained from steel making operaion. Now-a-days using waste as an alternative for concrete mixtures. This is very helpful to reduce waste disposal, its area and environment pollution.

SALIENT FEATURES OF THE PROJECT:

- Reduces waste disposal
- Reduces usage of fine aggregate
- Low cost
- Increased strength
- Reliable quality

II. EXPERIMENTAL INVESTIGATION

Abstract- In this paper, study of strength of concrete by partially Properties of materials used in this investigation were determined

Cement:

Туре	:	OPC
Specific gravity	:	3.15
Fineness of cement	:	2%
Consistency	:	26%

Fine aggregate:

Specific gravity 2.61 :

Coarse aggregate:

Specific gravity 2.67

Steel slag:

Specific gravity 2.93

Table 1: Mix proportion for M30 grade concrete

Material for M30 concrete	Weight of materials for 1m ³ concrete
OPC	438 Kg
Fine aggregate	690.6 Kg
Coarse aggregate	1063.72 Kg
water	197 litres
Water cement ratio	0.5

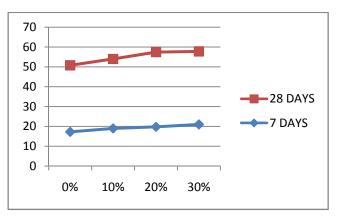
III. RESULTS SLUMP VALUES FOR MIXES WITH ADDITION OF STEEL SLAG

Table 2: Slump values for various mixes

Grade of concrete	% of steel slag	Slump value
	0%	75mm
M30	10%	70mm
14150	20%	63mm
	30%	55mm

COMPACTION FACTOR FOR VARIOUS MIXES

Table 3: Compaction factor values


Grade of concrete	% of steel slag	Compaction factor
	0	0.81
M30	10	0.84
	20	0.85
	30	0.83

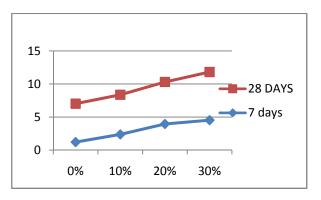
COMPRESSIVE STRENGTH FOR VARIOUS MIXES

Table 4 : Comparison of conventional mix vs steel slag mix

Grade of concrete	% of steel slag	Compressive strength (N/mm ²)	
	-	7 days	28 days
	0	17.23	33.55
M30	10	18.99	35
11100	20	19.78	37.67
	30	21	39.4

Graph 1: Compressive strength of conventional mix vs % of steel slag

SPLIT TENSILE STRENGTH FOR VARIOUS MIXES

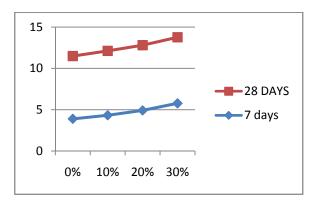

Table 5: Split tensile strength of conventional mix vs steel slag mix

Grade of concrete	% of steel slag	Split tensile strength (N/mm ²)	
		7 days	28 days
	0	1.22	5.8
	10	2.38	5.99

SSRG International Journal of Civil Engineering- (ICRTCETM-2017) - Special Issue – April 2017

M30	20	3.96	6.35
	30	4.54	7.28

Graph 2: Split tensile strength of conventional mix vs % of steel slag



FLEXURAL STRENGTH FOR VARIOUS MIXES

Table 6: Flexural strength of conventional mix vs steel slag mix

Grade of concrete	% of steel slag	Flexural strength (N/mm ²)	
	7 days	28 days	
MOO	0	3.89	7.6
M30	10	4.32	7.8
	20	4.91	7.9
	30	5.77	8.0

Graph 3: Flexural strength of conventional mix vs % of steel slag

IV.CONCLUSION

The following conclusions are presented based on experimental results from the present investigation.

- 1. The compressive strength values are increase slightly with increasing of steel slag.
- 2. The split tensile strength values are increasing slightly with increase of steel slag.
- 3. From the result of compressive strength test, split tensile test and flexure test strength of M30 grade concrete increases by partially adding steel slag.

V. REFERENCES

- 1. Sultan A "Effect of using steel slag aggregate on mechanical properties of concrete" American journal of applied sciences.
- 2. M Soundar Rajan "Strength properties of concrete by partial replacement of sand by steel slag"- IJETS
- 3. Hisham quasrawi et al "Use of slow CaO unprocessed steel slag in concrete as fine aggregate"- Journal of construction and building materials
- Isayuksel et al "Properties of concrete containing non ground ash and steel slag as fine aggregate", ACI material journal vol-104
- 5. Juan M manso et al "Durability of concrete made with EAF slag as aggregate" Journal of cement and concrete composites, march 2006 PP 528-534.
- 6. Hameed M.Shahul and A.S.S.Sekar "use of waste and by-products as fine aggregate in high performance concrete".
- 7. IS 456:2000 "Plain and Reinforced concrete"
- 8. IS 10262:2009 "Mix design"