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Abstract - This work aims to propose a bottom-up, two-step process that streamlines the design of analogue devices by using 

machine learning techniques. The complicated nature of these difficulties, which involve numerous variables and objectives, 

necessitates using designers' skills and knowledge while designing analogue complementary metal-oxide-semiconductor 

(CMOS) integrated circuits. The study offers a framework detailing the unique characteristics of creating analogue circuits 

using machine learning, and it looks into the potential of libraries that contain open machine-learning models to assist 

designers. Traditionally, commercial CMOS or software simulations have been used to create neural network designs; 

however, these methods may not always provide the best results. A three-stage device design is used to validate the suggested 

method. Using a machine learning technique called the decision tree; the stage type is correctly predicted with an accuracy of 

89.74% in the first phase. To create prediction logic, two rule induction techniques are also used. In the second step, four 

learning techniques, decision trees, random forests, gradient-boosted trees, and support vector machines, are used to forecast 

the typical parameters for each stage type. The support vector machine yields the best results and has the lowest error rates of 

all these methods.  

Keywords - Artificial neural network, Analog system, CMOS circuit, Signal processing, Learning algorithm. 

1. Introduction  
Finding the best circuit structure based on user 

requirements is a challenging part of designing electronic 

devices. These requirements describe the circuit's intended 

use, intended application, and necessary electrical standards. 

Designers need to know many simple circuits, their 

functioning concepts, and distinctive properties to complete 

this design task effectively. Designing intricate electronic 

modules and components such as functioning converters, 

filters, and generators is possible thanks to this 

understanding. Simple building blocks are the basis for 

various analogue circuits in electronics.  

Essential steps in the design process include 

comprehending circuit functionality, potential variants, and 

circuit architecture theories. Electronic Design Automation 

(EDA) software is essential for enabling circuit design since 

it provides proper tools and component libraries that speed 

up the design process. Using such software reduces faults 

and bad circuit designs and saves time, money, and effort. 

Analogue circuits are sometimes necessary to the overall 

system design and cannot be replaced by digital processing. 

These consist of: 

• Circuits on the input side are in charge of spotting, 

grabbing, boosting, and filtering signals from sensors, 

microphones, or antennas. 

• Frequency synthesizers, phase-locked loops, analog-to-

digital converters, and sample-and-hold circuits are 

examples of mixed-signal circuits. The interface 

between a system's input/output and a System-on-Chip's 

(SoC) digital processing units is made simpler by these 

building blocks. 

• Circuits on the output side that transform digital signals 

into analogue signals amplify them and guarantee 

minimal distortion in the output signal. 

1.1. Analog Circuit Design 

Fig. 1 describes the design flow carried out during 

analog circuit design. The system-level components are 
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carried on to the circuit level, then to the implementation 

level, and vice versa. The comparison is made at each level, 

validation at each stage is carried out, and backtracing will 

be made if any discontinuities are found. Before beginning 

more intricate implementations at the device level, it is 

possible to examine the system architecture and improve 

overall system optimization using a hierarchical top-down 

design technique. By doing this, issues are found early in the 

design process, improving the chance that the design will 

work the first time and necessitating fewer if any, time-

consuming redesign iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Fig. 1 Flow of tasks during an analog IC design 

Specification translation is the process of converting 

specifications for each of the blocks from higher-level 

requirements. The block specifications may specify a 

device's gain, bandwidth, or transistor size depending on the 

models used at that level of abstraction. The size is then 

examined to ensure that the input specifications are met. In 

particular, the designer manually uses the tools to accomplish 

project goals, such as choosing the best combination of 

component sizes. We call this "circuit sizing". It is difficult 

to manually search for the best solution due to the objective 

function's search space's complexity, multidimensionality, 

and irregularity, which relate to design elements and circuit 

performance criteria[1]. 

1.2. Evaluation Criteria for the Data Quality Factor for the 

Set of Features 

Despite recent advancements, no fully comprehensive 

automation tool is available to support the analogue design 

flow, indicating that automation tools and methodologies for 

analogue design are still not fully developed. In the pursuit of 

automating engineering processes, circuit design tools have 

incorporated machine learning and deep learning techniques 

[2-6]. These design methodologies based on machine 

learning require data collection, a deep understanding of 

electrical theory, and established techniques. Combining this 

expertise with knowledge of the benefits and characteristics 

of machine learning algorithms is essential to make the best 

design decisions [7-11]. To address the present demands, 

Hamolia and Melnyk emphasize the value of integrating 

modern automated design methodologies with EDA software 

[12]. In order to facilitate all phases of chip design, the 

authors also emphasise the birth of a brand-new scientific 

field that focuses on machine learning-based EDA. Ren et al. 

divide machine learning applications for EDA issues into 

predictors, optimizers, and generators [13]. 

They contend that in order to increase productivity, 

traditional EDA algorithms should work together with 

machine learning. It indicates that machine learning models 

could help the behavioural, structural, and physical design 

process in both top-down and bottom-up orientations. 

Similar topics have been the subject of some research, 

demonstrating fruitful outcomes, successful applications, and 

challenging issues.  

A methodology to enhance the design of electronic 

circuits is presented by Dieste-Velasco et al. [14]. It is based 

on algorithms for artificial neural networks and the statistical 

method of experimental design. Before beginning more 

intricate implementations at the device level, it is possible to 

examine the system architecture and improve overall system 

optimization using a hierarchical top-down design 

technique[15]. By seeing issues early on in the design 

process, it is more likely that the design will work the first 

time and need little to no time-consuming redesign iterations. 

Topology selection on the top-down path is deciding on a 

group of blocks and the connections that will be used to carry 

out the input specifications.  

The process of translating higher-level specifications 

into specifications for each block is known as specification 

translation. Depending on the models employed at that level 

of abstraction, the block specifications may define the 

device's gain and bandwidth or the transistors' size. After 

that, the sizing is examined to ensure the input requirements 

are met. They conclude that the suggested approach can be 

employed for effective parameter prediction and behavioural 

modelling of electronic circuits. Regression approaches are 

suitable for circuit modelling with quick speed and good 

accuracy, as demonstrated by Guerra-Gomez et al. in their 

study [16].  

In their analysis of regression approaches used in the 

design of medium and large electronic circuits, Mina et al. 

analyse the speed at which various methods operate. In their 

discussion of earlier research on automating the design of 

integrated analogue circuits using MOS and CMOS 

technology, they also highlight the advantages of machine 

learning techniques for circuit designers, including 

supervised, unsupervised, and reinforcement learning [17]. 

Several academic articles [18-20] that look at current trends 
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and challenges in device placement and routing also discuss 

the application of machine learning at the physical level of 

chip design and improving designer productivity, mainly 

through machine learning [21] the development of new 

methodological methods in electronics results from 

advancements in data science and machine learning. 

 

2. Methodology 
The circuit is seen as a "black box" with known inputs 

and outputs. In contrast, the structural domain defines the 

circuit's layout, components, and connections. It makes it 

possible to transform a behavioural description into a 

collection of components and links that satisfy user needs. 

The physical domain focuses on putting the circuit on a PCB, 

considering chip area constraints and handling issues like 

component placement and routing [22]. Techniques from 

machine learning are used to find the best answers.  

 

The structural domain explains the circuit's topology, 

encompassing stages, devices, and modules. A device can 

consist of one or more stages, a module may contain multiple 

devices, and a stage comprises components such as 

transistors, resistors, capacitors, diodes, etc. The physical 

domain efficiently positions and routes components, stages, 

devices, and modules in the PCB assembly. Machine 

learning assists in making accurate design choices and 

facilitating decision-making processes. 

 

2.1. Determination of Potential Areas 

A hierarchical bottom-to-top design technique was 

employed, consisting of four interconnected phases. Fig.2 

illustrates the framework for machine learning-based circuit 

design, which encompasses the following stages: 

• Finding appropriate components: This stage entails 

compiling libraries of elements with equations 

describing their electrical behaviour, such as transistors, 

resistors, capacitors, and diodes. Models for machine 

learning predict and categorise potential circuit 

components. 

• The second step emphasises selecting appropriate stages 

to create the circuit device. Here are single-stage, two-

stage, and multi-stage devices, each including circuitry 

supporting elements (usually transistors) and device 

elements [23-27]. All stages of schematics are arranged 

in libraries, and machine learning predicts and 

categorises their structure and behaviour. 

• Connecting the stages: The stages are connected to 

create the gadget during this stage. Including additional 

circuits, such as feedback or correction circuits, is 

possible. Device behaviour, structure, placement, and 

routing on the PCB are predicted and categorised using 

device libraries and machine learning models. 
 

The fourth step, "realising modules," is concerned with 

developing more sophisticated electrical goods. Modules can 

comprise one or more connected devices fulfilling a specific 

user requirement. There may be additional circuits for 

parameter enhancement or correction. Machine learning 

predicts and categorises the behaviour, structure, device 

location, and PCB routing by considering the transfer 

functions of the devices and the overall module function. 

Fig.2 shows the framework for the design of analog 

circuits. Designing analogue circuits is a complex task that 

involves a deep understanding of circuit theory, device 

physics, and analog design principles. While machine 

learning frameworks have made significant progress in 

various domains, their application to analogue circuit design 

is still relatively limited. Nonetheless, some approaches and 

tools can aid in the design process.  

Analog Circuit Synthesis: Machine learning frameworks 

can be used to automate the synthesis of analogue circuits by 

learning from existing designs. These frameworks typically 

rely on a combination of neural networks, reinforcement 

learning, and evolutionary algorithms to generate circuit 

architectures and parameter values that meet specified 

performance criteria. 

• Circuit Optimization: Once a circuit is designed, 

machine learning techniques can be used to optimize its 

performance. This can involve automated parameter 

tuning, sensitivity analysis, and gradient-based 

optimization methods to fine-tune the circuit's behaviour 

and improve performance metrics. 

• Performance Prediction: Machine learning models can 

be trained to predict the performance of analogue 

circuits based on their architecture and parameter values. 

This can help designers explore various design options 

more efficiently and reduce the need for extensive 

simulations or physical prototypes. 

In the behavioural design of devices, stages are seen as 

"black boxes," focusing on their input and output parameters 

without worrying about the precise implementation details. 

On the other side, structural design investigates different 

potential configurations. The device's design keeps a 

feedback configuration in place [28, 29]. Machine learning 

algorithms, a subset of artificial intelligence, have been 

gradually incorporated into electronic design automation 

(EDA) software in recent years to help with engineering jobs 

across the electronics design process. Machine learning's use 

in EDA tools has drawn much interest. It offers much 

potential for automating various engineering jobs and 

answering many EDA problems. 

The device must have input, intermediate, and output 

stages in line with Fig 3. Even though it does not magnify the 

voltage signal. The output stage must produce a low output 

resistance. This implies that the input and intermediate stages 

must provide the appropriate amplification.  
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Fig. 2 Machine learning framework for designing analogue circuits

 

 

 

 

Fig. 3 Structure of multi-stage design 

The first step is introducing a library containing 

regularly used device stages, their transfer functions, and 

specific characteristics. A "device" is an electronic gadget 

that boosts an electrical signal's current, voltage, or power. It 

transforms the voltage supply source's (VCC) electrical 

energy into a form that may be delivered to the load on the 

output circuit. Device circuits may use feedback circuits 

while transmitting signals from the input to the output [30]. 

Establishing the overall transfer function while considering 

each particular stage's input, intermediate, and output 

functions is crucial when working with multi-stage devices. 

A block diagram of a multi-stage device with multiple phases 

to meet various purposes is shown in Figure 3. The first input 

stage's primary objective is to provide high gain and 

effectively suppress common-mode signals to prevent 

unwanted interference from being amplified and transmitted 

to subsequent stages[31].  

2.2. Feature Extraction and Visualization 

Additionally, the first stage needs to have a high input 

impedance. This section describes how the suggested system 

can be used in an artificial neural network (ANN) that uses 

ANNs. A voltage adder's outputs are multiplied by a constant 

using an analogue multiplier. The voltage adder produces the 

signal from the non-linear function generator and the sum of 

the voltages from the weight matrix Wij, which represents 

the synaptic weights (Fig. 2).  Each neuron composing the 

neural architecture is designed using operational amplifiers 

(op-amps)[32]. This means that to develop the ANN shown 

in Figure 3, we implemented the neural circuit's topology, as 

shown in Figure 2. It should be remembered that each neuron 

node comprises two components: an activation function 

(sigmoid) and a summation function. While the latter uses an 

array of op-amps and voltage limiters (diodes), the former is 

implemented using an op-amp inverting adder (created based 

on Figure 4).  The function's block diagram in Figure 2 

includes two continuous-time integrators (whose outputs rely 

on the feedback network), one analogue multiplier, one 

summation device, and one non-linear function generator to 

calculate the objective function gradient at the circuit level. 

The optimum parameters are the signals produced by the 

integrators[33]. This circuit displays a more resilient output 

(insensitivity to tiny perturbations) in the presence of 

parameter fluctuations. The function generator precisely 

determines the gradient of the goal function. 

Fig. 4 shows the suggested machine learning-based 

device design approach. First, the stage type must be 

predicted, and then the typical parameters for each stage type 

must be forecast. The method postulates the presence of a 

library with device stages, where information on the purpose 

and makeup of each stage is generated. In order to learn from 

datasets, supervised machine learning methods, such as rule 

extraction algorithms, are used. This produces models 

predicting each stage's stage type (input, intermediate, or 

output) and critical parameters. To help designers choose the 

best stages for a three-stage device, this study used a 

machine learning-driven approach to analyse data about the 

stages (input, intermediate, and output). Additionally, 

significant factors related to each stage type were predicted 

using machine learning models.  
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Fig. 4 Process for designing devices using machine learning 

Techniques: Various techniques can be used for feature 

extraction, depending on the type of data and the specific 

problem. Some standard techniques include: 

• Statistical measures: Calculating descriptive statistics 

like mean, median, variance, etc., to summarize 

numerical data. 

• Dimensionality reduction: Methods like Principal 

Component Analysis (PCA), Linear Discriminant 

Analysis (LDA), or t-SNE (t-Distributed Stochastic 

Neighbor Embedding) to reduce the dimensionality of 

data while preserving important information. 

• Frequency analysis: Techniques like Fourier Transform 

or Wavelet Transform extract frequency-related features 

from signals. 

• Image feature extraction: Methods like SIFT (Scale-

Invariant Feature Transform), SURF (Speeded-Up 

Robust Features), or CNN-based approaches to extract 

features from images. 

3. Result 
When tested using a training/testing data ratio of 

60%/40%, the model created for predicting the stage type 

had an accuracy of 89.74%. Figure 6 displays the confidence 

level (from 0 to 1) and the probability of accurate predictions 

for each stage type (input, intermediate, and output). Higher 

levels of confidence indicate better chances of accurate 

forecasts. Particularly for input stages, the confidence is 

consistently 1, showing a high confidence level in these 

phases' predicting[34]. However, the confidence levels for 

intermediate and output phases are less than 1, indicating less 

certainty in forecasting these stage types. This work 

subjected the same dataset to Rule induction and Trees to 

Rules, two rule extraction algorithms. 

Fig. 5 describes the effect of power conservation at 

different frequency ranges when a noisy signal is 

encountered. Based on the gathered data, rule induction 

techniques use machine learning to build formal rules in an 

"if-then-else" manner. With the aid of these guidelines, it is 

possible to predict the different stage types and reach 

insightful conclusions. In addition to improved explanation 

and comprehension of the underlying logic relevant to the 

particular topic being studied, in our case, gadget 

construction, these methodologies have several benefits 

[35,36]. The extracted rules give information about choosing 

the stage type based on some typical parameters. An 

examination of the derived logic reveals that an output stage 

has a low output resistance, while an input stage has a high 

input resistance. They are referred to as intermediate phases 

for levels that do not fit these criteria.  

3.1. Data Quality Factors Comparison 

Results from the second algorithm, Trees to Rules, 

illustrate the rule-based logic used to identify the stage type. 

The stage is classified as an input stage if the common-mode 

rejection ratio (CMRR) is high Design Space Exploration: 

Machine learning techniques can assist in exploring the vast 

design space of analogue ICs.  

Machine learning models can identify appropriate design 

choices, trade-offs, and design patterns by learning from a 

dataset of existing designs. This knowledge can be used to 

guide the designer during the exploration phase, suggesting 

promising design alternatives and providing insights into 

design decisions [38].  

Design Automation: Machine learning can automate 

repetitive or time-consuming design tasks, allowing 

designers to focus on higher-level tasks. For example, 

machine learning models can automatically extract relevant 

features from circuit layouts or assist in circuit verification 

processes. This automation can improve the efficiency and 

productivity of the analog IC design process. 
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Fig. 5 Power distribution based on the frequency of operation for a noisy signal 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Energy utilization vs data distribution graph 

Fig. 6 describes how energy utilization is analyzed using 

the available data distribution. Two additional rule induction 

techniques emphasised the extracted logic even more. The 

second step entailed learning details about various device 

stages and doing a regression job using four machine-

learning methods.  

The Support Vector Machine algorithm showed the 

fewest mistakes out of all of these. The idea of an open 

library of machine learning models for circuits was 

implemented to assist designers in the challenging and time-

consuming processes involved in developing analogue 

circuits, devices, and modules at many levels (structural, 

behavioural, and physical). While analogue design 

automation tools have been unavailable, manual 

investigation of solutions has resulted in expensive, 

challenging, and constrained designs for analogue design. 

3.2. Interpretation of Results 

The findings demonstrate the usefulness of rule 

induction algorithms in electronic knowledge discovery 

through data mining. Electronic Design Automation (EDA) 

software can be coupled with the created logic as a 

supporting tool[39]. The formalization of the analogue circuit 

design process and the automatic development of formal 

rules benefit designers in specific ways. In the second stage 

of the investigation, four different Machine Learning 

Algorithms, Decision Tree, Random Forest, Gradient 

Boosted Tree, and Support Vector Machine, were employed 

[41,42] to discover the most effective model for predicting 
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parameters associated with various types of phases. To create 

machine learning models, datasets at each stage were 

considered together with the associated typical parameters. 

Figure 7 is the only illustration of the prediction charts from 

the predictive models created for input stage 4. As can be 

seen, the Support Vector Machine method yields the best 

results for this regression task. Additional phases of 

parameter prediction produced similar results.  

Fig. 7 describes the energy prediction evaluation for the 

predicated floor planning, placement and the error of 

occurrence that is predicted. Using evolutionary algorithms 

inspired by natural selection and genetic algorithms, the 

synthesis process can explore a vast design space and 

converge towards optimal or near-optimal solutions. The 

algorithm starts with an initial population of candidate 

circuits evaluated based on performance metrics, such as 

power consumption, speed, and noise characteristics. The 

best-performing circuits are selected for reproduction, and 

their genetic information is recombined and mutated to create 

new circuit variants for the next generation.  

Machine learning in analogue integrated circuit (IC) 

design has gained significant attention and shown promising 

results. Machine learning techniques leverage large amounts 

of data and computational power to enable more efficient and 

accurate design processes. Here are some key findings and 

outcomes of applying machine learning in analogue IC 

design: Modeling and Optimization: Machine learning 

algorithms can model complex analogue behaviour, such as 

transistor-level circuit simulations, and optimize circuit 

performance[39]. Machine learning models can capture the 

relationships between input variables (e.g., transistor 

dimensions, circuit topology) and desired circuit metrics 

(e.g., power consumption, gain, bandwidth) by learning from 

existing data. These models can then guide the optimization 

process and predict the performance of new circuit 

configurations. In Circuit Synthesis, machine learning 

algorithms have automatically generated circuit topologies 

and configurations.  

Machine learning models can learn the underlying 

patterns and design rules by training on a known circuit 

dataset and their corresponding performance metrics. This 

enables the generation of novel and optimized circuit designs 

based on user-defined objectives or constraints. Machine 

learning-based circuit synthesis can help accelerate the 

design process and explore a larger design space. Yield 

Enhancement: Analog IC design is sensitive to process 

variations, and ensuring a high yield is critical for 

manufacturing. Machine learning can assist in yield 

enhancement by predicting the impact of manufacturing 

variations on circuit performance.  

By training on data from process variations, machine 

learning models can estimate the statistical variations in 

circuit parameters and guide the design process towards 

robust, yield-enhanced designs. It is important to note that 

the application of machine learning in analog IC design is 

still an active area of research and development. While it has 

shown promising results, challenges remain, such as the need 

for extensive and diverse datasets, the interpretability of 

machine learning models, and the incorporation of domain 

knowledge into the learning process. However, as machine 

learning techniques continue to advance and more data 

becomes available, the integration of machine learning in 

analog IC design is expected to have a significant impact, 

enabling faster, more robust, and innovative circuit designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Energy analysis based on placement, floor planning and error detection 
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4. Conclusion 
In order to simplify the design of analogue devices, the 

study offers a two-step process that uses rule induction 

approaches and machine learning algorithms. The goal is to 

help designers choose appropriate stages for device 

realisation by offering predictions on stage types and 

producing rule-based logic. The method also helps select 

appropriate parameters based on user requirements for a 

particular stage type. The approach's effectiveness was 

demonstrated by constructing a three-stage system where the 

capabilities and crucial factors were fully known. Using the 

Decision Tree algorithm, a supervised machine learning 

technique, the stage types were first classified with an 

accuracy of 89.74%. The evolutionary synthesis of analogue 

IC design is a promising approach that leverages 

evolutionary algorithms to automate and enhance the process 

of designing analogue circuits. It offers the ability to explore 

a vast design space, handle trade-offs, and generate 

innovative solutions. While it is not a substitute for human 

expertise, it can significantly improve the efficiency and 

effectiveness of analog IC design.  

Moreover, evolutionary synthesis can overcome some 

limitations of traditional manual design approaches. Analog 

IC design is a time-consuming and iterative process that 

heavily relies on the designer's expertise and intuition. 

Evolutionary synthesis reduces human effort and enables the 

exploration of a larger design space by automating parts of 

the design process. It can also generate innovative circuit 

topologies and configurations that human designers might 

not have considered, leading to novel solutions and improved 

performance. This contrasts with the benefits of various EDA 

tools and design approaches for digital IC design. 
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