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Abstract 

         The effects of variation of viscosity and coriolis 

force on Oberbeck magneto-convection of a chiral 

fluid in the presence of the transverse magnetic field, 

viscous dissipation with saturated porous media are 

investigated. The coupled non-linear ordinary 

differential equations governing the flow and heat 

transfer characteristics of the problem are solved 

both analytically and numerically. The analytical 

solutions are obtained using a regular perturbation 

and numerical solutions obtained using finite 

difference method. The solution is valid for small 

values of Buoyancy parameter and variable viscosity 

parameter.The analytical results are compared with 

the numerical results and found good agreement. The 

role of temperature dependent viscosity and viscous 

dissipation on velocity, temperature, skin friction and 

the rate of heat transfer are determined. The results 

are depicted graphically. 

Keywords - Chiral fluid, Coriolis force, Regular 

perturbation, Finite difference method 

I. INTRODUCTION 

       The study of flow problems which involve the 

interaction of several phenomena, has a wide range 

of applications in the field of science and 

technology. There are several transport processes in 

industry and in nature where buoyancy force arise 

from both thermal and mass diffusion caused by the 

temperature gradients and the concentration 

differenced of dissimilar chemical species. Hence, 

this analysis deal with the free convection flows 

driven by temperature gradients and concentration 

differences. When the free convection occurs at high 

temperatures, radiation effects, Soret effect i.e., 

thermal diffusion, variation of viscosity with 

temperature and variation of thermal conductivity of 

the fluid cannot be neglected. Nuclear power plants, 

missiles, gas turbines and space vehicles are the 

examples of such engineering areas. 

 The Reddy et.al [1] studied unsteady magneto- 

hydrodynamics convective heat and mass transfer 

flow past a semi-infinite vertical porous plate with 

variable viscosity and thermal conductivity. They 

assumed that viscosity of the fluid varies as an 

inverse linear function of temperature. Free 

convection can have significant effects on forced 

flows over solid bodies. It can alter the flow field and 

hence the heat transfer rate and the wall shear stress. 

Such effects are particularly enhanced for high-speed 

rotating medium is important due to its application in 

many areas of geophysics, astrophysics and fluid 

engineering. Taking into account this fact, the author 

A. K. Singh had investigated MHD free convection 

flow past an infinite vertical isothermal porous plate 

started impusively in its own plane in a rotating 

system. 

N.Nanousis[6] considered MHD free convective and 

mass transfer flow past a moving infinite vertical 

isothermal plate in a rotating fluid taking into account 

the thermal plate in a interest in heat transfer 

problems for a non-Newtonian fluid has grown 

persistently in the past half century. In porous media, 

the effect of viscosity variation was considered [7],[8] 

&[8] and studied the thermal diffusion effects on free 

convective heat and mass transfer flow over an 

infinite vertical moving plate and noticed that fluid 

velocity rises due to greater thermal diffusion.  

 

A chiral material characterized by either left handed 

or right handed, is a type of molecule that lacks an 

internal plane of symmetry and has a non-super-

imposable with its mirror image by any amount of 

rotation and [2] &[3]. Rudraiah et 

al.,[11],[12],[13],[14] & [15] have studied the effect 

of variation of viscosity on Oberbeck magneto-

convection in a chiral fluid in the presence of coriolis 

force, viscous dissipation and chemical reaction.  The 

objective of the present study is to investigate the 

Oberbeck convective flow in a vertical chiral fluid 

layer with variable viscosity and coriolis force with 

saturated porous media. Analytical solutions of the 

coupled non-linear momentum and energy equations 

are obtained using a regular perturbation method. To 

know the validity of analytical solution, the numerical 

solution is obtained using the finite difference scheme 
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with SOR The velocity, temperature, skin friction and 

rate of heat transfer are computed and the results 

obtained are depicted graphically. 

II. MATHEMATICAL FORMULATION  

 
                  Fig-1: Physical configuration 

 

consider a physical configuration as shown in Fig-1 

which consists of an incompressible Boussinesq 

chiral fluid saturating an infinite vertical sparsely 

packed porous layer of width h . A Cartesian frame of 

reference is chosen with x and y axes in the vertical 

and horizontal directions respectively. A uniform 

magnetic field 
0

B and rotation 
0

 are applied in the 

y direction which is perpendicular to both x and 

y axesThe flow in the porous medium is governed by 

the Darcy-Brinkman equation with effective 

viscosity. 

The mass conservation equation for an 

incompressible Boussinesq chiral fluid is: 

 

q = 0, 


                                        (1) 

 Equation of state for a Boussinesq fluid is: 

 

  0 2 0
1 ,T T                                             (2)  

 

Conservation of momentum in the presence of 

Lorentz force,
 

J B
 

 is: 

 

   
2

0
2

,
'

f

q
q q q p g q

t

J B q
k

  



 
          

 
 

  


    

  
(3)    

                                                                                 

Conservation of energy in the presence of viscous 

dissipation   is: 

 

 
2

0
,

p

T
c q T k T

t

 
     

 
 


                         (4)  

 

where 
2 22 2

2 2

1
2

2

1 1

2 2

f

u v w u v

x y z y x

v w w u

z y x z

           
          

           

     
      

       

 

 

conservation of electric charges in the presence of 

convective current        

  eJ q

 
                                        (5)         

where the displacement current /D t 


 is neglected 

compared to convective current 
e
q


 

 
 . 0 .

e

e
q

t





  




,                                   (6) 

The constitutive equations for chiral fluids following 

Rudraiah et.al (2000) and Varadan et.al (1989) 

 

,D E i B 

  
                (7)                                         

,
m m

B H i E   

  

                         (8)   

 

The viscosity of chiral fluid is assumed to be 

temperature dependent and is of the form   

 

  0 1 0
1 .T T                              (9)    

 

The flow is assumed to be  fully developed, steady 

and unidirectional parallel to x axis(see Fig.1), so that 

all the physical quantities vary only w.r.t y  except 

the pressure, p . The hydrostatic balance is 

0
/p x g     .  

Under these assumptions, equations (1) to (4) 

respectively take the form 

 

0 (1 0 )
0

v
v v

y


  


 

  
2

0
1

0 1 0 0 1 02
'

d u d u d T d u

T T v v u

d y d y d y d y



  



      

  0 0
2 0 ,

1 0 0 0

0

v Be
T T g v







              (11)          

 

2 2
2

0 0 0 0 1 02
0

p

d T d T d u d u
k c v T T

d y d y d y d y

   
       

   

                                                                              

                                                                              (12) 

From equation (6) using equation (1) and also using 

the assumption become     

constan t
e
               (13)                                          

The following non- dimensional variables are used to 

make equations (11) and (12) non dimensional 

following Rudraiah et.al [2] & [3]. 
 

 
2 2 2 2 2 2

2 0 0

0

1 0

* , * , *
/ /

, (1 4 )

e

e

y u
y u

h g h T E B V h

T T
T T T

T






  



  
 


   



                                                                      

The non-dimensional form of the governing equations 

(11) and (12) using equation (14) after neglecting the 

asterisks, are:   
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 

2

2
1 R e

1 12

R e R e

0 ,

d u d u d d u

R R u

d y d y d y d y

M T a

G r G r



      

  

     (15) 

 

2
2

12
1 0

d d d u
P e N R

d y d y d y

 
    

 

 
      (16) 

Here
1 1

R T  , viscosity variation coefficient, 

R e /
0

v h  , the Reynolds number, 

  
2 2 2 2

/
0 0 0 0 0

M B E B V v
e

     , the 

magnetochiral number, 
3

/
0

G r g T v   , the Grashof 

number, /
0

P e v h K , the Peclet number,

 22 4
/

0 0 0
N g h T v k   , the buoyancy parameter, 

2
/ 'h k  , porous parameter and 

2 4 2
4 /

0 0
T a h    , 

the Taylor number. 

 

Making the no-slip and isothermal boundary 

conditions on velocity and temperature dimensionless 

using equation (14), we get   

 

0,u  at 0y  , 0,u  at 1y                                 (17)  

 

0 at 0y  , 1 at 1y                      (18)  

 

              III. ANALYTICAL SOLUTION 

 

Equations (15) and (16) are the coupled non-linear 

differential equations, whose analytical Solutions are 

obtained using a regular perturbation technique with 

Buoyancy parameter N  as a perturbation parameter. 

In this technique u and   are expressed in a series 

form, given by 
 

2

0 1 2
.........u u N u N u                                         (19)                                                                  

2

0 1 2
.........N N                                          (20)  

 

subjected to satisfying the boundary conditions (17) 

and (18). Substituting equations (19) and (20) into 

equations (15) and (16) and equating the like powers 

of N to zero we obtain 
 

Zeroth order equations: 

 

2

0 0
0

2

d d

P e

d yd y

 

 

                                                     

(21) 

 

2

20 0 0 0
1 R e

1 0 1 02

d u d u d d u

R R u

d y d y d yd y



    

 

                                    

 
R e R e

.
0

M T a

G r G r

   

                          

(22) 

 

First order equations: 

 

 

2
2

1 1 0

1 02
1 0 ,

d d d u
P e R

d y d y d y

 


 
    

 

         (23)                                       

 

 

22

0 01 1
1 R e

1 0 1 12 2

20 1 1
R R e .

1 1 1

d d ud u d u

R R

d y d yd y d y

d u d d u

u

d y d y d y



 



 

  

    

        (24) 

 

The solution of eqn. (21), satisfying the boundary 

conditions (18) is  
 

0 1 2

P e y
A A e                                        (25)                           

Equations (22) to (24) are differential equations with 

variable coefficients; it is difficult to find the 

solutions. To overcome this difficulty, we again use 

regular perturbation technique with 
1

R as a 

perturbation parameter and 
0

u  and 
1

u take the form  
 

0 00 1 01
,u u R u                                                      (26) 

1 10 1 11
,u u R u                                                      (27)  

with 
1

R as a very small parameter. 

 

Equation (22) and (24), using equations (26) and (27) 

and equating like power to zero, we get 

 

Zeroth order equations: 

 

2
R e R e20 0 0 0

R e 0
0 0 02

d u d u M T a
u

d y G r G rd y

                                                                            

(28)     
2

21 0 1 0

1 0 12
R e 0

d u d u
u

d y d y
    

               

(29)          

                                                                                         

First order equations: 

 
2 2

20 1 0 1 0 0 0 0 0

0 1 02 2
R e 0 ,

d u d u d u d d u
u

d y d y d y d y d y


                                                                              

                                                                            (30) 
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2 22

1 0 01 1 1 1
R e

0 12 2

20 1 0 01
0 .

1 1

d u d ud u d u

d y d yd y d y

d d u d ud

u

d y d y d y d y
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 



  

   

     (31)                                                                      

In this study, we restrict our solution to the first order 

approximation. Validity of this approximation will be 

done using numerical technique.

 The solutions of the ordinary differential equations 

(28) and (30) respectively, using equation (25), 

subject to satisfying the boundary conditions (17) and 

(18), are  
 

R e

00 0 1 2 4

P e y y
u a a y a e A e   

 
(32)              

      
2 ( R e )

0 1 3 4 5 6

R e

7

P e y P e y P e y

y

u a a e a e a e

a y e


   


 

(33)     

0 00 1 01
u u R u                                        

(34)                  

                                       

The solution of equation (23), using equations (25) 

and (34), is  

 
2 3 4

1 8 9 8 1 0 1 1 1 2

5 R e 2 R e ( R e )

1 3 1 4 1 5 1 6

( 2 R e ) ( 2 R e ) ( 2 2 R e )

1 7 1 8 1 9

( 3 R e ) ( 4 R e ) ( 3 4 R e )

2 0 2 1 2 2
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a e a e a e

a y e a y e a y e a





  

  

     

   

  

  

   
( 2 2 R e )
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

 

 

  

 

                                                                                    

 

(35) 

Equations (29) and (31) are the ordinary differential 

equations whose solutions using equations. (25), (34) 

and (35), are  
2 R e

1 0 9 3 2 3 3 3 4 3 5

2 3 4 5

3 6 3 7 3 8 3 9

( 4 R e ) ( 3 4 R e ) 2 ( R e )
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  
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  
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,
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(36) 
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 
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 

 
  

 
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
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 
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R e R e 2 R e2 2 2
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.
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 
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(37)                             

 

1 10 1 11
u u R u          (38)                

 

The constants involved in equations (32) to (37) are 

determined using the boundary conditions. These 

constants are very lengthy and hence omitted here but 

they are included in the computation of the solutions. 

 

A.  Skin Friction  

            In many practical applications involving 

separation of flow, it is advantageous to know the 

skin friction and heat transfer at the boundaries. 

These can be determined once we know the velocity 

and temperature distributions. The skin friction can 

be calculated from the shear stress   at the walls 

defined as  

 

                          f

u

y
 

 
  

 
   

    

The dimensionless expression for skin friction is 

expressed as  

 

   1
1

u
R

y

 
   

 

       (39)         

   

B.Heat Transfer  

         The rate of heat transfer between the fluid and 

the plate is given by 
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'
T

q k
Y

 
   

 
                                                                                          

where 'q is the heat flux. 
 

The non-dimensional form of heat transfer equations, 

can be expressed as Nusselt number, ,N u given by 
 

                        N u
y


 


       (40) 

IV. NUMERICAL SOLUTION 

       To know the validity of analytical solutions 

obtained using the approximate method of regular 

perturbation technique, we find in this section the 

numerical solution of the coupled nonlinear equations 

(14) to (15) using the second order 
2

( )O h central 

finite difference scheme. After applying the central 

finite difference scheme, equations (14) and (15) take 

the form 

                          

 
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1

1
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1
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2
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1

u u u
ii i

R
i

y
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i i i i
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y y
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i i
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

 
   

 

 
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 

 
 

    
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                                                                            (41)  

where  

 

2
1 1 1 1

2

2

1 1
1 0 .

1
2

ii i i i
P e

y y

u u
i i

N R
i

y

    



  
   



 


 
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

 

 
 

 

 
 

          (42)                

Successive over-relaxation has been used for the 

quick convergence of the solution. The results 

obtained are discussed and conclusions are drawn in 

the section VI.    
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Fig-2: velocity profiles for different values of N    

, , R e , , , . , .       M 1 0 G r 1 2 T a 5 P e 5 0 0 1 R 0 0 1
1

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

M=10,20,30

u

y  
 

Fig-3: velocity profiles for different values of M         
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Fig-5: velocity profiles for different values of R e      
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Fig-6: velocity profiles for different values of T a     
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Fig-10: Temperature profiles for different values of M          
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Fig-11: Temperature profiles for different values of G r     
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Fig-12: Temperature profiles for different values of Re   
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Fig-13: Temperature profiles for different values of T a                  
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Fig-14: Temperature profiles for different values of  
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Fig-15: Temperature profiles for different values of 
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Fig-17: Skinfriction for various values of R1 
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Fig-18: Skinfriction for various values of Re 
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Fig-19: Skinfriction for various values of Gr 
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Fig-20: Skinfriction for various values of Ta 
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Fig-21: Skinfriction for various values of   
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     Fig-24: Heat transfer for various values of Re 
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Fig-25: Heat transfer for various values of Gr 
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Fig-26: Heat transfer for various values of Ta 
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Fig-27: Heat transfer for various values of   
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Table 1: Comparison of velocity and temperature 

profiles for different values of  Buoyancy parameter 
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VI. RESULT AND DISCUSSION 
 

    The analytical solutions for effects of variation of 

viscosity on Oberbeck magneto-convection in a chiral 

fluid with saturated porous media in the presence of 

coriolis force are investigated. The results are 

presented graphically in Figs. (2) to (27). 

u u y
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Comparisons of analytical results with numerical 

results are performed and excellent agreement found 

between analytical and numerical results. Non-linear 

ordinary differential equations are solved analytically 

using regular perturbation method and numerical 

solution obtained using finite difference method. Fig. 

(2) displays the velocity distribution for various 

values of N. It is observed from this figure that there 

is a slight increment in velocity distribution i.e., 

velocity profile increases with an increasing the 

buoyancy parameter. Figs. (3),(6) and (8) show the 

variation of velocity profile for various values of M, 

Ta and R1. It is observed from these figures that the 

velocity distribution increase in the value of M, Ta 

and R1. Figs. (4),(5) and (7) represent the velocity 

distribution for various values of Gr,Re and sigma. It 

is observed from these figures that velocity 

distributions decrease with an increase in Gr, Re and 

sigma. The effect of  is to decrease the velocity 

profile. This is due to increase in obstruction of the 

fluid motion with an increase in the  , thereby 

increase in the porous parameter indicates decrease in 

the permeability of the porous medium so the fluid 

velocity decreases. Fig. (8) displays the variation of 

velocity distribution for various values of R1. It is 

observed that the velocity distribution increase with 

increasing R1. Figs. (9) to (15) display the variation 

of temperature distribution  with y for various 

values of N, M, Gr, Re, Ta,  and R1 respectively. 

From these figures, it is seen that no significant 

effects have been found of above mentioned 

dimensionless parameters on temperature 

distributions. But the Fig. (9) shows that a  small 

variation in temperature profile for various values of 

N. It is Observed from this figure that temperature 

distribution increases with increasing N. Figs. (16) to 

(21) represent the effect of skin-friction with M for 

various values of N, R1,Re and Gr respectively. Fig. 

(16) displays the effect of skin-friction with M for 

various values of buoyancy parameter. It is observed 

from this figure that no variation has been found for 

various values of N. Further, it is noted that skin-

friction increase in M. The variation of skin-friction 

with M for various values of R1,Re and Gr are 

depicted in Figs. (17), (18) and (19). From these 

figures, it is clear that the skin-friction decreases with 

increase in the values of R1, Re and Gr. Further, it is 

observed that the skin-friction increases with 

increasing M. Fig. (20) represents the variation of 

skin-friction with M for various values of Ta. It is 

observed from the figure that skin-friction decreases 

for various values of Ta. Further, it is observed from 

that the skin-friction increases with increasing M. 

Fig. (21) shows the variation of skin-friction with M 

for various values of  . It is observed that the 

effects of skin-friction with M for various values 

of . Further, from this figure, it is seen that skin-

friction increases with increase in M. Figs. (22) to 

(27) display the variation of rate of heat transfer with 

magnetochiral number M, for various values of N, 

R1,Re,Gr,Ta and  respectively. The effects of N, R1 

and Ta on skin-friction with M are presented in Figs. 

(22), (23) and (26). These graphs illustrate the heat 

transfer increase with increase in N, R1 and Ta 

respectively. Also, we note that the rate of heat 

transfer increase with an increase in M. Figs, (24), 

(25) and (27) represent the variation of rate of heat 

transfer with M for various values of Re, Gr and 
 respectively. It is observed from these figures that 

the rate of heat transfer decrease with increase in Re, 

Gr and  . Further, it is observed that the heat 

transfer increase with the increase in M. 

 

VII. CONCLUSION 

 

The influence of  viscosity variation parameter and 

coriolis force on Oberbeck magnetoconvection in 

chiral fluid with saturated porous media is studied 

analytically and numerically. Computed results are 

presented to exhibit their dependence on the 

important physical parameters. 

We conclude the results as follows: 
 Increase in magetochiral number  M , 

buoyancy parameter  N  and Reynolds 
number  R e  , increases the magnitude of 
velocity distribution. 

 Increase in viscosity variation parameters 
 1

R  and Reynolds number  R e  decrease 
the magnitude of velocity distribution.  

 The increase in magnetochiral number  M  
and Reynolds number  R e , increase the skin 
friction. 

 Increase in viscosity variation parameter 
 1

R   Taylor’s number  T a  and Grashof 
number  G r  decrease the skin friction.  

 The increase in magnetochiral number  M  
and Reynolds number  R e , decreases the 
heat transfer.  

 Increase in viscosity variation 
parameter  1

R ,  increases the heat transfer.  
 Increase in Taylor’s number  T a , porous 

parameter  σ  increase the heat transfer. 
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