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  Abstract: The existence of cracks causes changes in the 

physical properties of a structure which presents flexibility, 

and thus reducing the rigidity by lowering stiffness of the 

structure with an inherent reduction in modal natural 

frequencies. Consequently it brings to the change in the 

dynamic characteristics of the beam. This paper 

concentrates on the theoretical analysis of transverse free 

vibration of a fixed –fixed beam and analyzes the relation 

between the modal natural frequencies with crack depth, 

modal natural frequency with crack location and influence 

of mode shape on crack. All the theoretical values are 

examined with the numerical method by using ANSYS 

software and correlate the theoretical values with the 

numerical values to find out percentage error between 

them. Also in this paper, investigates the numerical studies 

for damage detection in beam structure with an open edge 

crack has been presented.  Variations of natural 

frequencies due to crack at various locations and with 

varying crack depths have been studied. The analysis was 

performed using ANSYS software 

Keywords: Fixed beam, Mode Shape Natural Frequency, 

Crack, ANSYS. 

I.   Introduction 

 Most of the members of engineering structures operate 

under loading conditions, which may cause damages or 

cracks in overstressed zones. The presence of cracks in a 

structural member, such as a beam and plate, causes local 

variations in stiffness, the magnitude of which mainly 

depends on the location and depth of the cracks. The 

existence of damage causes changes in the physical 

properties of a structure member which in turn alter its 

dynamic response characteristics are natural frequency and 

mode shape. This property leads to detect existence of 

crack and its location and depth in the structural members. 

  The vibration behaviour of cracked structures has been 

investigated by many researchers. The majority of 

published studies various techniques for structural damage 

detection involving modal parameters have widely been 

used over the past few decades. As such, the modal 

parameters of a structure are easy to obtain from forced, 

free or ambient vibration measurements. In many of these 

techniques, mode shapes or the data derived from mode 

shapes have been used for location-detection of damage. 

From damage sensitivity perspective, the data obtained 
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from the mode shape in curvature form seemsfar promising 

than the one from mode shapes. In this paper, the natural 

frequencies of cracked and un-cracked beams have been 

calculated using finite element software ANSYS and up to 

fifth mode  and compared with theoretical values and the 

mode shape curvatures from damaged modes are analyzed 

with wavelet transform, this data is studied at three stages 

i.e. mode shapes; its curvature and subsequent wavelet 

transform to increase the sensitivity. 

Liew and Wang [1] proposed an application of spatial 

wavelet theory to damage identification in structures. They 

calculated the wavelet coefficients along the length of the 

beam based on the numerical solution for the deflection of 

the beam, the damage location was then indicated by a 

peak in the coefficients of the wavelets along the length of 

the beam. In the investigation of existence of crack and its 

localization and depth of damage the pioneer of the work 

Dimarogonas [2] the crack was modelled as a local 

flexibility and the equivalent stiffness was computed using 

fracture mechanics methods. Adams and Cawley [3] 

developed an experimental technique to estimate the 

location and depth of a crack from changes in natural 

frequencies. Rizos PF[4] proposed method o identification 

of crack location and magnitude in a cantilever from 

fundamental vibration modes. Pandey A.K., M. Biswas, 

and M. M. Samman [5] proposed that fundamental mode 

shape curvature to be a sensitive parameter for damage 

localization. Curvature was calculated and utilized for 

damage localization of a simulated beam discredited into a 

number of finite elements . Douka et al [6] investigated 

experimental and analytical identification of crack in 

cantilever beam depending on wavelet analysis. The size 

and the location of the crack is determined using wavelet 

transform for fundamental mode of vibration. Due to the 

rapid changes in the spatial difference of the response, the 

crack location is determined .  Patil and Maiti [7] have 

proposed a method for prediction of location and size of 

multiple cracks based on measurement of natural 

frequencies for slender cantilever beams. Abdel Wahab and 

De Roeck [8] apply curvature mode based damage 

detection methods in a continuous beam by averaged 

modal-curvature difference arising from pairs of damaged 

and intact mode shapes. The vibration methods are based 

on the occurrence that damage in a structure produces a 

local increase in flexibility which induces changes in the 

dynamic properties of the structure. The analysis of these 

changes can be used for damage identification. In recent 

years, the wavelet transform (WT) has been proposed as a 

promising mathematical tool for damage detection and 

localization, in light of its ability to locally analyze a 

signal. Q. Wang and X. Deng [9] applied the WT to spatial 

problems, specifically to identify cracks in structures: using 

free vibrations of cracked beams with a local reduction of 

stiffness, they showed that the wavelet coefficients 

calculated along the beam presented a maximum precisely 

at the crack location. Further they dealing with beams, 

plates or frame structures have validated this technique as a 

promising research tool.S.T. Quek, Q. Wang, L. Zhang, 

K.K. Ang [10] studied on wavelet transforms in the one-

dimensional case is very extensive and applicability of 

various wavelets in detection of cracks in beams.Koushik, 

and Samit Ray [11] studied the cantilever shear beam, 

discretized into a large number of elements. It is 

demonstrated that the change in the fundamental mode 

shape due to any damage is an excellent indicator of 

damage localization as it is found to be discontinuous at the 

location of damage. Further, the change in higher 

derivatives (i.e., slope and curvature) of the fundamental 

mode shape is shown to be sensitive enough in damage 

localization.Y.F.Xu , W.D.Zhu , J.Liu , Y.M.Shao [12] 

proposed two new non-model-based methods that use 

measured mode shapes to identify embedded horizontal 
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cracks in beams. M. Rucka, K. Wilde [13] proposed a 

method for estimating the damage location in beam and 

plate structures a Plexiglas cantilever beam and a steel 

plate with four fixed boundary conditions are tested 

experimentally by using the one-dimensional continuous 

wavelet transform. Chih-Chieh Chang, Lien-Wen Chen 

[14] presents a technique for structure damage detection 

based on the spatially distributed signals without 

experimental  data. W.L. Bayissa, N. Haritosa, S. 

Thelandersson [15] have done work that the wavelet 

analysis coefficients be employed in the space domain of 

the structure to detect and localize single as well as 

multiple  damage states and the damage identification 

results are compared with those obtained from existing and 

well-established methods. A.Bagheri, G.Ghodrati Amiri, S. 

A. Seyed Razzaghi[16] has been employed discrete 

curvelet transform using unequally-spaced fast Fourier 

transforms to identify damage location in plate structures. 

In addition, the performance and sensitivity of the proposed 

method have been investigated using numerical and 

experimental data. Mario Solis, Mario Algaba, Pedro 

Galvin [18] presents a new damage detection methodology 

for analyses the severity threshold of damage in beams by 

applying continuous wavelet analysis.F. Bakhtiari-Nejad 

[19] presents analytical estimation based on the Rayleigh's 

method to find out natural frequencies and mode shape for 

a beam having one or two cracks. In addition that 

investigates the upper limit of crack depth in which natural 

frequencies and mode shapes have error less than 5% and 

7% respectively obtained by analytical estimation in 

compare to the exact solution. Khoa Viet Nguyen [20] has 

been investigated the influence of the coupling mechanism 

between horizontal bending and vertical bending 

vibrationsdue to the crack on the mode shapes. Due to the 

coupling mechanism the mode shapes of a beam change 

from plane curves to space curves. Suggested that 

distortions in the case using the 3D beam element can be 

amplified and inspected clearly by using the projections of 

the mode shapes on appropriate planes than while using 2D 

beam element, distortions in the mode shapes. F. Bakhtiari-

Nejad [21] proposed a analytical estimation method to find 

the natural frequencies and mode shapes of the beam, to 

overcome weakness of solving eigen value problem to 

obtain exact natural frequencies and mode shapes. Jeslin 

Thalapil [22] examines the methods to detecting 

longitudinal cracks using changes in natural frequencies in 

the case of monolithic long and short beams. The objective 

of this paper is to apply spatial wavelet transform to 

highlight the sensitivity for detection and quantification 

and localization of damage in a beam structure, for that 

wavelet-based damage detection technique was 

investigated numerically on an example of the cantilever 

beam with damage in the form of the notch of depth 

30%,20%,and 10% of the beam height .The analysis was 

performed on the first eight mode shapes.  
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II. Theoretical Analysis of Transverse Vibration of 

Fixed Fixed-Beam 

A. Governing Equations for Vibration Mode of the Beam 

A beam which is fixed at both ends is known as fixed 

beam. From elementary theory of bending of beams also 

known as Euler-Bernoulli, the relationship between the 

bending moment and deflection can be expressed as; 
2

2

d y
M EI

dx
  

Where, E is Young’s Modulus and I is the moment of  

inertia of the beam c/s. For uniform beam we can obtain 

equation of motion as; 
4 2

4 2
0

EI d y d y

A dx dt
                 (1) 

Where, ρ is the mass density and A is the cross sectional 

area of the beam. 
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2

4 2
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dx dt
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Where   
EI

c
A
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The solution of equation (2) depends on position and 

another on time 

applying the boundary conditions following relations can 

be obtained:  
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From Eq.(7)              3 1c c   
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So, the solution is      y=w(x)T(t)                         (3)            

By substituting Eq. (3) to Eq. (2) and simplifying it we get; 
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To find out the solution of (5) considering the equation;   
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In order to solve Eq.(6) the following boundary conditions 

for the fixed beam are needed; 

At, 0; (0, ) 0x w t  (Zero deflection at fixed end) 

At, ; (0, ) 0x L w t  (Zero deflection at fixed end) 

Now using the expression for mode shape (Eq.6) and 

and finally we get cos cos 0L h L       (15)  

This transcendental equation has an infinite number of 

solution =1,2,3…n  

Corresponding giving an infinite number of frequencies,
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                  (16) 

The first five roots of the Eq. (15) are shown in TABLE-1 

 

 

 

 

 

B.Specification 

 

The dimensions and the material constant for the uniform 

fixed beam investigated in this paper are: 

 Material of  Beam= Aluminum 

Roots(i) βiL 

1 4.730 

2 7.853 

3 10.996 

4 14.137 

5 17.278 
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 Total Length = 600mm 

 Width of Beam =25mm 

 Height of Beam =10mm 

 Moment of Inertia(I)=2.0833x10-09 m4 

 Density Of Material= 2770 kg/m³ 

 Cross-Section Of Beam= 10*25 mm² 

 Young’s Modulus Of Elasticity= 70 GPa Fig.01.First Mode shape at crake depth 1mm

 Poission’s ratio=0.33 

Natural frequencies of fixed-fixed beam obtained by using 

Equation (16) 

Table-2 :Mode Shape Frequency (Hz) 

Mode No Frequency in HZ 

1 143.53 

2 341.56 

3 399.87 

4 782.74 

   5 953.36 

 

 

III FEM SIMULATION     Fig.02.Second Mode shape at crake depth 1mm 

A.   Modelling of Crack on Cantilever Beam 

 

The finite element analysis is brought out for the cracked 

beam (Fixed-Fixed) to locate the mode shape of transverse 

vibration at different locations and crack depth. The crack 

modelling has been very important aspect, FEM software 

package ANSYS has been used to modelled the cracks are 

deemed on Fixed-Fixed beam with relative crack location 

at 20% ,30% ,50% and 70% of length of the beam  from 

one fixed end and the analysis has been done using general 

purpose finite element software ANSYS on un-cracked and 

cracked fixed beam  beam to obtain  natural frequencies 

and mode shape of transverse vibration at different 

locations with  different crack depths interval of 10%, 

20%,30% and 40% crack depth. Properties the cracked 

beams of the current research have and dimensions 

mentioned above: 

 

  

Fig.02.Rectangular shaped edge crack with a 1 mm   

width on the top surface of the beam. 

      

      

 Fig.03.Third Mode shape at crake depth 1mm  

 

 

 

 Fig.04.Fourth Mode shape at crake depth 1mm 

 

 



SSRG International Journal of Mechanical Engineering (SSRG-IJME) – Special Issue May - 2017 

ISSN: 2348 – 8360             www.internationaljournalssrg.org                 Page 97 

 

 

Fig.06.Fifth Mode shape at crake depth 1.0mm 

 

Table-3: Mode Shape Frequency using ANSYS (Hz) 

 

Mode No Frequency in HZ 

1 145.13 

2 357.21 

3 401.57 

4 792.94 

5 972.32 

 

Table-4:The percentage error between theoretical and 

numerical result are shown in  

Mode 

No 

Theoretical 

frequency in 

Hz 
 

Numerical 

frequency from 

ANSYS 

program in Hz 

 

Percentage 

Error (%) 

 

1 143.53 145.13 1.11 

2 341.56 357.21 4.58 

3 399.87 401.57 4.25 

4 782.74 792.94 1.30 

5 953.36 972.32 1.98 

 

IV   Parametric Studies Of The Fixed Beam : 
 

The effects of the crack on natural frequency of a fixed 

steel beam were investigated for various crack depths and 

crack locations 
 

The dimensions and the material Properties for the uniform 

fixed beam investigated in this paper are: 

 Material Of Beam= Aluminum 

 Total Length = 600mm 

 Width of Beam =25mm 

 Height of Beam =10mm   

 Moment of inertia(I)=2.0833x10-09 

 Density Of Material= 2770 kg/m³ 

 Cross-Section Of Beam= 10*25 mm² 

 Young’s Modulus Of Elasticity= 70 GPa 

 Poission’s ratio=0.33 

 

 

Table-5:Variation of Natural frequency of the fixed beam 

with different  crack depth for Crack position  
𝑿𝒅

𝑳
  =0.2 

 

Natural 

frequency 

Crack depth ratio 

H=(a/h) 

Normalized Natural 

frequency 

Un-cracked beam 1.0000 

Mode-01 

0.1 1 

0.2 1 

0.3 0.99979329 

0.4 0.99965548 

Mode-02 

0.1 1 

0.2 1 

0.3 0.99972 

0.4 0.999228 

Mode-03 

0.1 1 

0.2 0.998755 

0.3 0.996514 

0.4 0.993326 

Mode-04 

0.1 1 

0.2 0.996683 

0.3 0.990579 

0.4 0.982659 

Mode-05 

0.1 1 

0.2 0.994689 

0.3 0.982307 

0.4 0.967501 
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Fig.07.Mode Nature Frequency versus Crack depth 

 

 Table-6:Natural frequency of the fixed beam with a 

crack for the first mode =145.13Hz 

 

Crack position =  
𝑋𝑑

𝐿
  

Crack depth ratio 

H=(a/h) 

Normalized Natural 

frequency 

Un-cracked beam 1.0000 

0.2 0.1 1 

0.2 1 

0.3 0.999793289 

0.4 0.999655481 

0.3 0.1 1 

0.2 0.998689 

0.3 0.998689 

0.4 0.997792 

0.5 0.1 1 

0.2 0.997374421 

0.3 0.993436053 

0.4 0.993436053 

0.7 0.1 1 

0.2 0.999655 

0.3 0.995859 

0.4 0.997929 

 
 

 

Fig.08.Natural frequency of the fixed beam with a crack 

for the first mode 

 

 

 

 

 
Table-7:Natural frequency of the fixed beam with a crack 

for the second mode =357.21Hz 

 

Crack position = 

 
𝑋𝑑

𝐿
  

Crack depth ratio 

H=(a/h) 

Normalized Natural 

frequency 

Un-Cracked beam 1.0000 

0.2 

0.1 1 

0.2 1 

0.3 0.99972 

0.4 0.999228 

0.3 

0.1 1 

0.2 0.999496 

0.3 0.999496 

0.4 0.99902 

0.5 

0.1 1 

0.2 0.998992 

0.3 0.9972 

0.4 0.9972 

0.7 

0.1 1 

0.2 0.999888 

0.3 0.997592 

0.4 0.999104 

 

 
Fig.09.Natural frequency of the fixed beam with a crack 

for the second mode 

 

Table-8:Natural frequency of the fixed beam with a 

crack for the third mode =401.57Hz 
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Crack position =  
𝑋𝑑

𝐿
  

Crack depth ratio 

H=(a/h) 

Normalized Natural 

frequency 

Un-Cracked beam 1.0000 

0.2 

0.1 1 

0.2 0.998755 

0.3 0.996514 

0.4 0.993326 

0.3 

0.1 1 

0.2 0.991656 

0.3 0.991656 

0.4 0.98606 

0.5 

0.1 1 

0.2 0.999592 

0.3 0.999025 

0.4 0.999225 

0.7 

0.1 1 

0.2 0.996827 

0.3 0.981711 

0.4 0.986108 
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Fig.10.Natural frequency of the fixed beam with a crack 

for the third mode 

 
Table-9:Natural frequency of the fixed beam with a 

crack for the fourth mode =792.94Hz 

 

 
 
 

Fig.11.Natural frequency of a fixed beam with a crack for 

the fourth mode 

 
Table-10:Natural frequency of the fixed beam with a 

crack for the Fifth mode =972.32Hz 

 

 
 
Fig.12.Natural frequency of a fixed beam with a crack for 

the fifth mode 

 

V. Observations 

Fig.0 7, show that natural frequencies of the fixed beam 

with a single edge crack at various crack  depths for first, 

second, third, fourth and fifth modes of vibration 

respectively. Results show that there is an appreciable 

variation between natural frequency of cracked and un-

cracked fixed beam. For the particular the position of the 

crack, variation in natural frequency is observed by 

increasing crack depth it is observed that natural frequency 

of the cracked beam decreases not only with increase in 

crack depth due to reduction in stiffness but also change in 

mode shape for higher modes reduction stiffness is more, 

which indicates that higher modes are more sensitive to the 

presence of the damage. Fig.08, Fig.09, Fig.10., 

Fig.11.,shows that When the position of the crack is at that 

point where amplitude of vibration is zero there is no 

change in natural frequency in spite of change in crack 

depth. Natural frequency changes drastically when crack is 

on that point where amplitude of vibration is maximum. It 
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Crack position = 

 
𝑋𝑑

𝐿
  

Crack depth 

ratio H=(a/h) 

Normalized 

Natural 

frequency 

Un-Cracked beam 1.0000 

0.2 

0.1 1 

0.2 0.996683 

0.3 0.990579 

0.4 0.982659 

0.3 

0.1 1 

0.2 0.997283 

0.3 0.997283 

0.4 0.995557 

0.5 

0.1 1 

0.2 0.996434 

0.3 0.990944 

0.4 0.990944 

0.7 

0.1 1 

0.2 0.999416 

0.3 0.9875 

0.4 0.987766 

Crack position =  
𝑋𝑑

𝐿
  

Crack depth 

ratio H=(a/h) 

Normalized Natural 

frequency 

Un-Cracked beam 1.0000 

0.2 

0.1 1 

0.2 0.994689 

0.3 0.982307 

0.4 0.967501 

0.3 

0.1 1 

0.2 0.996521 

0.3 0.996521 

0.4 0.993475 

0.5 

0.1 1 

0.2 1.000021 

0.3 0.999938 

0.4 0.999938 

0.7 

0.1 1 

0.2 0.998847 

0.3 0.991756 

0.4 0.993536 
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is observed that natural frequency of the cracked beam 

decreases both with increase in crack distance and crack 

depth due to reduction in stiffness. It appears therefore that 

the change in frequencies is not only a function of crack 

depth and crack location but also of the mode number. 
 

 

IV. Conclusion  

 
• It has been observed that the natural frequency changes 

substantially due to the presence of cracks depending upon 

location and size of cracks but also of the mode number. 

 

• When the crack positions are constant i.e. at particular 

crack location, the natural frequencies of a cracked beam 

are inversely proportional to the crack depth and mode 

number which indicates that higher modes are more 

sensitive to the presence of the damage compared to lower 

mdes. 

• It has been observed that the change in frequencies is not 

only a function of crack depth, and crack location, but also 

of the mode number  

• As largest effects are observed at the centre for fixed 

beam we can say, decrease in frequencies is more for a 

crack located where the bending moment is higher.  
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