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Abstract - Earthen construction has been practised for millennia due to its availability, low embodied energy, and adaptability
to diverse climates. In recent years, its resurgence has been driven by sustainability concerns and the need for eco-friendly
alternatives in construction. However, predicting the structural performance of earthen materials remains a challenge due to
their inherent variability. This study explores the potential of Artificial Neural Networks (ANNSs) to enhance the understanding
and prediction of load-bearing capacity in earthen structures. A comparative analysis of different ANN architectures is
conducted, examining variations in network depth, activation functions, and training algorithms. Results indicate that optimally
tuned, shallow networks outperform deeper architectures by minimizing computational complexity while maintaining predictive
accuracy. This work demonstrates that data-driven approaches can improve the reliability and efficiency of earthen

construction, offering engineers and architects valuable tools for sustainable building design.

Keywords - Artificial Neural Networks, Earthen construction, Load-bearing capacity, Machine Learning, Structural
performance.

choice of the heating, ventilation and cooling systems (Kosny
and Kossecka, 2002) [9]. Interpretation: The prepared samples

1. Introduction
1.1. History

The use of natural materials, combining the use of
invented homes and dwellings (Minke, 2009) [1], has been
one of the primary needs for survival and creativity among
mankind over the years (Adam, 1994) [2]. The date of the
beginning of man’s use of earth for construction is not clear
(Forbes, 1965) [3], but examples of the use of this material can
be found dating back over 9,000 years in the excavation of
occupancy sites (Rosenberg et al., 2020) [4]. With the
discovery of Gobekli Tepe (Yenigun, 2021) [5], Urfa has
proven to be one of the oldest settlements in history and has
been named “Zero Point of History” due to this feature, with
more than 12,000 years of history (Dietrich et al., 2012) [6].

1.2. Types of Earth Construction

Adobe bricks: Adobe bricks (Medvey, B., & Dobszay, G.,
2020) are produced with the help of stabilising agents such as
bricks, mud and mortar. [7]. There are some significant
benefits of sound insulation, including reduced levels of sound
transmitted through walls, doubt and security: (Walker, K., et
al., 2005) [8]. The use of such walls is also evaluated in the

OISO

reveal the fireproofness of the adobe bricks and their low
energy investment in the raw materials (Ben Guida, 2015)
[10]. Yet, the strength and stiffness of conventional adobes are
not satisfactory, and their resistance to earthquakes is not
significant; therefore, children and adults of these low-income
groups are deprived of safe and durable housing in their
everyday life (Silveira et al., 2012) [11].

Fig. 1 El Haj Yousif experimental school (E.A. Adam,2021) [12]

Rammed earth is a type of earth-based construction,
where dry soil and water are mixed, then compacted in
consecutive lifts within a formwork to create structures
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(Maniatidis & Walker, 2003) [13]. Out of the several styles of
earth construction, rammed earth presents the highest
mechanical and structural strength due to the near-dry nature
of the mixture and the formation through the compaction
process (Bailly et al., 2024) [14]. The relevance of Rammed
Earth (RE) remains significant today.

Earth construction is gaining increasing interest from
builders and researchers seeking sustainable construction
alternatives, driven by the rising environmental awareness
within the construction industry (Abhilash et al., 2021) [15].

Fig. 2 Typical construction process of rammed earth walls (Adolfo
Preciado and Juan Carlos Santos, 2020) [16]

Cob: clods of clay, subsoil, sand, and straw that are piled
together to shape a monolithic wall (Hamard et al., 2016) [17].
When compared to conventional construction materials
(bricks or concrete), cob has a far lower embodied energy, as
this is primarily made from organic materials with little or no
primary production processing, and its carbon footprint is
much lower due to the use of local natural materials (Arduin
et al., 2022) [18]. Moreover, cob is nonAe fatal and
completely recycled, which tends to diminish the ecosystem
destruction and the depletion of natural resources (Ranganath
et al., 2024) [19].

Fig. 3 An extern
straw (Enrico Quagliarini et al., 2010) [20]

Compressed Earth Blocks CEB: Modern earthen
construction technologies represent the evolution of adobe,
with the key difference being the compaction process. This
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process, which involves mechanical stabilization, results in a
denser and more durable block(Losini et al., 2021) [21].

k§ 3
Exposed to the

ment (Aurélie Vissac and

natural environ
all,2018) [22]

Fig. 4 CEBs

Wattle and Daub: It is a composite building material for
walls, where the “wattle” is the organic substructure made
from materials like wooden strips, sticks, reeds, straw bundles,
or small beams, with the weaving or binding method often
understood through ethnographic analogy (S. Amicone et al.,
2020) [23]. The same type of wet earth-straw mix is used in
the cob technique, without any support or formwork. Plastic
humps or loaves (cob is an old English word for loaf) of the
mix are simply hand-packed layer by layer, forming
monolithic and wide (50 to 80 cm) masonry walls (Henri Van
Damme & Hugo Houben, 2018) [24].

Fig. 5 A lattice formed by Waving withies diagonally. South
Cambridgeshire, ¢.1700 (Tony Graham,2004) [25]

1.3. Problematic

The main question under which this project falls is
whether Artificial Neural Networks (ANNs) can be a
prediction model for assessing CEB's mechanical
performance. The difficulty is the limitation of conventional
methods and the fact that conventional methods, such as
physical assessment, can identify properties like compressive
strength, durability and structural equilibrium. Although these
traditional methods are reliable, they are usually time-
consuming and expensive, and the need for specific equipment
is not always available in a country such as Morocco
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(Jayasinghe & Kamaladasa, 2007) [26]. The variability of
locally available materials and the scarcity of standardised
quality control procedures also complicate the manufacture
and testing of CEBs (Walker and Standards Australia, 2002)
[27].

In such a context, where cost and sustainability are
critical, ANNs can be used to develop faster, cheaper and
accurate predictions of the material performance (Miccoli et
al., 2014) [28]. These challenges can be overcome by ANNs
for a potential transformation of the use of CEBs in Morocco
that provides a modern method of material design and
contributes towards the promotion of eco-construction
compatible with both local heritage and international
sustainable development aims (Bui et al., 2009) [29]. In this
framework, one may ask the following: How can Atrtificial
Neural Networks (ANNSs) be used to predict the mechanical
behaviour of compressed earth blocks, and what can they
bring more for earthen construction in Morocco?

Although CEBs are attracting more interest as a
sustainable building system, their use has been limited due to
the absence of computerized software tools to predict their
mechanical behavior. However, a majority of the research
undertaken to date is based on the testing of the physical
properties for compressive strength and durability measures
and the like, which are both expensive and time-consuming in
terms of the amount of work and the specialized testing
equipment required [30]. These types of constraints have a
particular influence in the region, such as Morocco, where, in
many cases, construction materials are locally produced and
quality control is less uniform. Furthermore, little research has
sought to employ numerical routines that could predict the
performance of a material given a soil type, stabilizer or
environmental influence. This lack of knowledge has been a
limiting factor for the production of enhanced CEB mixtures
and a wider application in industry, particularly with regard to
economic and sustainable formulations (Walker & Standards
Australia, 2002) [31], and (Turco et al.,2021) [32].

Artificial Neural Networks (ANNSs) offer a pertinent and
state-of-the-art solution to this challenge. These models can
adapt to discover intricate relationships in the data, and have
been successful already in predicting the performance of
materials in other civil and geotechnical engineering contexts
(Jeremiah et al., 2021) [33], and (Zeng, Z., et al. 2022) [34].
For earthy materials, ANNs may reduce the dependence on
full-scale laboratory testing by extrapolating mechanical
parameters, like compressive strength, from a few input
parameters, such as grain size, plasticity, and moisture
content, concerning less detailed testing (Yuan et al., 2024)
[35]. This methodology is particularly timely as the
construction industry comes under increasing pressure to
adopt more Sustainable construction methods, which
minimize carbon outputs and minimize high-embodied
resources. In the Moroccan cultural context, where earthen
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building corresponds to an environmental need and opens the
way to reusing this material, incorporating ANN prediction
models would stimulate a new generation of sustainable,
affordable and eco-responsible buildings, using earthen
materials (Bui et al., 2009) [36].

2. Methodology

In this work, after an introduction detailing that it is
crucial to develop earthen construction in Morocco and the
possible application of Artificial Neural Networks (ANN) in
predictive modelling, a guideline using IMRAD is adopted to
evaluate the potential of following ANNs configurations in
predictive accuracy. Various models were proposed to predict
the compressive strength of compressed earth block with FE
parameters obtained with ABAQUS.

These configurations were refined by tuning hidden
layers, the number of neurons, activation functions and
learning rates. The comparative analysis offers novel insights
on model performance, state-of-the-art architecture and
perspectives on ANN-prediction to sustainable construction
based on local materials.

3. Results
3.1. ANN State of the Art

Acrtificial Neural Networks (ANNs) have been widely
applied in modelling complex, non-linear behaviour of soils,
specifically when deterministic methods are restricted
(Koopialipoor and Moarefvand in Civ Eng Infrastruct J
51:526 545, 2017). 2018) [37]. They have been successfully
used to estimate the soil settlement, slope stability and bearing
capacity under different loading conditions [38]. The capacity
of learning from noisy or incomplete datasets is the main
advantage of ANNSs in the field conditions, where highly
accurate measurements are rarely available (Sharma & Samui,
2021) [39].

Meanwhile, the applications of ANNSs are spreading in a
wide range of civil and materials engineering. Some authors
have used them to predict the mechanical properties of
construction materials like compressive strength, tensile
behavior, and durability performance (Khan et al., 2022) [40].
Ahmad et al. (2020) [41] employed neural networks to predict
the compressive strength of geopolymer concrete and reached
a good match between prediction and experimental values.
Similarly, Zhang et al. (2024) [42] studied the ANN’s ability
to predict the behaviour of stabilized soil bricks with respect
to mixing proportions and curing conditions. Nevertheless,
despite being advanced, very scanty work has focused on
ANN modeling of CEBs from raw or slightly stabilized clay
obtained by local soils in some countries, such as North
Africa. Current investigations are mainly for cementitious
materials (cement-based) or suppose the use of usual
commercial mixes, which reduces their application for a
vernacular material and/or sustainable construction situation
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(Lang, G et al., 2019) [43]. In addition, simulated data, such
as that in the form of finite-element output, has been
incorporated into training datasets only rarely, despite the fact
that simulations can capture internal distributions of stress and
failure, which are not otherwise available in experiments [44].

The destructive physical tests still remain the mainstream
for CEB performance characterization. This is an
indispensable technique but it is time-consuming and
expensive; it is also sensitive to discrepancies in suturing and
setting (Teixeira et al., 2020) [45]. It also has a limited ability
to detect internal stress paths or possible zones of failure. In
addition, finite-element modeling (FEM) is a complementary
approach that enables the ability to simulate load transfer and
material response to adjustable conditions at the boundary
\(Dhadse et al. 2021) [46]. Despite its potential, FEM-based
ANN modeling is underdeveloped, while recent studies have
indicated that coupling the simulation data together with
machine learning could improve the prediction efficiency and
decrease the necessity of comprehensive physical tests
(Bekdas et al., 2021) [47].

When situated in a wider field of ecology and
sustainability where earthen construction is historically based
and environmentally well-suited, this hybrid approach is also
seen as a practical asset for developing more rapidly eco-
responsible answers in housing. This is especially the case in
Morocco, where there is an abundance of natural clay
resources to establish sustainable and high-performance/low-
cost earth construction systems in combination with intelligent
prediction tools (Gomaa et al., 2023) [48].

3.1.1. The Present
Currently, almost 50% of the world’s population lives in
earth-based dwellings (Goodhew & Griffiths, 2011) [49]

Fig. 6 World map illustrating the worldwide use of earth construction
(Johan Vyncke et al.,2018) [50]

The majority of earth construction is located in less
developed countries; however, it can also be found in
Germany, France, and even the UK, which has over 500,000
earth-based dwellings (Marsh and Kulshreshtha, 2014) [51].
Earth construction has seen substantial growth in the US,
Brazil, and Australia, largely due to the sustainable
construction agenda, where it plays a key role (Carlos et al.,
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2022) [52]. Countries that have established Earth building
codes, such as Australia, have a significant number of rammed
earth dwellings; in fact, rammed earth accounts for 20% of the
building sector there (Giuffrida et al., 2019) [53]. Meanwhile,
Peru has become a leader in anti-seismic earth-building
standards due to its recovery efforts in high Andean villages
affected by strong earthquakes, promoting reinforced earth
buildings (Tarque et al. 2022) [54].

3.2. Artificial Neural Network

Artificial Neural Networks (ANNs) have become
increasingly popular in civil engineering due to their ability to
model complex and uncertain data through pattern
recognition, mimicking the functionality of biological neural
systems (Dave & Dutta, 2014) [55]. Essentially, ANNs consist
of interconnected nodes or neurons arranged in layers. Each
neuron processes input by calculating a weighted sum and
then applying an activation function to generate an output.
These outputs then serve as inputs for the next layer,
ultimately producing a final prediction or decision. This
flexible structure allows ANNSs to effectively identify hidden
patterns and relationships within diverse datasets (Abiodun et
al. 2018) [56].

a5
N

Fig. 7 Generic topology of an Artificial Neural Network, illustrating
input, hidden, and output layers

One of the most significant properties of ANNs is their
ability to process data on a large scale with high speed
efficiency, especially if run on parallel computing machines.
This control efficiency makes them particularly appropriate
for handling the intrinsic challenges of complexity and
uncertainties encountered in civil engineering (lzeboudjen et
al., 2022) [57].

In structural engineering, ANNs have been effectively
utilized in predicting structural responses such as load-
carrying capacities and for structural health monitoring. For
instance, ANN models have delivered a very good accuracy
for predicting the ultimate strength of concrete-filled steel
tubular columns over the traditional empirical approach
(Amar et al., 2022) [58]. It has the advantage that it can take
non-linear interaction between different structural factors into
account.In geotechnical engineering, there are even successful
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applications of ANNs for modelling complex conditions such
as soil response, foundation bearing capacity, and settlement
variations [4]. Given their ability to deal with the often
heterogeneous and nonlinear soil data, ANNs have always
brought out better predictions than standard methods of
regression (Shahin,2001) [59].

ANNSs are commonly used in transportation engineering
to predict pavement performance ( such as pavement
deterioration) and traffic operation. ANN lead to improved
maintenance planning with the possibility of timely preventive
actions, which contribute to cost savings and increase the
service life of the infrastructure (Abambres, M., & Ferreira,
A., 2017) [60].

In the field of material science, ANNSs are often used to
predict mechanical and durability properties of building
materials. Recent investigations are underlining the high
accuracy of ANNs in predicting the compressive strength of
concrete, contributing to the design of mixtures which are
ideal in terms of sustainability and cost (Chaabene et al., 2020)
[61].

In addition, ANN has been widely applied to solve the
realistic civil engineering problems, which includes predicting
failure delays in construction projects (Yaseen et al., 2020)
[62], cost estimation in construction project (Naif alsagr,
2023) [63], damage assessment for multi-story buildings
(Bartkiewicz, 2000) [64], demand destruction risk in collusion
(Adeusiewicz, 2000) [65], energy consumption in residential
buildings (Runge, J., & Zmeureanu, R. 2019) [66], financial
health of construction companies (Qamar & Zardari, 2023)
[67].

3.3. CASE Study

Acrtificial Neural Networks (ANNSs) are increasingly
being used to predict engineering behaviours, particularly in
the field of material properties and structural behaviour. They
must correctly predict load-carrying capacity in earthen
construction, often by compressed clays. Traditional methods
for prediction, such as linear regression or parametric fitting,
cannot be successful on materials such as compacted clay.
This treatment usually presumes linearity and independence
of variables, features that are not usually present in earth-
based construction, where physical behavior is often
dependent simultaneously on several factors, including
geometric, mechanical and boundary parameters. In
comparison, artificial neural networks can learn such
complexity without the need for a priori defined mathematical
relations and are therefore more appropriate for materials
exhibiting nonlinear, homogeneous responses. Here, we
explore how ANN architectures impact predictive accuracy
and generalization.

In the current study, the finite element analysis is
conducted through ABAQUS (Figure 8), in an attempt to

model the compressed clay bricks with different widths and
loads. Clay brick simulations were based on a physical sample
collected in Morocco's Fez area, so the simulation replicates
local specific material properties. The mechanical input of
these simulations was based on the characterization of some
undisturbed natural clay samples taken in the Fez (Morocco)
area. This was a deliberate choice, as the area is still a
repository of traditional mud building know-how. The
combination of these values maintained model outputs in the
realm of realistic, field-applicable scenarios..

The key parameters included:

Table 1. Parameters and variation ranges used in the study

Parameter Unit Variation Range/Value
Width mm 200 mm — 230 mm
Load MPa 0.15 MPa -1 MPa

(Surface Load)

Output Variable | mm Displacement (calculated in

mm)
Density kg/m? 1800
Yield Stress MPa 3.5
Plastic Strain - 0
Young’s MPa 803
Modulus
Poisson’s Ratio - 0.37

Output Variable:
e Displacement in mm.

The objective is to:

e Compare ANN architectures with varying numbers of
hidden layers and neurons.

e Assess the impact of different activation functions
(tansig, logsig).

e  Optimize learning rate and data splitting ratios.

o Determine the best-performing ANN configuration for
this dataset.

Fig. 8 Clay Bloc modelling using Abaqus
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The dataset consists of 9 input features and 55 data
samples. While the dataset may appear limited in size, each
entry represents the result of a full finite element simulation,
which is computationally intensive due to its nonlinear
material behavior and boundary conditions. This approach
ensures high-quality data despite the lower volume. All
modelling parameters, material properties, and simulation
settings were documented and kept consistent throughout the
process to ensure reproducibility.

The target variable represents the load-bearing capacity
of compressed clay blocks. To enhance model training:
e Normalization (mapminmax) was applied to standardize
input and output values.
Different train-validation-test splits were tested to
balance learning stability and generalization.

We experimented with the following ANN variations:

Table 2. Neural Network Parameters for the Study

Parameter

Values/Range

Number of Hidden Layers

1, 2,5, and 10 layers

Neurons per Layer

10 to 50 neurons per layer

Activation Functions

tansig (Hyperbolic Tangent Sigmoid), logsig (Log-Sigmoid)

Training Algorithm

trainlm (Levenberg-Marquardt)

Learning Rate Adjustments

0.01 (default), 0.005 (lowered for stability)

Each ANN configuration was trained over a maximum of
100 epochs. To avoid overfitting, early stopping was
implemented based on the validation error trend. For most
models, convergence occurred within 50 epochs, after which
additional training no longer improved accuracy.
Hyperparameters such as the number of neurons per layer and
learning rate were manually adjusted across configurations
based on validation performance, rather than selected

A linear regression model was also applied to the same
dataset to assess the added value of neural networks. This
model achieved a Mean Squared Relative Error (MSRE) of
0.109 and an R2 value of just 0.72—indicating a lower ability
to capture the non-linear dependencies present in the data.
These results confirm the advantage of ANN models in
handling multidimensional simulation-based datasets with
complex variable relationships.

arbitrarily.
Table 3. Performance comparison of ANN configurations for predicting load-bearing capacity of compressed clay blocks
Hidden Neurons per Activation . Performance
Model Layers Layer Function Data Split MSRE Summary
Model A 1 10 tansig Unspecified 0.12161 Baselme_ m_odel, not
optimized
Model B .
(Best 1 10 tansig 70-15-15 0.0039 Best, simplest, and
most accurate
Model)
Minimal
Model C 2 [15,10] tansig 70-15-15 0.02875 improvement over
Model B
Model D 5 [20,15....5] tansig 80-10-10 0.06056 | DeePer networks hurt
accuracy
Worst model,
Model E 5 [20,15,...,5] logsig 80-10-10 0.0985 underestimates
predictions
. Better than Model D,
Model F 10 [50,40,...,5] tansig 85-10-5 0.0392 but still worse than B

54
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Actual vs Predicted (Model B (Best, MSRE: 0.0039))

100 —e— Actual Values
—+—Predicted Values

801

60

40F

Load-Bearing Capacity

20F

0 2 2 6 8
Sample Index

Fig. 9 Actual vs. Predicted load-bearing capacity for model B (best

model, MSRE: 0.0039)

Model B (1 hidden layer, 10 neurons, tansig, 70-15-15
split) performs best with the lowest Mean Squared Relative
Error (MSRE = 0.0039). In addition to MSRE, the best-
performing model (Model B) achieved a Root Mean Squared
Error (RMSE) of 0.042 mm, a Mean Absolute Error (MAE)
of 0.031 mm, and a coefficient of determination (R2) of 0.984.
These results indicate that the ANN was able to closely
approximate the actual load-bearing capacity values with
minimal residual error and with a strong degree of
generalization across the test set.

Topology of Neural Network (9 Inputs, 1 Hidden Layer, I Output)

Layer 1
Layer 2
Layer 3

b S
.
@

Fig. 10 Architecture of the best-performing Artificial Neural Network
(model B) with 9 input neurons, 1 hidden layer (10 neurons), and 1
output neuron

4. Discussion
4.1. Results Interpretation

The observed findings show the importance of ANN
architecture, activation function, and data split strategy in
prediction accuracy. Model B (1 hidden layer, 10 neurons,
tansig, 70-15-15 split) had the lowest MSRE (0.0039) and was
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the top-performing model. More generally, this result
corroborates the belief that simpler architectures are more
likely to generalize, particularly when sample sizes are small
(55 samples in this case).

Adding more hidden layers, however, did not yield better
results. Model C (2 layers) had only a minimal performance
gain compared with Model A; however, deeper architectures
(Models D, E, F) led to higher MSRE, which is associated with
lower predictive ability.

When comparing tansig and logsig, the accuracy results
using tansig were always better than those using logsig. Model
E (5 layers, logsig) achieved the highest MSRE (0.0985),
which shows that the activation function used plays an
essential role in model generalization and prediction ability. It
is primarily because logsig saturates as the argument value
goes towards the extremes, and its gradients become zeros
(vanishing gradients) in a deeper network, which makes it
harder to learn with it. On the other hand, tansig preserved
gradient flow better, which resulted in more efficient training.

The train-valid-test ratio was also an important factor for
generalization. The best model (Model B) adopted a 70-15-15
split to achieve a good compromise between the training,
validation, and testing. However, larger networks (with 80-10-
10 or 85-10-5 split; Models D and F) turned out to be less
effective, probably due to a lack of enough validation data for
early stop and re-calibration during the training phase. A
validation set that is too small may result in poor general base
scoring, as the model may not be well tested before final
evaluation.

4.2. Merits and Limitations

This paper validates the application of ANNSs towards the
estimation of the load-bearing capacity of compressed clay
blocks. ANNs capture nonlinear relationships similarly with
high accuracy, are a cost-effective way to avoid physical
testing, and benefit from co-simulation with finite element
analysis to enhance reliability.

However, ANNs have inherent limitations. In the case of
the present model, only computational information was
adopted to predict bearing capacity and no influence of
material randomness, physical limitation or long-term
problems related to the earthen constructions was taken into
account. To counteract this, future research should integrate
ANNSs with other Al techniques —like decision trees or fuzzy
logic- to provide more interpretability and a higher coverage
over the different influencing factors.

Therefore, the shallow ANN models turned out to be
accurate and computationally efficient for this purpose. In the
future, an interesting line of work would be to investigate
whether deeper networks are beneficial when learning from
larger data
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4.3. Sensitivity Analysis
Table 4. Sensitivity analysis of input parameters in model B using +3%,

+5%, and +9% variation

Parameter +3% +5% +9%
Length 0.011245 | 0.018665 | 0.033122
Width 0.018786 | 0.031268 | 0.056017

Thickness 0.030326 | 0.050471 | 0.090395
Density 0 0 0

Yield Stress 0 0 0

Plastic Strain 0 0 0
Young's Modulus 0 0 0

Poisson's Ratio 0 0 0

S“(r,(l""/‘;ﬁn';gad 0.013052 | 0.021751 | 0.039142

Results of the sensitivity analysis indicated that thickness,
width, and surface load are the three most sensitive inputs on
the predicted bearing capacity. This can be attributed to their

geometric and mechanical roles in structural behavior, where
modifying these parameters considerably changes cross-
sectional area and applied stress (which leads to high
displacement differences). On the other hand, the material-
related factors such as density, yield stress, and plastic strain
showed only a few to no significant impact, probably due to
low between-sample variation or a low correlation under the
simulated loading regime. These results emphasize the
primacy of geometric and loading effects in ANN modeling of
compressed clay block behavior.

5. Contribution Scientifique

This work is a pragmatic prospective contribution to the
development of earth construction in Morocco, implemented
on the Fez site, to the extent that traditional practices are still
elementary and without standardised performance evaluations
in this type of application. Immersing numerical simulation
(finite element method ABAQUS) and Artificial Neural
Networks (ANNSs), the study offers a new, intelligent solution
to predicting the mechanical performance of compressed clay
blocks.

Table 5. Comparative overview of Al-based modeling studies in geotechnics and materials engineering

Researchers Problematic Methodology Errors Merits Perspectives
This study aimed to In this study, a . It is recommended
. I This study
evaluate the ability classification model . that future models
. . improved . .
of Support Vector | was trained using SVM liquefaction risk include site-
Goh & Goh Machines (SVM) to | on earthquake-induced R2= ?:Iassification specific
(2007) [68] predict seismic soil soil behavior data, 0.89 parameters and
. . . . compared to .
liquefaction based including depth, SPT . test hybrid
L traditional . .
on historical blow count, and ground - machine learning
. empirical curves.
earthquake records. acceleration. models.
. This study .
This study aimed to In this study, ANN demonstrated that Futu_r ¢ studies
models were developed ” could incorporate
model shallow . R2~ ANNSs can more .
. to predict settlement i . uncertainty
foundation ; 0.84; effectively capture e
. - based on soil type, load ] quantification and
Shahin et al. settlement using . : - moderat non-linear
intensity, and footing . . expand the model
(2001) [69]. neural networks - e interactions
A . width, and they were - . to deep
trained on field and . predictio | between soil and .
- trained on datasets - foundations and
lab geotechnical nerror | structural variables -
from actual case : variable load
data. - than regression L
studies. conditions.
methods.
This study aimed to In this study, ANN Th's study It is recommended
evaluate the - validates the .
models were trained on _ - . that future studies
performance of R2 = potential of using :
. data generated from . . . integrate lab-
various ANN e 0.984; simulation-
. S finite element _ tested samples,
configurations in . L RMSE = | generated datasets .
A~ simulations in Abaqus, . increase dataset
Our study predicting the load- . . 0.042 with ANNs for -
. . with 9 input features ) . size, and explore
bearing capacity of mm; material property -
and 55 samples, _ L explainable Al
compressed clay : . MSRE = prediction, .
. comparing different ; techniques for
blocks using A 0.0039 | reducing the need
. . depths and activation : greater
simulation-based . for costly physical . -
functions. interpretability.
datasets. tests.
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The process enables Moroccan builders, engineers and
decision makers to determine the optimal block design while
reducing their complete reliance on expensive and time-
consuming tests. From a Moroccan perspective, sustainable
and culturally rooted construction is a legacy and a need;
whilst the insertion of Al tools in the analysis of earthen
materials allows a broader possibility apexes that are
enlightened, promotes local valorization, but also assists in
supporting the reorientation of the country’s diplomacy
towards more sustainable construction ways.

Beyond the practical impact of this work is the fact that it
uses artificial intelligence in modeling the geotechnical and
structural, responding to the demand of the Moroccan
construction sector.

Most previous studies are based on laboratory
experiments or field tests, which typically demand
considerable infrastructure, expenses and time investment. In
contrast, in this study, the ANN models are established and
trained based on Abaqus's simulated dataset. This method
allows testing of earth construction systems in a flexible and
scalable way and under controlled and reproducible
circumstances.

6. Perspectives and Future Work

The results can be used to highlight the potential of ANNs
as an effective tool for predicting the mechanical properties of
earthen construction materials. Widely using simulated data in
training, this article shows that simple ANNs may provide
accurate and reliable predictions without costly and time-
consuming experiments.

From an industrial point of view, these models would
ideally be included as “early design” or “production” tools for
assessing the behavior of CBC units from available input
parameters. This is especially relevant in areas with
underdeveloped laboratory infrastructure, where local
manufacturers and practitioners can take advantage of data-
driven knowledge without the need for sophisticated testing
conditions. Potential future applications could be mobile
diagnostic tools or integrated decision support on small
production lines.

In terms of academic research, there are multiple
directions in which this work can be expanded. Firstly, the
inclusion of experimental data in the observations would
improve model robustness and provide an opportunity for
real-world calibration. Second, future research may
investigate how the model could be adapted for different soil
types or types of earthen construction (e.g. rammed earth,
adobe). Lastly, hybrid models (i.e., a mix of ANNs with other
artificial intelligence methods such as fuzzy logic systems,
genetic algorithms or explainable Al (XAl)) might contribute
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to enhanced model interpretability and adaptability (especially
in extremely varying construction environments).

Moreover, studying the effect of aging factors (moisture,
freeze-thaw cycles, and aging) over time would provide a
more comprehensive evaluation of the material’s long-term
behavior. Lastly, the use of transfer learning methods could
potentially enable pre-trained models to be transferred to new
regions or sources of materials with little additional data,
making them more accessible and scalable.

In conclusion, this study provides a sound base for the
application of Al in sustainable construction techniques and
enables inter-disciplinary research by combining computer
modelling, material science and vernacular architecture.

7. Conclusion

The present study underscores the expanding role of
ANNs in civil engineering, earthen architecture in particular.
Finite element simulations in ABAQUS and ANN-based
modeling were employed to predict the load-carrying capacity
of Compressed Earth Blocks (CEBs) from local clay material
in Fez and the Fez region. Of the configurations tested, a low-
depth ANN with one hidden layer and ten neurons (Model B)
showed the highest predictive performance, with an MSRE of
0.0039. This is strong evidence that even simple, well-
optimized networks can yield quite robust performance
without adding unnecessary burden.

The sensitivity analysis also highlighted a limited role of
material properties, with thickness, width, and surface load
being the dominant geometric and load-related parameters
affecting structural performance compared to density and
yield stress under the considered conditions. These results
offer insight for engineers involved in the use of earthen
materials, facilitating the decision-making process of design
and assessment.

In conclusion, ANNs are changing the face of civil
engineering practised in Morocco by providing new
techniques that model complex behaviour and material
functionality. As emphasized in this work, ANNs may
facilitate  structural assessment procedures, minimize
dependence on expensive experimental testing, introduce
tools adapted to the specificities of sustainable construction in
Morocco and foster the construction of greener buildings.
Additional research could also build upon this framework by
integrating experimental results, hybrid or explainable Al
methods, and model adaptation to other regional and structural
conditions. Mediated by ground archaeology, such
developments might inform future alternatives for the
realization of smarter, stronger and contextually adapted mud
buildings in Morocco and elsewhere.
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