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Abstract - Earthen construction has been practised for millennia due to its availability, low embodied energy, and adaptability 

to diverse climates. In recent years, its resurgence has been driven by sustainability concerns and the need for eco-friendly 

alternatives in construction. However, predicting the structural performance of earthen materials remains a challenge due to 

their inherent variability. This study explores the potential of Artificial Neural Networks (ANNs) to enhance the understanding 

and prediction of load-bearing capacity in earthen structures. A comparative analysis of different ANN architectures is 

conducted, examining variations in network depth, activation functions, and training algorithms. Results indicate that optimally 

tuned, shallow networks outperform deeper architectures by minimizing computational complexity while maintaining predictive 

accuracy. This work demonstrates that data-driven approaches can improve the reliability and efficiency of earthen 

construction, offering engineers and architects valuable tools for sustainable building design. 

 

Keywords - Artificial Neural Networks, Earthen construction, Load-bearing capacity, Machine Learning, Structural 

performance. 

 

1. Introduction  
1.1. History 

The use of natural materials, combining the use of 

invented homes and dwellings (Minke, 2009) [1], has been 

one of the primary needs for survival and creativity among 

mankind over the years (Adam, 1994) [2]. The date of the 

beginning of man’s use of earth for construction is not clear 

(Forbes, 1965) [3], but examples of the use of this material can 

be found dating back over 9,000 years in the excavation of 

occupancy sites (Rosenberg et al., 2020) [4]. With the 

discovery of Göbekli Tepe  (Yenigun, 2021) [5], Urfa has 

proven to be one of the oldest settlements in history and has 

been named “Zero Point of History” due to this feature, with 

more than 12,000 years of history (Dietrich et al., 2012) [6]. 

 

1.2. Types of Earth Construction  
Adobe bricks: Adobe bricks (Medvey, B., & Dobszay, G., 

2020) are produced with the help of stabilising agents such as 

bricks, mud and mortar. [7]. There are some significant 

benefits of sound insulation, including reduced levels of sound 

transmitted through walls, doubt and security: (Walker, K., et 

al., 2005) [8]. The use of such walls is also evaluated in the 

choice of the heating, ventilation and cooling systems (Kosny 

and Kossecka, 2002) [9]. Interpretation: The prepared samples 

reveal the fireproofness of the adobe bricks and their low 

energy investment in the raw materials (Ben Guida, 2015) 

[10]. Yet, the strength and stiffness of conventional adobes are 

not satisfactory, and their resistance to earthquakes is not 

significant; therefore, children and adults of these low-income 

groups are deprived of safe and durable housing in their 

everyday life (Silveira et al., 2012) [11].  

 

 
Fig. 1 El Haj Yousif experimental school (E.A. Adam,2021) [12] 

Rammed earth is a type of earth-based construction, 

where dry soil and water are mixed, then compacted in 

consecutive lifts within a formwork to create structures 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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(Maniatidis & Walker, 2003) [13]. Out of the several styles of 

earth construction, rammed earth presents the highest 

mechanical and structural strength due to the near-dry nature 

of the mixture and the formation through the compaction 

process (Bailly et al., 2024) [14]. The relevance of Rammed 

Earth (RE) remains significant today. 

 

Earth construction is gaining increasing interest from 

builders and researchers seeking sustainable construction 

alternatives, driven by the rising environmental awareness 

within the construction industry (Abhilash et al., 2021) [15]. 

 
Fig. 2 Typical construction process of rammed earth walls (Adolfo 

Preciado and Juan Carlos Santos, 2020) [16] 

 

Cob: clods of clay, subsoil, sand, and straw that are piled 

together to shape a monolithic wall (Hamard et al., 2016) [17]. 

When compared to conventional construction materials 

(bricks or concrete), cob has a far lower embodied energy, as 

this is primarily made from organic materials with little or no 

primary production processing, and its carbon footprint is 

much lower due to the use of local natural materials (Arduin 

et al., 2022) [18]. Moreover, cob is nonÃ• fatal and 

completely recycled, which tends to diminish the ecosystem 

destruction and the depletion of natural resources (Ranganath 

et al., 2024) [19]. 

 

 
Fig. 3 An external wall reveals the presence of cob bricks covered by 

straw (Enrico Quagliarini et al., 2010) [20] 

 

Compressed Earth Blocks CEB: Modern earthen 

construction technologies represent the evolution of adobe, 

with the key difference being the compaction process. This 

process, which involves mechanical stabilization, results in a 

denser and more durable block(Losini et al., 2021) [21]. 

 

 
Fig. 4 CEBs Exposed to the natural environment (Aurélie Vissac and 

all,2018) [22] 

 

Wattle and Daub: It is a composite building material for 

walls, where the “wattle” is the organic substructure made 

from materials like wooden strips, sticks, reeds, straw bundles, 

or small beams, with the weaving or binding method often 

understood through ethnographic analogy (S. Amicone et al., 

2020) [23]. The same type of wet earth-straw mix is used in 

the cob technique, without any support or formwork. Plastic 

humps or loaves (cob is an old English word for loaf) of the 

mix are simply hand-packed layer by layer, forming 

monolithic and wide (50 to 80 cm) masonry walls (Henri Van 

Damme & Hugo Houben, 2018) [24]. 

 

 
  Fig. 5 A lattice formed by weaving withies diagonally. South 

Cambridgeshire, c.1700 (Tony Graham,2004) [25] 

 
1.3. Problematic 

The main question under which this project falls is 

whether Artificial Neural Networks (ANNs) can be a 

prediction model for assessing CEB's mechanical 

performance. The difficulty is the limitation of conventional 

methods and the fact that conventional methods, such as 

physical assessment, can identify properties like compressive 

strength, durability and structural equilibrium. Although these 

traditional methods are reliable, they are usually time-

consuming and expensive, and the need for specific equipment 

is not always available in a country such as Morocco 
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(Jayasinghe & Kamaladasa, 2007) [26]. The variability of 

locally available materials and the scarcity of standardised 

quality control procedures also complicate the manufacture 

and testing of CEBs (Walker and Standards Australia, 2002) 

[27]. 

 

In such a context, where cost and sustainability are 

critical, ANNs can be used to develop faster, cheaper and 

accurate predictions of the material performance (Miccoli et 

al., 2014) [28]. These challenges can be overcome by ANNs 

for a potential transformation of the use of CEBs in Morocco 

that provides a modern method of material design and 

contributes towards the promotion of eco-construction 

compatible with both local heritage and international 

sustainable development aims (Bui et al., 2009) [29]. In this 

framework, one may ask the following: How can Artificial 

Neural Networks (ANNs) be used to predict the mechanical 

behaviour of compressed earth blocks, and what can they 

bring more for earthen construction in Morocco? 

 

Although CEBs are attracting more interest as a 

sustainable building system, their use has been limited due to 

the absence of computerized software tools to predict their 

mechanical behavior. However, a majority of the research 

undertaken to date is based on the testing of the physical 

properties for compressive strength and durability measures 

and the like, which are both expensive and time-consuming in 

terms of the amount of work and the specialized testing 

equipment required [30]. These types of constraints have a 

particular influence in the region, such as Morocco, where, in 

many cases, construction materials are locally produced and 

quality control is less uniform. Furthermore, little research has 

sought to employ numerical routines that could predict the 

performance of a material given a soil type, stabilizer or 

environmental influence. This lack of knowledge has been a 

limiting factor for the production of enhanced CEB mixtures 

and a wider application in industry, particularly with regard to 

economic and sustainable formulations (Walker & Standards 

Australia, 2002) [31], and (Turco et al.,2021) [32].  

 

Artificial Neural Networks (ANNs) offer a pertinent and 

state-of-the-art solution to this challenge. These models can 

adapt to discover intricate relationships in the data, and have 

been successful already in predicting the performance of 

materials in other civil and geotechnical engineering contexts 

(Jeremiah et al., 2021) [33], and (Zeng, Z., et al. 2022) [34]. 

For earthy materials, ANNs may reduce the dependence on 

full-scale laboratory testing by extrapolating mechanical 

parameters, like compressive strength, from a few input 

parameters, such as grain size, plasticity, and moisture 

content, concerning less detailed testing (Yuan et al., 2024) 

[35]. This methodology is particularly timely as the 

construction industry comes under increasing pressure to 

adopt more Sustainable construction methods, which 

minimize carbon outputs and minimize high-embodied 

resources. In the Moroccan cultural context, where earthen 

building corresponds to an environmental need and opens the 

way to reusing this material, incorporating ANN prediction 

models would stimulate a new generation of sustainable, 

affordable and eco-responsible buildings, using earthen 

materials (Bui et al., 2009) [36]. 

 

2. Methodology  
In this work, after an introduction detailing that it is 

crucial to develop earthen construction in Morocco and the 

possible application of Artificial Neural Networks (ANN) in 

predictive modelling, a guideline using IMRAD is adopted to 

evaluate the potential of following ANNs configurations in 

predictive accuracy. Various models were proposed to predict 

the compressive strength of compressed earth block with FE 

parameters obtained with ABAQUS. 

 

These configurations were refined by tuning hidden 

layers, the number of neurons, activation functions and 

learning rates. The comparative analysis offers novel insights 

on model performance, state-of-the-art architecture and 

perspectives on ANN-prediction to sustainable construction 

based on local materials. 
 

3. Results  
3.1. ANN State of the Art 

  Artificial Neural Networks (ANNs) have been widely 

applied in modelling complex, non-linear behaviour of soils, 

specifically when deterministic methods are restricted 

(Koopialipoor and Moarefvand in Civ Eng Infrastruct J 

51:526 545, 2017). 2018) [37]. They have been successfully 

used to estimate the soil settlement, slope stability and bearing 

capacity under different loading conditions [38]. The capacity 

of learning from noisy or incomplete datasets is the main 

advantage of ANNs in the field conditions, where highly 

accurate measurements are rarely available (Sharma & Samui, 

2021) [39]. 

 

Meanwhile, the applications of ANNs are spreading in a 

wide range of civil and materials engineering. Some authors 

have used them to predict the mechanical properties of 

construction materials like compressive strength, tensile 

behavior, and durability performance (Khan et al., 2022) [40]. 

Ahmad et al. (2020) [41] employed neural networks to predict 

the compressive strength of geopolymer concrete and reached 

a good match between prediction and experimental values. 

Similarly, Zhang et al. (2024) [42] studied the ANN’s ability 

to predict the behaviour of stabilized soil bricks with respect 

to mixing proportions and curing conditions. Nevertheless, 

despite being advanced, very scanty work has focused on 

ANN modeling of CEBs from raw or slightly stabilized clay 

obtained by local soils in some countries, such as North 

Africa. Current investigations are mainly for cementitious 

materials (cement-based) or suppose the use of usual 

commercial mixes, which reduces their application for a 

vernacular material and/or sustainable construction situation 
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(Lang, G et al., 2019) [43]. In addition, simulated data, such 

as that in the form of finite-element output, has been 

incorporated into training datasets only rarely, despite the fact 

that simulations can capture internal distributions of stress and 

failure, which are not otherwise available in experiments [44]. 

 

The destructive physical tests still remain the mainstream 

for CEB performance characterization. This is an 

indispensable technique but it is time-consuming and 

expensive; it is also sensitive to discrepancies in suturing and 

setting (Teixeira et al., 2020) [45]. It also has a limited ability 

to detect internal stress paths or possible zones of failure. In 

addition, finite-element modeling (FEM) is a complementary 

approach that enables the ability to simulate load transfer and 

material response to adjustable conditions at the boundary 

\(Dhadse et al. 2021) [46]. Despite its potential, FEM-based 

ANN modeling is underdeveloped, while recent studies have 

indicated that coupling the simulation data together with 

machine learning could improve the prediction efficiency and 

decrease the necessity of comprehensive physical tests 

(Bekdaş et al., 2021) [47]. 

 

When situated in a wider field of ecology and 

sustainability where earthen construction is historically based 

and environmentally well-suited, this hybrid approach is also 

seen as a practical asset for developing more rapidly eco-

responsible answers in housing. This is especially the case in 

Morocco, where there is an abundance of natural clay 

resources to establish sustainable and high-performance/low-

cost earth construction systems in combination with intelligent 

prediction tools (Gomaa et al., 2023) [48].  

3.1.1. The Present  

Currently, almost 50% of the world’s population lives in 

earth-based dwellings (Goodhew & Griffiths, 2011) [49] 

 
Fig. 6 World map illustrating the worldwide use of earth construction 

(Johan Vyncke et al.,2018) [50] 

 

The majority of earth construction is located in less 

developed countries; however, it can also be found in 

Germany, France, and even the UK, which has over 500,000 

earth-based dwellings (Marsh and Kulshreshtha, 2014) [51]. 

Earth construction has seen substantial growth in the US, 

Brazil, and Australia, largely due to the sustainable 

construction agenda, where it plays a key role (Carlos et al., 

2022) [52]. Countries that have established Earth building 

codes, such as Australia, have a significant number of rammed 

earth dwellings; in fact, rammed earth accounts for 20% of the 

building sector there (Giuffrida et al., 2019) [53]. Meanwhile, 

Peru has become a leader in anti-seismic earth-building 

standards due to its recovery efforts in high Andean villages 

affected by strong earthquakes, promoting reinforced earth 

buildings (Tarque et al. 2022) [54]. 

 

3.2. Artificial Neural Network 

Artificial Neural Networks (ANNs) have become 

increasingly popular in civil engineering due to their ability to 

model complex and uncertain data through pattern 

recognition, mimicking the functionality of biological neural 

systems (Dave & Dutta, 2014) [55]. Essentially, ANNs consist 

of interconnected nodes or neurons arranged in layers. Each 

neuron processes input by calculating a weighted sum and 

then applying an activation function to generate an output. 

These outputs then serve as inputs for the next layer, 

ultimately producing a final prediction or decision. This 

flexible structure allows ANNs to effectively identify hidden 

patterns and relationships within diverse datasets (Abiodun et 

al. 2018) [56]. 

 
Fig. 7 Generic topology of an Artificial Neural Network, illustrating 

input, hidden, and output layers 

 
One of the most significant properties of ANNs is their 

ability to process data on a large scale with high speed 

efficiency, especially if run on parallel computing machines. 

This control efficiency makes them particularly appropriate 

for handling the intrinsic challenges of complexity and 

uncertainties encountered in civil engineering (Izeboudjen et 

al., 2022) [57]. 

 

In structural engineering, ANNs have been effectively 

utilized in predicting structural responses such as load-

carrying capacities and for structural health monitoring. For 

instance, ANN models have delivered a very good accuracy 

for predicting the ultimate strength of concrete-filled steel 

tubular columns over the traditional empirical approach 

(Amar et al., 2022) [58]. It has the advantage that it can take 

non-linear interaction between different structural factors into 

account.In geotechnical engineering, there are even successful 
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applications of ANNs for modelling complex conditions such 

as soil response, foundation bearing capacity, and settlement 

variations [4]. Given their ability to deal with the often 

heterogeneous and nonlinear soil data, ANNs have always 

brought out better predictions than standard methods of 

regression (Shahin,2001) [59]. 

 

ANNs are commonly used in transportation engineering 

to predict pavement performance ( such as pavement 

deterioration) and traffic operation. ANN lead to improved 

maintenance planning with the possibility of timely preventive 

actions, which contribute to cost savings and increase the 

service life of the infrastructure (Abambres, M., & Ferreira, 

A., 2017) [60]. 

 

In the field of material science, ANNs are often used to 

predict mechanical and durability properties of building 

materials. Recent investigations are underlining the high 

accuracy of ANNs in predicting the compressive strength of 

concrete, contributing to the design of mixtures which are 

ideal in terms of sustainability and cost (Chaabene et al., 2020) 

[61]. 

 

In addition, ANN has been widely applied to solve the 

realistic civil engineering problems, which includes predicting 

failure delays in construction projects (Yaseen et al., 2020) 

[62], cost estimation in construction project (Naif alsagr, 

2023) [63], damage assessment for multi-story buildings 

(Bartkiewicz, 2000) [64], demand destruction risk in collusion 

(Adeusiewicz, 2000) [65], energy consumption in residential 

buildings (Runge, J., & Zmeureanu, R. 2019) [66], financial 

health of construction companies (Qamar & Zardari, 2023) 

[67]. 

 

3.3. CASE Study  

Artificial Neural Networks (ANNs) are increasingly 

being used to predict engineering behaviours, particularly in 

the field of material properties and structural behaviour. They 

must correctly predict load-carrying capacity in earthen 

construction, often by compressed clays. Traditional methods 

for prediction, such as linear regression or parametric fitting, 

cannot be successful on materials such as compacted clay. 

This treatment usually presumes linearity and independence 

of variables, features that are not usually present in earth-

based construction, where physical behavior is often 

dependent simultaneously on several factors, including 

geometric, mechanical and boundary parameters. In 

comparison, artificial neural networks can learn such 

complexity without the need for a priori defined mathematical 

relations and are therefore more appropriate for materials 

exhibiting nonlinear, homogeneous responses. Here, we 

explore how ANN architectures impact predictive accuracy 

and generalization. 

 

In the current study, the finite element analysis is 

conducted through ABAQUS (Figure 8), in an attempt to 

model the compressed clay bricks with different widths and 

loads. Clay brick simulations were based on a physical sample 

collected in Morocco's Fez area, so the simulation replicates 

local specific material properties. The mechanical input of 

these simulations was based on the characterization of some 

undisturbed natural clay samples taken in the Fez (Morocco) 

area. This was a deliberate choice, as the area is still a 

repository of traditional mud building know-how. The 

combination of these values maintained model outputs in the 

realm of realistic, field-applicable scenarios.. 

 

The key parameters included: 
 

Table 1. Parameters and variation ranges used in the study 

Parameter Unit Variation Range/Value 

Width mm 200 mm – 230 mm 

Load  

(Surface Load) 

MPa 0.15 MPa – 1 MPa 

Output Variable mm Displacement (calculated in 

mm) 

Density kg/m³ 1800 

Yield Stress MPa 3.5 

Plastic Strain - 0 

Young’s 

Modulus 

MPa 803 

Poisson’s Ratio - 0.37 

 

Output Variable: 

 Displacement in mm. 

 

The objective is to: 

 Compare ANN architectures with varying numbers of 

hidden layers and neurons. 

 Assess the impact of different activation functions 

(tansig, logsig). 

 Optimize learning rate and data splitting ratios. 

 Determine the best-performing ANN configuration for 

this dataset. 
 

 
Fig. 8 Clay Bloc modelling using Abaqus 
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The dataset consists of 9 input features and 55 data 

samples. While the dataset may appear limited in size, each 

entry represents the result of a full finite element simulation, 

which is computationally intensive due to its nonlinear 

material behavior and boundary conditions. This approach 

ensures high-quality data despite the lower volume. All 

modelling parameters, material properties, and simulation 

settings were documented and kept consistent throughout the 

process to ensure reproducibility.  

 

The target variable represents the load-bearing capacity 

of compressed clay blocks. To enhance model training: 

 

 Normalization (mapminmax) was applied to standardize 

input and output values. 

 Different train-validation-test splits were tested to 

balance learning stability and generalization. 

 

We experimented with the following ANN variations: 
 

Table 2. Neural Network Parameters for the Study 

Parameter Values/Range 

Number of Hidden Layers 1, 2, 5, and 10 layers 

Neurons per Layer 10 to 50 neurons per layer 

Activation Functions tansig (Hyperbolic Tangent Sigmoid), logsig (Log-Sigmoid) 

Training Algorithm trainlm (Levenberg-Marquardt) 

Learning Rate Adjustments 0.01 (default), 0.005 (lowered for stability) 

Each ANN configuration was trained over a maximum of 

100 epochs. To avoid overfitting, early stopping was 

implemented based on the validation error trend. For most 

models, convergence occurred within 50 epochs, after which 

additional training no longer improved accuracy. 

Hyperparameters such as the number of neurons per layer and 

learning rate were manually adjusted across configurations 

based on validation performance, rather than selected 

arbitrarily. 

A linear regression model was also applied to the same 

dataset to assess the added value of neural networks. This 

model achieved a Mean Squared Relative Error (MSRE) of 

0.109 and an R² value of just 0.72—indicating a lower ability 

to capture the non-linear dependencies present in the data. 

These results confirm the advantage of ANN models in 

handling multidimensional simulation-based datasets with 

complex variable relationships. 

 
Table 3. Performance comparison of ANN configurations for predicting load-bearing capacity of compressed clay blocks 

Model 
Hidden 

Layers 

Neurons per 

Layer 

Activation 

Function 
Data Split MSRE 

Performance 

Summary 

Model A 1 10 tansig Unspecified 0.12161 
Baseline model, not 

optimized 

Model B 

(Best 

Model) 

1 10 tansig 70-15-15 0.0039 
Best, simplest, and 

most accurate 

Model C 2 [15,10] tansig 70-15-15 0.02875 

Minimal 

improvement over 

Model B 

Model D 5 [20,15,...,5] tansig 80-10-10 0.06056 
Deeper networks hurt 

accuracy 

Model E 5 [20,15,...,5] logsig 80-10-10 0.0985 

Worst model, 

underestimates 

predictions 

Model F 10 [50,40,...,5] tansig 85-10-5 0.0392 
Better than Model D, 

but still worse than B 
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Fig. 9 Actual vs. Predicted load-bearing capacity for model B (best 

model, MSRE: 0.0039) 

 

Model B (1 hidden layer, 10 neurons, tansig, 70-15-15 

split) performs best with the lowest Mean Squared Relative 

Error (MSRE = 0.0039). In addition to MSRE, the best-

performing model (Model B) achieved a Root Mean Squared 

Error (RMSE) of 0.042 mm, a Mean Absolute Error (MAE) 

of 0.031 mm, and a coefficient of determination (R²) of 0.984. 

These results indicate that the ANN was able to closely 

approximate the actual load-bearing capacity values with 

minimal residual error and with a strong degree of 

generalization across the test set. 

 

 
Fig. 10 Architecture of the best-performing Artificial Neural Network 

(model B) with 9 input neurons, 1 hidden layer (10 neurons), and 1 

output neuron 

 

4. Discussion  
4.1. Results Interpretation  

  The observed findings show the importance of ANN 

architecture, activation function, and data split strategy in 

prediction accuracy. Model B (1 hidden layer, 10 neurons, 

tansig, 70-15-15 split) had the lowest MSRE (0.0039) and was 

the top-performing model. More generally, this result 

corroborates the belief that simpler architectures are more 

likely to generalize, particularly when sample sizes are small 

(55 samples in this case). 

 

 Adding more hidden layers, however, did not yield better 

results. Model C (2 layers) had only a minimal performance 

gain compared with Model A; however, deeper architectures 

(Models D, E, F) led to higher MSRE, which is associated with 

lower predictive ability. 

 

 When comparing tansig and logsig, the accuracy results 

using tansig were always better than those using logsig. Model 

E (5 layers, logsig) achieved the highest MSRE (0.0985), 

which shows that the activation function used plays an 

essential role in model generalization and prediction ability. It 

is primarily because logsig saturates as the argument value 

goes towards the extremes, and its gradients become zeros 

(vanishing gradients) in a deeper network, which makes it 

harder to learn with it. On the other hand, tansig preserved 

gradient flow better, which resulted in more efficient training. 

 

 The train-valid-test ratio was also an important factor for 

generalization. The best model (Model B) adopted a 70-15-15 

split to achieve a good compromise between the training, 

validation, and testing. However, larger networks (with 80-10-

10 or 85-10-5 split; Models D and F) turned out to be less 

effective, probably due to a lack of enough validation data for 

early stop and re-calibration during the training phase. A 

validation set that is too small may result in poor general base 

scoring, as the model may not be well tested before final 

evaluation. 

 

4.2. Merits and Limitations 

This paper validates the application of ANNs towards the 

estimation of the load-bearing capacity of compressed clay 

blocks. ANNs capture nonlinear relationships similarly with 

high accuracy, are a cost-effective way to avoid physical 

testing, and benefit from co-simulation with finite element 

analysis to enhance reliability. 

 

However, ANNs have inherent limitations. In the case of 

the present model, only computational information was 

adopted to predict bearing capacity and no influence of 

material randomness, physical limitation or long-term 

problems related to the earthen constructions was taken into 

account. To counteract this, future research should integrate 

ANNs with other AI techniques —like decision trees or fuzzy 

logic- to provide more interpretability and a higher coverage 

over the different influencing factors. 

 

Therefore, the shallow ANN models turned out to be 

accurate and computationally efficient for this purpose. In the 

future, an interesting line of work would be to investigate 

whether deeper networks are beneficial when learning from 

larger data
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4.3. Sensitivity Analysis 
Table 4. Sensitivity analysis of input parameters in model B using ±3%, 

±5%, and ±9% variation 

Parameter ±3% ±5% ±9% 

Length 0.011245 0.018665 0.033122 

Width 0.018786 0.031268 0.056017 

Thickness 0.030326 0.050471 0.090395 

Density 0 0 0 

Yield Stress 0 0 0 

Plastic Strain 0 0 0 

Young's Modulus 0 0 0 

Poisson's Ratio 0 0 0 

Surface Load 

(N/mm²) 
0.013052 0.021751 0.039142 

 

 Results of the sensitivity analysis indicated that thickness, 

width, and surface load are the three most sensitive inputs on 

the predicted bearing capacity. This can be attributed to their 

geometric and mechanical roles in structural behavior, where 

modifying these parameters considerably changes cross-

sectional area and applied stress (which leads to high 

displacement differences). On the other hand, the material-

related factors such as density, yield stress, and plastic strain 

showed only a few to no significant impact, probably due to 

low between-sample variation or a low correlation under the 

simulated loading regime. These results emphasize the 

primacy of geometric and loading effects in ANN modeling of 

compressed clay block behavior. 

 

5. Contribution Scientifique 
 This work is a pragmatic prospective contribution to the 

development of earth construction in Morocco, implemented 

on the Fez site, to the extent that traditional practices are still 

elementary and without standardised performance evaluations 

in this type of application.  Immersing numerical simulation 

(finite element method ABAQUS) and Artificial Neural 

Networks (ANNs), the study offers a new, intelligent solution 

to predicting the mechanical performance of compressed clay 

blocks. 

 

Table 5. Comparative overview of AI-based modeling studies in geotechnics and materials engineering 

 

Researchers Problematic Methodology Errors Merits Perspectives 

Goh & Goh 

(2007) [68] 

This study aimed to 

evaluate the ability 

of Support Vector 

Machines (SVM) to 

predict seismic soil 

liquefaction based 

on historical 

earthquake records. 

In this study, a 

classification model 

was trained using SVM 

on earthquake-induced 

soil behavior data, 

including depth, SPT 

blow count, and ground 

acceleration. 

R² ≈ 

0.89 

This study 

improved 

liquefaction risk 

classification 

compared to 

traditional 

empirical curves. 

It is recommended 

that future models 

include site-

specific 

parameters and 

test hybrid 

machine learning 

models. 

Shahin et al. 

(2001) [69]. 

This study aimed to 

model shallow 

foundation 

settlement using 

neural networks 

trained on field and 

lab geotechnical 

data. 

In this study, ANN 

models were developed 

to predict settlement 

based on soil type, load 

intensity, and footing 

width, and they were 

trained on datasets 

from actual case 

studies. 

R² ≈ 

0.84; 

moderat

e 

predictio

n error 

This study 

demonstrated that 

ANNs can more 

effectively capture 

non-linear 

interactions 

between soil and 

structural variables 

than regression 

methods. 

Future studies 

could incorporate 

uncertainty 

quantification and 

expand the model 

to deep 

foundations and 

variable load 

conditions. 

Our study 

This study aimed to 

evaluate the 

performance of 

various ANN 

configurations in 

predicting the load-

bearing capacity of 

compressed clay 

blocks using 

simulation-based 

datasets. 

In this study, ANN 

models were trained on 

data generated from 

finite element 

simulations in Abaqus, 

with 9 input features 

and 55 samples, 

comparing different 

depths and activation 

functions. 

R² = 

0.984; 

RMSE = 

0.042 

mm; 

MSRE = 

0.0039 

This study 

validates the 

potential of using 

simulation-

generated datasets 

with ANNs for 

material property 

prediction, 

reducing the need 

for costly physical 

tests. 

It is recommended 

that future studies 

integrate lab-

tested samples, 

increase dataset 

size, and explore 

explainable AI 

techniques for 

greater 

interpretability. 
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The process enables Moroccan builders, engineers and 

decision makers to determine the optimal block design while 

reducing their complete reliance on expensive and time-

consuming tests. From a Moroccan perspective, sustainable 

and culturally rooted construction is a legacy and a need; 

whilst the insertion of AI tools in the analysis of earthen 

materials allows a broader possibility apexes that are 

enlightened, promotes local valorization, but also assists in 

supporting the reorientation of the country’s diplomacy 

towards more sustainable construction ways. 

  

 Beyond the practical impact of this work is the fact that it 

uses artificial intelligence in modeling the geotechnical and 

structural, responding to the demand of the Moroccan 

construction sector. 

  

 Most previous studies are based on laboratory 

experiments or field tests, which typically demand 

considerable infrastructure, expenses and time investment. In 

contrast, in this study, the ANN models are established and 

trained based on Abaqus's simulated dataset. This method 

allows testing of earth construction systems in a flexible and 

scalable way and under controlled and reproducible 

circumstances. 

 

6. Perspectives and Future Work 
The results can be used to highlight the potential of ANNs 

as an effective tool for predicting the mechanical properties of 

earthen construction materials. Widely using simulated data in 

training, this article shows that simple ANNs may provide 

accurate and reliable predictions without costly and time-

consuming experiments. 

 

From an industrial point of view, these models would 

ideally be included as “early design” or “production” tools for 

assessing the behavior of CBC units from available input 

parameters. This is especially relevant in areas with 

underdeveloped laboratory infrastructure, where local 

manufacturers and practitioners can take advantage of data-

driven knowledge without the need for sophisticated testing 

conditions. Potential future applications could be mobile 

diagnostic tools or integrated decision support on small 

production lines. 

 

In terms of academic research, there are multiple 

directions in which this work can be expanded. Firstly, the 

inclusion of experimental data in the observations would 

improve model robustness and provide an opportunity for 

real-world calibration. Second, future research may 

investigate how the model could be adapted for different soil 

types or types of earthen construction (e.g. rammed earth, 

adobe). Lastly, hybrid models (i.e., a mix of ANNs with other 

artificial intelligence methods such as fuzzy logic systems, 

genetic algorithms or explainable AI (XAI)) might contribute 

to enhanced model interpretability and adaptability (especially 

in extremely varying construction environments). 

 

Moreover, studying the effect of aging factors (moisture, 

freeze-thaw cycles, and aging) over time would provide a 

more comprehensive evaluation of the material’s long-term 

behavior. Lastly, the use of transfer learning methods could 

potentially enable pre-trained models to be transferred to new 

regions or sources of materials with little additional data, 

making them more accessible and scalable. 

 

In conclusion, this study provides a sound base for the 

application of AI in sustainable construction techniques and 

enables inter-disciplinary research by combining computer 

modelling, material science and vernacular architecture. 

 

7. Conclusion  
 The present study underscores the expanding role of 

ANNs in civil engineering, earthen architecture in particular. 

Finite element simulations in ABAQUS and ANN-based 

modeling were employed to predict the load-carrying capacity 

of Compressed Earth Blocks (CEBs) from local clay material 

in Fez and the Fez region. Of the configurations tested, a low-

depth ANN with one hidden layer and ten neurons (Model B) 

showed the highest predictive performance, with an MSRE of 

0.0039. This is strong evidence that even simple, well-

optimized networks can yield quite robust performance 

without adding unnecessary burden. 

 

 The sensitivity analysis also highlighted a limited role of 

material properties, with thickness, width, and surface load 

being the dominant geometric and load-related parameters 

affecting structural performance compared to density and 

yield stress under the considered conditions. These results 

offer insight for engineers involved in the use of earthen 

materials, facilitating the decision-making process of design 

and assessment. 

 

 In conclusion, ANNs are changing the face of civil 

engineering practised in Morocco by providing new 

techniques that model complex behaviour and material 

functionality. As emphasized in this work, ANNs may 

facilitate structural assessment procedures, minimize 

dependence on expensive experimental testing, introduce 

tools adapted to the specificities of sustainable construction in 

Morocco and foster the construction of greener buildings. 

Additional research could also build upon this framework by 

integrating experimental results, hybrid or explainable AI 

methods, and model adaptation to other regional and structural 

conditions. Mediated by ground archaeology, such 

developments might inform future alternatives for the 

realization of smarter, stronger and contextually adapted mud 

buildings in Morocco and elsewhere. 
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