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ABSTRACT ---- Control charts have been used 

effectively for years to monitor processes and to detect 

and correct the abnormal behaviour. Systematic use of 

a control chart is an excellent way to reduce the 

variability. Univariate control charts are used when a 

single quality characteristic is of importance, 

otherwise a multivariable control chart is suggested. 

A popular multivariate control chart for variable 

quality characteristics is a Hotelling’s T2- Control 

chart. The main limitation for T2- control chart is that 

it is applicable only when the process under 

consideration follows a multivariate normal 

distribution. Poovich et al. (2011) suggested a 

bootstrap based T2- control chart for normal as well 

as non-normal processes. In the present study, the 

performance of a bootstrap based multivariate T2 - 

control chart has been studied for its effectiveness in 

monitoring a normal process. A simulated process 

with two quality characteristics has been considered 

and the performance of conventional T2 control chart 

and the boot-strap based T2 control chart is compared 

with different sample sizes. It is observed that the 

performance of bootstrap based T2 control chart is 

superior in detecting the shifts in the mean compared 

to that of conventional T2 control chart. 
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I. INTRODUCTION 

The main purpose of a control chart is the detection of 

an out – of – control signal so that process quality can 

be maintained and production of defective products 

prevented. Univariate control charts have been devised 

to monitor the quality of a single process variable; 

multivariate control charts monitor a number of 

process variables simultaneously. When many charts 

are maintained, there is a not-so-small probability that 

at least one chart will emit an out-of-control message 

due to chance alone. Meltzer and Storer (1993) 

described a scenario in which approximately 200 

control charts for individual variables were used, and 

false signals occurred so frequently that both the 

production shop and the engineering personnel lost 

confidence in the charts. If 200 separate charts were to 

be used and points were plotted one at a time, the 

probability of having a false signal from at least one 

chart at a particular point in time is 1 – (1-0.0027)200 = 

0.42, if the quality characteristics were independent, 

normality was assumed, and 3-sigma limits were used. 

Therefore, this might be used as an approximation if 

the correlations between the quality characteristics 

were quite small, since the actual probability cannot 

be determined analytically. 

Multivariate process measurement benefits from the 

use of inherent multivariate methods rather than a 

collection of univariate charting methods applied to 

the individual components. The development of 

multivariate control charts originates from the work by 

Hotelling (1947). Recent works have focused mostly 

on developing control charts for monitoring small 

changes in the process mean. Woodall and Ncube 

(1985), Healy (1987), Crosier (1988), Pignatiello and 

Runger(1990) and Hawkins (1991, 1993) for accounts 

of multivariate cumulative SUM (MCUSUM) control 

charts and Lowry et al.(1992), Runger and Prabhu 

(1996) and Linderman and Love (2000) for accounts 

of multivariate exponentially weighted moving 
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average (MEWMA) control charts. Qiu and Hawkins 

(2001, 2003) proposed a rank-based multivariate 

CUSUM procedure to detect a shift in the process 

mean. Other recent works focus on developing 

procedures for monitoring the process variability. Alt 

and Bedewi (1986), Tang and Barnett (1996a,b), Liu 

(1995), Chan and Zhang (2001), Yeh et al. (2003, 

2004, 2005) and Hawkins and Maboudou-Tchao 

(2008) for example. Generally, the process mean and 

variance may change simultaneously during the 

monitoring period. 

Hawkins and Maboudou-Tchao (2008) considered a 

combination of the MEWMA chart and the 

multivariate exponentially weighted moving 

covariance matrix (MEC) chart, which is called the 

MAC chart here. Alt (1985) gave a review of 

multivariate quality control charts and pointed out that 

an important area worth further research was to 

develop a single control chart for the simultaneous 

monitoring of both the process location and dispersion. 

In the present study, the main focus is on comparing 

the performance of Hotelling’s T2 control chart 

(Hotelling, 1947) with that of bootstrap T2 chart. The 

T2 statistic measures the distance between an 

observation and the scaled-mean estimated from the 

in-control data. Assuming that the observed process 

data follow a multivariate normal distribution, the 

control limit of a T2 control chart is proportional to the 

percentile of an F distribution (Mason and Young, 

2002).    

The remainder of this article is organised as follows. 

Section 2, describes the multivariate Hotelling’s T2 

control chart and the procedure to calculate the boot 

strap based T2 control chart. Section 3 presents the 

comparison of the performance of both Hotelling’s 

and bootstrap based T2 control on detecting the shifts 

for a simulated normal multivariate process. Section 4 

provides the summary and conclusions.  

 

II. MULTIVARIATE CONTROL CHARTS 

There are many situations in which the 

simultaneous monitoring or control of two or 

more related quality-characteristics is necessary. 

For example, suppose that a bearing has both an 

inner diameter (x1) and an outer diameter (x2) that 

together determine the usefulness of the part. 

Suppose that x1 and x2 have independent normal 

distributions. Because both quality characteristics 

are measurements, they could be monitored by 

applying the usual x chart to each characteristic. 

Monitoring these two quality characteristics 

independently can be very misleading. The 

probability that either 1x or 2x exceeds three-

sigma control limits is 0.0027. However, the joint 

probability that both variables exceed their control 

limits simultaneously when they are both in 

control is (0.0027) (0.0027) = 0.00000729, which 

is considerably smaller than 0.0027. Furthermore, 

the probability that both 1x  and 2x will 

simultaneously plot inside the control limits when 

the process is really in control is (0.9973) (0.9973) 

= 0.99460729. Therefore, the use of two 

independent x  charts has distorted the 

simultaneous monitoring of 1x and 2x , in that the 

type I error and the probability of a point correctly 

plotting in control are not equal to their advertised 

levels for the individual control charts. This 

distortion in the process-monitoring procedure 

increases as the number of quality characteristics 

increases. In general, if there are p statistically 

independent quality characteristics for a particular 

product and if an x chart with P {type I error} =  

is maintained on each, then the true probability of 

Type I error for the joint control procedure is 

       ′ = 1 – (1 - ) p   (1) 

And the probability that all p means will 

simultaneously plot inside their control limits 

when the process is in control is  
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      p{all p means plot in control}= (1 - )p    (2) 

Clearly, the distortion in the joint control 

procedure can be severe, even for moderate values 

of p. Furthermore, if the p quality characteristics 

are not independent, which usually would be the 

case if they relate to the same product, then 

equations (1) and (2) do not hold, and we have no 

easy way even to measure the distortion in the 

joint control procedure.  

Hence, the quality characteristics should not be 

charted independently. The appropriate 

distribution when the p quality characteristics are 

jointly distributed as normal is the multivariate 

normal distribution. The density function of the 

multivariate normal distribution is given as under: 
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            Where – < xj < ,  j = 1, 2, ………, p.  

                            -- covariance matrix  

                          μ -- mean of the normal 

distribution  

Most popular control chart based on multivariate 

normal distribution is a Hotelling’s T2 control 

chart. Hotelling’s T2 control charts have been 

widely used to monitor multivariate processes with 

individual observations (Hotelling, 1947). Suppose 

that a dataset contains n observations and each 

observation is characterised by p process variables. 

Assume that the dataset follows a multivariate 

normal distribution with an unknown μ and a 

covariance matrix.  

The Hotelling’s T2 statistics can be calculated by the 

following equation: 

  
   xxSxxT

T
 12

              

                          (4)                                     
 

where x  is a sample mean vector and S is a sample 

covariance matrix from an in control process. The 

control limits of T2 can be computed by using the 

procedures that will be discussed in the subsequent 

sections. 

III. BOOTSTRAP-BASED T
2
 CONTROL CHART 

In order to compare the performance of the 

Hotelling’s T2 control chart with that of boot-strap 

control chart, the procedure proposed by Poovich et al 

(2011) to calculate control limits is explained as under: 

1)  Compute the T2statistics with n observations 

from an in-control dataset. 

2)  Let
 iT 2

1 , 
 iT 2

2 ,...,  i
nT 2 be a set of n T2values 

from ith bootstrap sample (i =1, ... , B) randomly 

drawn from the initial T2statistics with replacement. In 

general, B is the large number (e.g., B > 1,000). 

3)  In each of B bootstrap samples, determine the 

100 · (1 - )th percentile value given a users - 

specified value with a range between 0 and 1. 

4)  Determine the control limit by taking an average 

of B 100 · (1 - )th percentile values (
 1100

2T ). 

Note that statistics other than the average can be used 

(e.g., median). 

5)  Use the established control limit to monitor a 

new observation. That is, if the monitoring statistic of 

a new observation exceeds
 1100

2T , we declare that 

specific observation as out of control. 

 

The boot strap T2control charts and Hotelling’s T2 

control charts are developed using Matlab programs. 

The multivariate normal data set with two quality 

characteristics is obtained by simulation and the 

control limits for monitoring the process are obtained 

with a data set consisting of 100 subgroups. The 

control limits are established for both the charts with 

the procedure described above. A shift in the mean 

values is introduced and the data set with 1000 

subgroups following multivariate normal distribution 

has been generated with the new mean. The 

performance of the control charts is compared by 

recognizing their ability to detect the assignable 

causes by indicating the points plotting outside the 
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control limits. Simulation experiments are conducted 

with different sample sizes and the performances are 

compared. 

 

Case 1: Sample size n = 2 

             Process variables, p= 2 

             No of subgroups, m=100 

The control limits obtained for both types of the 

control charts are as follows: 

UCL for boot strap control chart = 6.5231 

UCL for Hotelling’s T2 control chart = 9.9561 

Figure 1 shows the control limits and the in-control 

data plotted on both the control charts. After 

introducing the shift in the mean, the data of 1000 

subgroups are plotted in both types of control chart. 

Figure 2.1 shows the performance of the both control 

charts in detecting the shifts. Similarly, Figure 2.2 

shows the performance of both charts after introducing 

the shift in the second run. Likewise, for the ten runs, 

Figure 2.1 through Figure 2.6 show the performance 

of both the charts after the shift is introduced. 

    

 

Figure 1: T-square control chart and Bootstrap 

based T-square control chart for sample size, n=2 

 

Figure 2.1: Comparison of the control charts with 

shift in the mean for the first run 

 

Figure 2.2: Comparison of the control charts with 

shift in the mean for the second run 

  

 

Figure 2.3 Comparison of the control charts with 

shift in the mean for the third and fourth runs 
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Figure 2.4: Comparison of the control charts with 

shift in the mean for the fifth and sixth  runs 

 

 

Figure 2.5: Comparison of the control charts with 

shift in the mean for the seventh and eighth runs 

 

 

Figure 2.6: Comparison of the control charts with 

shift in the mean for the ninth and tenth runs 

The out of control points indicated by the control 

charts serve as the basis for measuring the 

performance of the respective control chart. This is 

because of the intentional change in the mean value of 

the process. Table 3.1 shows the comparison of the 

performances for both the charts with a sample size of 

n = 2. It can be observed from the Table 3.1 that in all 

the 10 runs, bootstrap control chart was successful 

more number of times in detecting the shift.  On 

average, the power of the control chart is observed to 

be 0.431 where as the Hotelling’s T 2 control chart 

showed a power of 0.092. 

Table 3.1: Comparison of effectiveness of the charts 

for sample size, n=2 
S.No No of Sample Points Plotting Outside the Control Limits 

of 

Bootstrap-Based 

T2 Chart 

Hotelling’s 

T2 Chart 

 

1 34 8 

2 30 5 

3 55 10 

4 44 12 

5 46 8 

6 56 11 

7 39 8 

8 30 6 

9 43 10 

10 53 14 

Power of Bootstrap-Based 

T2 Chart 

Power of Hotelling’s 

T2 Chart 

0.431 0.092 

By following the same procedure used for n = 2, the 

results of simulations with sample sizes of  n = 4, 6, 8, 

10 and 15 are tabulated  in Table 3.2 through Table 

3.6.  

Table 3.2: Comparison of effectiveness of the charts 

for sample size, n=4 
S.No No of Sample Points Plotting Outside the Control 

Limits of 

Bootstrap-Based 

T2 Chart 

Hotelling’s 

T2 Chart 

 

1 20 5 

2 24 13 
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3 15 4 

4 19 9 

5 20 10 

6 19 7 

7 26 10 

8 17 6 

9 28 12 

10 19 9 

Power of Bootstrap-Based 

T2 Chart 

Power of Hotelling’s 

T2 Chart 

0.247 0.085 

 

Table 3.3: Comparison of effectiveness of the charts 

for sample size, n=6 
S.No No of Sample Points Plotting Outside the Control 

Limits of 

Bootstrap-Based 

T2 Chart 

Hotelling’s 

T2 Chart 

 

1 33 5 

2 36 14 

3 52 17 

4 36 11 

5 35 8 

6 38 8 

7 38 13 

8 24 5 

9 27 3 

10 30 10 

Power of Bootstrap-Based 

T2 Chart 

Power of Hotelling’s 

T2 Chart 

0.349 

 

0.094 

 

Table 3.4: Comparison of effectiveness of the charts 

for sample size, n=8 
S.No No of Sample Points Plotting Outside the Control 

Limits of 

Bootstrap-Based 

T2 Chart 

Hotelling’s 

T2 Chart 

 

1 22 8 

2 19 4 

3 17 8 

4 20 8 

5 23 12 

6 23 8 

7 18 8 

8 25 9 

9 24 7 

10 25 11 

Power of Bootstrap-Based T2 

Chart 

Power of Hotelling’s T2 

Chart 

 

0.216 0.083 

 

Table 3.5: Comparison of effectiveness of the charts 

for sample size, n=10 
S.No No of Sample Points Plotting Outside the Control Limits 

of 

Bootstrap-Based 

T2 Chart 

Hotelling’s 

T2 Chart 

 

1 49 13 

2 42 17 

3 31 13 

4 47 12 

5 45 10 

6 28 3 

7 43 10 

8 38 9 

9 49 11 

10 39 8 

Power of Bootstrap-Based 

T2 Chart 

Power of Hotelling’s 

T2 Chart 

0.411 0.106 

 

Table 3.6: Comparison of effectiveness of the charts 

for sample size, n=15 
S.No No of Sample Points Plotting Outside the Control Limits 

of 

Bootstrap-Based 

T2 Chart 

Hotelling’s 

T2 Chart 

 

1 19 9 

2 31 16 

3 17 10 

4 15 8 

5 18 12 

6 15 6 

7 18 8 

8 22 14 

9 20 11 

10 30 17 

Power of Bootstrap-Based 

T2 Chart 

Power of Hotelling’s 

T2 Chart 

0.205 0.111 

 

From above results, it is clear that the probability of 

finding assignable causes or the power of the chart is 

more for a Bootstrap-based T2 control chart compared 

to Hotelling’s T2 control chart. 

 

IV. SUMMARY AND CONCLUSIONS 

In the present study, the performance of Hotelling’s T2 

control chart with that of a bootstrap based T2 control 

chart is studied. A process with two quality 

characteristics following a multivariate normal 

distribution has been simulated and the control limits 

for both the charts have been calculated when the 

process is in control. A shift in the process mean has 

been introduced, and the process is monitored with 

both the types of control charts. The chart which has 

the higher probability of recognizing the shift is 

observed with different sample sizes.  In all the cases, 

it has been observed that the bootstrap based control 

chart outperformed the Hotelling’s T2 control chart. 

The main limitation for implementing the T 2 control 

chart is that the process must follow a multivariate 

normal distribution. The present study reveals the fact 

that even though the process follows a normal 

distribution, the performance of Hotelling’s T2 control 

chart is inferior to bootstrap based T2 control chart. 

Since the construction of bootstrap control chart do 

not rely on any statistical distributionbe is easily 

understood by personnel without a strong statistical , 

even though the process does not follow normal 
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distribution it can be safely applied. Also, the 

construction of bootstrap control chart background.  
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