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Abstract - This study explores machine intelligence algorithms for evaluating mental health conditions on distinct datasets. The 

primary goal is to identify effective algorithms for anticipating mental health concerns. The central objective is to determine the 

most productive machine learning algorithms in predicting mental health issues using provided datasets. Various algorithms – 

Logistic Regression (LR), k-Nearest Neighbor (kNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), 

bagging, and boosting – were employed with diverse parameter settings. The OSMI (Ds1) and the District Mental Health 

Program dataset (Ds2) were used for experimentation. Among the algorithms tested, LR with an Optimal Threshold (LR-OT) 

achieved notable performance with accuracy, precision, recall, specificity, and F1-score ranging from 0.87 to 0.89 across both 

datasets. kNN with Optimized parameters (kNNO) achieved 90% and 91% accuracy rates for Ds1 and Ds2, respectively. SVM 

obtained average accuracies of 91% and 93% for Ds1 and Ds2, respectively, with specific variations showing superior 

outcomes. Notably, DT, RF, bagging, and boosting models exhibited R2 scores exceeding 0.70, with bagging and DT yielding 

the highest R2 score. The study’s findings demonstrate that DT and RF models enhanced by bagging and boosting techniques 

outperform other algorithms in predicting mental health concerns using the provided datasets. This highlights the significance 

of employing these models for effective mental health assessment through machine learning.  

Keywords - Machine Learning, Logistic Regression, K-Nearest Neighbor, Support Vector Machine, Decision Tree, Random 

Forest.  

1. Introduction  
As per the World Bank's report, close to 1 billion 

individuals are currently livings with a mental disorder [1]. 

The World Health Organization (WHO) reveals that the 

COVID-19 pandemic has severely disrupted or even halted 

critical mental health services in 93% of countries globally, 

while the demand for mental health support is steadily rising 

[2]. This situation is of great concern due to the chronic nature 

of mental health conditions, and it holds significant economic 

implications on a global scale. In fact, projections indicate that 

depression will impose a greater burden on nations than any 

other disease in the coming decade [2]. Mental health 

assessment plays a crucial role in understanding and 

diagnosing various psychological conditions [3-6]. 

Traditionally, mental health assessments heavily relied on 

subjective evaluations conducted by professionals in the field 

[7-10]. However, with the emergence of intelligent learning 

algorithms, a new era of mental health assessment has 

emerged, offering promising advancements and opportunities 

for more accurate and efficient evaluations [11, 12]. By 

leveraging this technology, mental health assessments can 

now benefit from objective analysis and data-driven insights. 

Machine learning algorithms can process vast amounts of 

data, identify complex patterns, and generate predictive 

models that aid in diagnosing mental health disorders [13, 14]. 

One primary advantage of utilizing these models and 

algorithms for mental health assessment is their ability to 

analyze a wide range of variables simultaneously [15-18]. 

Traditional assessments often rely on limited data inputs and 

subjective interpretations, which can introduce potential 

biases and inaccuracies [19]. In contrast, machine learning 

algorithms can incorporate diverse sources of information, 

including patient demographics, genetic data, electronic 

health records, and even social media activities. This 

comprehensive approach allows for a more holistic 

understanding of an individual's mental health state. Another 

notable benefit of using machine intelligence approaches for 

mental health assessment is the potential for early detection 

and intervention [20, 21]. By analyzing large datasets and 

recognizing subtle patterns, these algorithms can identify 
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indicators of mental health disorders before they become 

prominent. Furthermore, machine learning algorithms can 

help personalize mental health assessments, tailoring them to 

individual needs [22, 23]. By analyzing an individual's unique 

data profile, including physiological markers, behavioral 

patterns, and treatment history, algorithms can generate 

personalized risk assessments and treatment recommendations 

[24, 25].  

This individualized approach has the potential to optimize 

treatment plans and improve patient outcomes. Numerous 

researchers are involved in the betterment of the assessment 

ways. They have employed various machine intelligence 

methods such as k-Nearest Neighbor (kNN), Decision Tree 

(DT), Naive Bayes (NB), random forest (RF), Support Vector 

Machine (SVM), Logistic Regression (LR), and more [18-21]. 

The selection of these algorithms is based on their 

effectiveness in predicting, detecting, extracting, and 

analyzing data, enabling a wide range of applications in 

mental health evaluation. 

The major problem with the traditional approaches 

considered is the limited perspective of mental state and 

impacting factors. Suppose may influence the personal bias. If 

the datasets used are not diverse or representative of the entire 

population, the algorithms may develop biases. These biases 

may lead to inaccurate classification, particularly for specific 

or diverse groups. In the majority of the works, limited 

diversity was considered. 

The objectives and contribution of this paper are as 

follows: 

• To evaluate the mental health status using computational 

learning algorithms. This entails employing various 

machine learning techniques, including LR, kNN, SVM, 

DT, RF, bagging, and boosting, to assess mental health. 

The assessment involves classification tasks with the goal 

of determining the status of mental health based on the 

features available in the datasets.  

• To compare the performance of these algorithms based on 

performance metrics such as accuracy, precision, recall, 

F1-score, and the coefficient of determination (R2). 

Through the experimentation and assessment of these 

algorithms, valuable insights into their effectiveness and 

suitability for mental health prediction tasks can be 

obtained. 

The experimental cases include L1, L2, C, and epochs as 

the parameters and hyperparameters in the case of LR. In the 

case of kNN, the parameters and the hyperparameters are k, 

distance metric, K-Dimensional (KD)-tree, ball-tree, and 

voting method. C, degree, as the parameters and 

hyperparameters and different kernel types are in the case of 

SVM. Other combinations are DT, RF, and bagging with DT, 

RF, and SVM.  Finally, AdaBoost with DT, RF, and SVM are 

considered. The motivation for comparing various machine 

learning algorithms, including LR, kNN, SVM, DT, and RF, 

in the context of mental health diseases, is rooted in the 

complexity of mental health datasets and the imperative to 

develop effective predictive models. Mental health data often 

exhibits diverse and intricate patterns, and the choice of 

algorithm can significantly impact the model's ability to 

capture these nuances. Understanding the factors contributing 

to mental health conditions is crucial, and comparing 

algorithms provides insights into their interpretability and 

explainability in comprehending model predictions.  

The comparison also facilitates the selection of the most 

suitable algorithm for mental health prediction tasks based on 

their respective strengths and weaknesses. Additionally, 

hyperparameter tuning allows for the optimization of model 

configurations, enhancing predictive capabilities. Given the 

limited size of mental health datasets, assessing how well each 

algorithm generalizes to new cases is essential. The ultimate 

goal is to contribute to the development of accurate and 

interpretable models that can assist in the diagnosis and 

treatment of mental health disorders. This research endeavor 

aims to provide a valuable approach that not only improves 

prediction accuracy but also offers insights into the complex 

relationships within mental health data, fostering 

advancements in the field. 

The organizational structure of this paper is divided into 

distinct sections. Section 2 provides a review related to mental 

health assessment. Section 3 covers the methodological 

evaluation and exploration. Results have been investigated 

and explored in Section 4. Section 5 explores the impacts of 

the results, discusses key findings and implications of this 

study, and investigates the limitations. Finally, the conclusion 

is presented in Section 6.  

2. Literature Review  
In this section, a comprehensive review has been 

conducted. It explores the studies that utilize various machine 

learning models for the analysis of mental health. A sample of 

2400 individuals who received Applied Behavior Analysis 

(ABA) treatment across various states were examined by 

Stevens et al. (2019) [26]. They utilized hierarchical clustering 

and Gaussian mixture models. The findings are preliminary 

and require replication in further samples of individuals with 

Autism Spectrum Disorder (ASD). In 2019, Sau and Bhakta 

[27] conducted a study on 470 seafarers at the Haldia Dock 

Complex, collecting sociodemographic, occupational, and 

health-related data. They used the hospital anxiety and 

depression scale.  They applied LR, SVM, RF, Catboost, and 

NB to assess anxiety and depression. Catboost had an 

accuracy and precision of 82.6% and 84.1%, respectively, 

making it the most effective classifier. The manifestation of 

heterogeneity and multivariate pattern recognition techniques 

were discussed for the assessment of schizophrenia [28].
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 They suggested that these strategies could improve 

forecasts and understanding of the neurological basis of the 

disorder. Schnack [28] concluded that future studies should 

incorporate multi-center, multi-modal predictor data to model 

more complex relationships between biomarkers and clinical 

presentation. 

 In 2019, Zhao et al. [29] studied 179 students who 

completed the Patient Health Questionnaire (PHQ-9) and 

Generalized Anxiety Disorder (GAD-7) questionnaires, 

recorded by Kinect cameras. They extracted features using 

fast fourier transforms and used different regression 

algorithms, including Gaussian processes, to train regression 

models that recognized anxiety and depression levels and 

classification models that detected specific depressive 

symptoms. Gaussian processes achieved a correlation 

coefficient of 0.51 between predicted and questionnaire scores 

for anxiety and depression, and prediction accuracies for 

depression and anxiety were 0.64 and 0.74, respectively. 

Epsilon-support vector regression was also used. Ay et al. [30] 

proposed a hybrid model that combines Long-Short Term 

Memory (LSTM) and Convolutional Neural Network (CNN) 

architectures.  

The model was utilized to identify sadness using 

Electroencephalogram (EEG) signals. The CNN layers learn 

the temporal characteristics, while the LSTM layers learn the 

sequences. EEG data from the left and right hemispheres of 

the brain were used. According to the findings, the CNN-

LSTM model demonstrates both speed and accuracy in 

detecting depression using EEG signals. Bhak et al. [31] 

investigated various mental health conditions and developed a 

model to predict the risk. The RF classifiers demonstrated 

superior performance compared to the other models. In 2020, 

Tennenhouse et al. [32] utilized RF, Neural Network (NN), 

and LR techniques to forecast the occurrence of anxiety and 

major depressive disorder.  

The researchers discovered that LR had superior 

performance compared to RF and NN. Nevertheless, to 

address the problems of overfitting and non-convergence, they 

aggregated data from patients with various immune-mediated 

inflammatory illness conditions. Two multiple regression 

analyses to determine the effectiveness of sociodemographic 

and clinical factors as predictors of psychological outcomes in 

medical professionals working in COVID-19 wards were 

conducted by Di et al. [33]. The dataset included 145 

healthcare workers, comprising 72 medical doctors and 73 

nurses. The multiple regression model was found to strongly 

predict the overall score on the Beck Depression Inventory 

(BDI) in relation to depression symptoms. A depression 

classification system was developed by Narziev et al. [34] 

using a wearable device and smartphone, achieving 96% 

accuracy across four PHQ-9 groups, showcasing its 

effectiveness. In 2021, Na et al. [35] developed machine 

learning algorithms to distinguish panic disorder from other 

anxiety disorders using Heart Rate Variability (HRV) data 

from 61 individuals with different anxiety disorders and 60 

patients with panic disorder. LR achieved the best accuracy of 

78.4%, followed by artificial NN and SVM with 73%, 

Gradient Boosting Machines (GBM) with 67.6%, and RF with 

64.9%. LR also had the highest Matthews correlation 

coefficient of 57.2%, F1-score of 79%, specificity of 73.7%, 

and sensitivity of 83.3%. The study included participants aged 

20 to 65 years.  

In 2021, Andrade et al. [36] aimed to enhance the 

International Classification of Diseases (ICD-10) protocol and 

enable a fast diagnosis of ASD based on a single, 

inconspicuous symptom. Their analysis indicated that only 

nine out of the eighty characteristics evaluated were sufficient 

to indicate the diagnosis of ASD accurately. In 2021, 

Walambe et al. [37] proposed a method for rapidly detecting 

workload-related stress using an artificial neural network. 

They utilized a late and early fusion model and attained 

accuracies of 90.45% and 96.67%. Jacobson et al. [38] utilized 

a deep autoencoder to predict anxiety disorder symptoms in 

participants. They studied 265 subjects who had taken part in 

Midlife in the United States.  

The outcome suggests that wearable movement data 

could effectively anticipate individuals likely to undergo 

symptom deterioration. In 2021, Zhu et al. [39] conducted a 

study involving 48 cases of schizophrenia and 50 healthy 

cases. They utilized diverse machine learning algorithms, such 

as RF, DT, SVM, etc., for classifying schizophrenia cases. 

Among all the models, the SVM model exhibited superior 

performance. In 2021, Shah et al. [40] developed a method to 

predict depressed mood over 1 month. 

 Among the computational models used, the voting 

regressor performed the best on average among subjects. In 

2022, Han [41] developed a questionnaire based on the Center 

for Epidemiologic Studies Depression Scale (CES-D) to 

assess depression and proposed a systematic approach for data 

cleaning, pre-processing, and mental health assessment using 

a multi-model. The approach included sentiment analysis 

using LSTM for text-based data and Visual Geometry Group 

(VGG) 16 for image-based data. The experimental results 

showed high accuracy rates, providing support for 

psychological education and counseling for students in higher 

vocational education. In 2022, Hanif et al. [42] analyzed 

95,677 records from the year 2011-2012, which was 

conducted in the United States for children aged 2 to 17 years. 

They used computational algorithms to predict and classify 

the severity of ASD. The deep neural network achieved the 

highest accuracy of 87.11%. In 2022, Aleem et al. [43] 

proposed an approach for depression detection by using 

generic computation. Based on this approach, they have also 

suggested future ways of improvement in depression 

detection. In 2022, Ryu et al. [44] conducted a study on 31 

individuals with Post-Traumatic Stress disorder (PTSD) and 
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34 without PTSD. SVM, voting ensemble models, kNN, RF, 

and statistical analysis utilising LR were used to predict 

PTSD. The study discovered that a radial basis function kernel 

with the SVM model accurately predicted PTSD. In 2023, 

Kuhathasan et al. [45] analyzed strainprint app data (Feb 2017 

- Oct 2020) with 68,819 cannabis use observations from 1,307 

individuals addressing mental health symptoms. They applied 

machine learning algorithms and SHapley Additive 

exPlanations to assess the features' impact.  

In 2023, González-Pérez et al. [46] introduced the 

AwarNS Framework, a context-aware modular software 

development framework for android smartphones. It 

facilitates reliable, power-efficient, and ethical health app 

development, incorporating data sampling, analysis, and 

intervention capabilities. Advantages include transparency 

and reusability, with challenges in the complexity of mHealth 

app development. Real-life case studies showcase its 

effectiveness in implementing mobile interventions for 

diverse mental disorders. In 2023, Bhatnagar et al. [47] 

collected data using a survey given to engineering students at 

a university level, and 127 students answered that 

questionnaire. They applied different algorithms like DT, NB, 

SVM and RF to analyze the data. The RF method had the best 

accuracy at 78.9%, followed by SVM at 75.55%, NB at 

71.05%, and DT. 

 In 2023, Shvetcov et al. [48] analyzed participant 

screening data from the 'Vibe Up' smartphone-based mental 

health intervention trial for Australian university students. 

They employed supervised (shrinkage discriminant analysis 

and classification and regression trees) and unsupervised (K-

means clustering) learning algorithms. The study identifies 

user subgroups with stable and timepoint-dependent 

characteristics, underscoring the importance of tailored 

interventions addressing trauma, app usage reasons, and 

burnout for enhanced engagement. In 2023, Slima et al. [49] 

applied association rules mining to uncover cause-and-effect 

connections between mental health conditions and 

contributing factors.  

Using an online survey during the first peak of COVID-

19 in Tunisia, the study revealed associations, such as doctor 

consultation with anxiety and COVID test with depression, 

emphasizing the combined impact of multiple factors on 

mental health vulnerability for informed medical decisions. In 

2024, Jayakumar and Reshma [50] reviewed methodologies 

for predicting mental health issues using machine learning, 

discussing its benefits, like timely intervention and challenges, 

like data biases, with recommendations for future research and 

development in the field.  In 2024, Gupta et al. [51] 

investigated mobile apps from major app stores, analyzing 216 

apps designed to support individuals with depression. Their 

study highlights the apps' roles in education, therapy, and 

mood monitoring, emphasizing mobile solutions to aid 

depression management globally. 

3. Materials and Methods  
This work utilized machine learning methods to assess 

mental wellness utilizing two datasets. The specific 

characteristics and information on the datasets utilized are 

outlined below: 

OSMI 2014 dataset (Ds1): This dataset comprises 

responses from 1,259 participants, encompassing their 

answers and attributes, including 27 columns that incorporate 

a timestamp. The attributes include age, gender, country, and 

state. The questionnaires are based on self-employment, 

family history, treatment, work interference, number of 

employees, remote work, tech company affiliation, benefits, 

care options, wellness programs, seeking help, anonymity, 

leave policies, mental health consequences, physical health 

consequences, relationships with coworkers and supervisors, 

mental health interviews, physical health interviews, 

perceptions of mental versus physical health, and the presence 

of observable consequences. This dataset consists of survey 

results collected over multiple years, starting from 2014 [52]. 

Therefore, researchers have the option to select data from 

specific years, such as 2014, 2016, and 2019, or they can 

choose to combine data from all available years. The dataset 

is also accessible on the Kaggle repository. Approximately 

80% of the participants in the dataset are male, while less than 

1% has an unidentified gender. Specifically, there are 992 

male participants, 250 female participants, and 12 participants 

with other gender identifications. The dataset consists of 26 

categorical attributes and one numeric attribute.  

The overall percentage of missing values in the dataset is 

5.6%. District Mental Health Program, Kurukshetra (Ds2): 

This dataset represents the compilation of data from the Lok 

Nayak Jai Prakash Hospital, Kurukshetra, Haryana. It 

encompasses cases documented from April 2019 to March 

2022, comprising a total of 15,687 records. The dataset covers 

various mental health conditions, such as dementia, stress, 

anxiety, depression, schizophrenia, bipolar disorder, autism, 

sexual disorders, and more. Within this dataset, special 

attention has been given to cases related to depression (7,654 

records), anxiety (438 records), stress (1,027 records), and 

normal cases (987 records). These four categories collectively 

make up 10,106 records. For the analysis of these cases, 

common symptoms have been considered, including mood 

changes (S1), fatigue (S2), sleep disturbances (S3), difficulty 

concentrating (S4), irritability (S5), changes in appetite (S6), 

and physical symptoms (S7). The primary objective was 

multiclass classification, where the model distinguishes 

between normal cases and those with mental health problems 

such as anxiety, depression, and stress. This categorization 

represents instances without mental health issues (normal) and 

those with specific mental health problems like anxiety, 

depression, and stress, respectively. 

3.1. Preprocessing and Data Preparation 

The OSMI dataset, although abundant in information, 

posed challenges stemming from the inclusion of missing, 
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inconsistent, and unnecessary values. To ensure the dataset's 

reliability for machine learning models, a comprehensive data 

cleaning process was executed. This involved the exclusion of 

specific attributes, such as timestamp, country, and state, 

which were deemed irrelevant to the specific analysis at hand. 

The initial phase of the data cleaning process focused on the 

'gender' column, which exhibited a plethora of values. To 

enhance model interpretability and simplify this variable, 

gender was categorized into three distinct parts: male, female, 

and others. This categorization aimed to streamline the feature 

and mitigate complexity in subsequent analyses. Addressing 

missing values constituted a pivotal step in data preprocessing. 

Each attribute with missing values underwent a unique 

treatment based on its inherent nature. To identify missing and 

duplicate values, Python's built-in functions, such as 

isnull().sum(), were used to identify any missing values, and 

duplicated().sum() was employed to detect any duplicate 

tuples for attributes. For example, missing values in the 'self-

employed' attribute were replaced with 'no,' while those in the 

'work interfere' attribute were replaced with 'don’t know.' This 

meticulous approach ensured that the dataset remained robust 

and suitable for analysis. Following the data cleaning phase, 

preprocessing steps were implemented to ready the data for 

machine learning models. Label encoding was used for 

transforming categorical data into numerical form. This 

transformation was applied to all attributes except 'age,' given 

its inherent numerical nature. The primary objective was 

binary classification, where the model discerns between 0 and 

1, representing cases without mental health problems and 

those with mental health problems, respectively. The training 

dataset, featuring predictor variables such as family history, 

care options, gender, age, and others, was employed to train 

the model. The target variable, 'treatment,' was selected to 

predict the presence or absence of mental health problems. In 

the experimental setup, a 70–30 split was implemented, 

allocating 70% of the data for training and the remaining 30% 

for testing. For experimentation, ratios of 75:25 and 80:20 

were also considered. To improve the reliability of the model 

evaluation, a tenfold cross-validation approach was utilized. 

3.2. Selection of Algorithms 

Our primary focus on a specific set of algorithms, 

including LR, kNN, SVM, DT, RF, bagging, and boosting, 

highlights the careful consideration given to assessing mental 

health across diverse cases. LR, known for its simplicity and 

efficacy, played a key role in addressing both binary and 

multiclass classification challenges. kNN was chosen for its 

ability to detect subtle local patterns and relationships within 

the dataset. SVM was included for its ability to handle non-

linear decision boundaries and high-dimensional data. The 

interpretability of DT made it an effective method for 

capturing complex decision boundaries in mental health 

assessment. RF, being an ensemble method, synergistically 

leverages the advantages of many decision trees to enhance 

accuracy and resilience. In addition, bagging and boosting 

approaches were employed to improve the performance of the 

base models by leveraging different combinations and 

hyperparameters. The complete framework of this study is 

shown in Figure 1, showcasing the strategic selection and 

application of these algorithms, each designed to address 

specific aspects of mental health assessment. 

3.3. Hardware and Software Specifications 

For the experimentation, Python 3.9 was used. The 

hardware for coding tasks included an Intel(R) Core(TM) i5-

10210U CPU with a base clock speed of 1.60 GHz and a 

maximum boost clock speed of 2.11 GHz. The operating 

system used was Windows 10. To meet the computational 

demands of running Jupyter Notebook and handling data 

manipulation and model training processes, 8 GB of RAM was 

accommodated.  

3.4. Imbalanced Classification 

Class imbalance in machine learning occurs when the 

distribution of classes in the training dataset is uneven, posing 

challenges for models, particularly when the minority class is 

of interest. In the case of Ds2, addressing this imbalance is 

critical for accurate analysis of mental health conditions. The 

dataset covers diverse conditions such as dementia, stress, 

anxiety, depression, and others, with a focus on depression, 

anxiety, stress, and normal cases, totaling 10,106 records.  

Notably, depression dominates with 7,654 records, while 

anxiety, stress, and normal cases are underrepresented (438, 

1,027, and 987 records, respectively). The Synthetic Minority 

Over-Sampling Technique (SMOTE) process involves three 

steps: First, obtaining the k-nearest neighbors for each case in 

the minority class. Second, setting a sampling rate of N based 

on the imbalanced proportion, where N examples are 

randomly selected from the k-nearest neighbors for each 

example. Third, employing to generate new records, 

incorporating a random number factor (rand(0, 1)). Following 

oversampling, the Ds2 is reconstructed, enabling the 

application of various classification models for enhanced 

analysis. 

3.5. Machine Learning Algorithms Logistic Regression (LR) 

LR provides probabilistic interpretations, allowing for 

informed decision-making and setting decision thresholds 

based on desired trade-offs. Additionally, LR can help identify 

the importance of features in predicting outcomes, enabling 

feature selection, and understanding variable influence. It can 

handle outliers and missing values through techniques like 

robust regression and imputation. LR has a low risk of 

overfitting, particularly when the number of predictors is 

small, and regularization techniques can further mitigate 

overfitting. The penalty parameter determines the strength of 

regularization. The inverse of the regularization parameter C 

controls the amount of regularization applied (Equations 1 and 

2). Smaller values of C increase the regularization strength, 

while larger values decrease it. The solver determines to 

optimize the LR parameters. 
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Fig. 1 Proposed framework to show the working mechanism considering parameters and hyperparameters 

 

LR produces probability estimates, and a threshold can be 

set to classify instances of different predicted probabilities. 
 

L1= C × Σ|β|    (1) 

L2= (C/2) × Σ(β²)           (2) 

Where L1 and L2 are the regularization terms, C is a 

regularization parameter. β represents the coefficients of the 

LR. In LR, the loss function quantifies the uniqueness by 

gauging the difference between the predicted probabilities and 

the true labels. The goal is to minimize this loss function 

during model training. Logistic Loss (or cross-entropy loss 

(LL)) was used in our approach (Equation 3): 
 

LL = -Σ [y × log(p) + (1-y) × log(1-p)]  (3) 

Here, y represents the actual binary labels (0 or 1), and p 

represents the predicted probabilities. So, the objective 

function (F1) can be calculated as shown in Equation 4.  
 

F1= C × (L1 & L2) + (LL)  (4) 
 

The regularization term is typically the L2 norm 

(Euclidean norm) of the coefficients multiplied by 1/2. For the 

"lbfgs", "newton-cg", or "sag" solvers, C is directly used as 

the regularization strength in the objective function without 

inversion. The objective function is defined as (Equation 5): 
 

F1 = C × (L2)       (5) 
 

The key parameters and hyperparameters of LR include 

penalty (Regularization) with options like L1 regularization 

(LASSO) and L2 regularization (Ridge) alongside C, which 

represents the inverse of regularization strength. 
 

3.6. k-Nearest Neighbour (kNN)  

It is a machine intelligence approach to classification. It 

assigns the class or value of a data point based on the average 

of its nearest neighbors. It calculates distances between the 

data points, considering training data points to find the closest 

neighbors. kNN is non-parametric, handles numerical and 

categorical features, and is easy to implement. kNN offers a 

simple yet effective approach for prediction based on the 

similarity of data points. In kNN, the voting method is used to 

determine the class or label of a new data point based on the 

classes or labels of its k nearest neighbors. Majority voting and 

weighted voting were used in this paper for experimentation. 

In the majority voting method, each neighbor has an equal 

vote, and the class with the highest number of votes among the 

k neighbors is assigned as the Predicted Class (PC) for the new 

data point (Equation 6). 
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PC=max (CC)   (6) 
 

Here, CC represents the count of occurrences of each 

class, and max () is a function that returns the class with the 

highest count. In the weighted voting method, each neighbor's 

vote is weighted based on its proximity to the new data point. 

The closer neighbors have a higher influence on the prediction 

than the farther ones (Equation 7). 
 

PC = max(sum(W×CC))        (7) 

Here, W represents the weights assigned to each 

neighbor. In our approach, W was calculated using the 

following three distance measures (Equations 8, 9 and 10).  

 

Euclidean distance (ED):         d= √∑ (𝑋𝑖 − 𝑌𝑖)
𝑛
𝑖=1       (8)      

Manhattan distance (MD):       d= ∑ |𝑋𝑖 − 𝑌𝑖|
𝑛
𝑖=1  (9) 

Pearson Correlation (PC):      r = 
∑ 𝑋𝑌−

∑ 𝑋 ∑ 𝑌

𝑁

√∑ 𝑋2− 
(∑ 𝑋)2

𝑁 
√∑ 𝑌2− 

(∑ 𝑌)2

𝑁 

 (10) 

3.7. Support Vector Machine (SVM) 

It is a powerful machine learning algorithm that operates 

by finding an optimal hyperplane that separates data points 

into distinct classes. SVM's key strength lies in its ability to 

handle high-dimensional feature spaces and complex decision 

boundaries effectively. By utilizing a kernel function, it can 

implicitly map input data into higher dimensions, allowing for 

nonlinear classification. By prioritizing a wide margin, SVMs 

can effectively handle complex datasets and avoid overfitting 

(Equation 11). So hard as well as soft margins were 

considered.  

 

Minimize: 0.5 × ||w||2 + C × Σ(max(0, 1 - yi × (wT × xi + b)))

 (11) 

Subject to: yi × (wT × xi + b) ≥ 1, for all training samples (xi, 

yi) 

Where 

w: value based on the computed weight vector. 

b: value based on the computed bias term. 

xi represents the feature vector. 

yi is the decision label (-1 or +1) (0 or 1). 
 

The kernel function (K) is responsible for mapping the 

input data into a higher-dimensional feature space, where 

linear separation may be easier to achieve (Equation 12). The 

kernel functions are depicted in Equations 13-16. 
 

K(xi, xj) = φ(xi) ⋅ φ(xj)    (12) 
 

Here, xi and xj are input data points, and φ() represents 

the mapping to a higher-dimensional feature space. Linear 

Kernel (LK), Polynomial Kernel (PK), RBF Kernel (Gaussian 

Kernel) (RBFK) and Sigmoid Kernel (SK) are shown below 

(Equations 13-16).   

LK= K(xi, xj) = xi ⋅ xj    (13) 

PK= K(xi, xj) = (γ ⋅ xi ⋅ xj + r)d                  (14) 

Here, γ is the coefficient of the kernel, r is an optional 

constant, and d is the degree of the polynomial. 

 

RBFK= K(xi, xj) = exp(-γ ⋅ ||xi - xj||2)             (15) 

Here, ||xi - xj|| represents the Euclidean distance between 

xi and xj. 

SK= K(xi, xj) = tanh(γ ⋅ xi ⋅ xj + r)        (16) 

The gamma parameter (γ) determines the influence of 

each training sample. A higher gamma value emphasizes 

closer samples (Equation 17). 

 

γ = 1 / (2 × σ2)      (17) 

Here, σ is the standard deviation of the Gaussian function 

used in the RBFK. The smaller the value of σ, the larger the 

value of γ, resulting in a narrower RBFK. 

3.8. Decision Tree (DT) 

DT is a popular computational learning algorithm. It 

represents decisions and their consequences in a tree-like 

structure. DTs can handle both categorical and numerical 

features, and they can capture complex interactions between 

them. Additionally, DT can handle missing values and are 

robust to outliers. The uniqueness lies in the control of DT 

complexity through two parameters. The Max-Depth (MD) 

parameter governs the upper limit on tree depth, while the 

Min_Samples_Split (MSS) parameter determines the samples 

(minimum number) needed to split the node (internal). It 

ensures that nodes are not split if they contain a small number 

of samples, which can help prevent overfitting. The 

Min_Samples_Leaf (MSL) parameter sets the samples 

(minimum number) required to be a node (leaf). It prevents the 

creation of leaf nodes with too few samples, which can also 

aid in reducing overfitting. The max-Features (MF) parameter 

determines the features (maximum number) to consider when 

looking for the best split at each node. It helps control the 

randomness and complexity of the DT. 

3.9. Random Forest (RF) 

It is a widely used ensemble algorithm, combining DTs 

through bootstrapping and random feature selection to 

enhance predictions. The exceptional feature of this method 

lies in its capability to manage high-dimensional data and 

capture intricate relationships among variables effectively. 

Additionally, it can estimate feature importance, allowing for 

effective feature selection. One of its distinctive attributes is 

its computational efficiency, allowing it to parallelize 

efficiently and handle large datasets with ease. The parameter 

n_estimators (n) determines the number of DTs in RF. 

Increasing n can enhance performance but also adds 
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computational complexity. Bagging, or Bootstrap 

aggregating, is an ensemble learning technique aimed at 

increasing the stability and accuracy of learning models. It 

involves creating multiple sets through random sampling with 

replacement. Each subset, known as a bootstrap sample, trains 

models independently. The models' outputs are combined via 

averaging (for regression) or majority voting (for 

classification) for the final prediction, reducing overfitting by 

diversifying training subsets. This enhances performance by 

lowering variance and bolstering resilience to outliers. 

Boosting is a machine learning method that builds a 

strong ensemble model by sequentially training models, each 

focusing on samples poorly predicted by predecessors. Each 

model's weighted predictions are combined for the final 

output. It emphasizes misclassified samples, enabling learning 

from prior errors. AdaBoost was used in this study. Boosting 

excels in managing complex datasets and elevating predictive 

accuracy. 

4. Results and Discussion  
The results obtained using the discussed methods are 

presented in this section, considering various cases. The 

experimental cases are outlined in Table 1. Evaluation metrics 

considered for results assessment are as follows: 

Accuracy: It is calculated by dividing the number of 

correctly predicted instances by the total number of instances. 

The formula is shown in Equation 18: 

 

Accuracy = 
NCPI

TNI
             (18) 

Where NCPI = Number of correctly predicted instances, 

TNI = Total number of instances. 

Precision: It is calculated by dividing the number of true 

positives by the sum of true positives and false positives. The 

formula is shown in Equation 19: 

 

Precision = 
TPs

TPs+FPs
      (19) 

Where TPs=True positives, FPs= False positives, FNs= 

False negatives, TNs=True negatives. Recall (Sensitivity): It 

is also known as sensitivity or the true positive rate, and it is 

calculated by dividing the number of true positives by the sum 

of true positives and false negatives. The formula is shown in 

Equation 20: 
 

Recall = 
TPs

TPs+FNs
  (20) 

Specificity: It is also known as the true negative rate and 

is calculated by dividing the number of true negatives by the 

sum of true negatives and false positives. The formula is 

shown in Equation 21: 
 

Specificity = 
TNs

TNs+FPs
          (21) 

F1-Score: It is the harmonic mean of precision and recall. 

The formula is shown in Equation 22: 

 

F1-Score = 2× 
Precision × Recall

Precision + Recall
                 (22) 

The coefficient of determination (R2) is used in this study 

to demonstrate the accuracy and validity of the model. The 

value of R2 may be calculated with the help of Equation 23: 

 

R2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
   (23) 

Where SSR represents the Sum of Squared Residuals, 

which corresponds to the summation of squared differences 

between predicted values and actual values, on the other hand, 

SST represents the total sum of squares, being the sum of 

squared differences between actual values and the mean of the 

dependent variable. 

For ES1, the results were obtained by considering L1, L2, 

C, and epochs in a complete cycle, using tenfold cross-

validation. The dataset was split into different ratios: 70:30, 

75:25, and 80:20. The number of epochs ranged from 100 to 

600. The results are presented on a scale of 0 to 1. LR-L1 

corresponds to LASSO regularization, LR-L2 corresponds to 

ridge regularization and LR with optimal threshold (LR-OT). 

From Figure 2, it is evident that LR-OT achieved the best 

results for both the Ds1 and Ds2 datasets. In the case of Ds1, 

the precision, recall, specificity, F1-score, and accuracy 

achieved were 0.88, 0.89, 0.87, 0.87, and 0.88, respectively. 

In the case of Ds2, the precision, recall, specificity, F1-score, 

and accuracy achieved were 0.87, 0.87, 0.88, 0.88, and 0.89, 

respectively. LR-L1 outperformed LR-L2 in the case of Ds1, 

which can be attributed to L1 regularization being suitable 

when a subset of features has a significant impact on mental 

health outcomes.  

Table 1. Different cases considered for experimentation and assessment 

S. 

No 

Experimental 

Scenario (ES) 
Description 

1 ES1 

LR with D1 and D2 (Parameters 

and Hyperparameters (L1, L2, 

C, epochs)) 

2 
ES2 

kNN with D1 and D2 

(Parameters and 

Hyperparameters (k, distance 

metric, KD-tree, Ball-tree, and 

Voting method) 

3 
ES3 

SVM with C, degree, and 

different kernel 

4 
ES4 

DT, RF, Bagging with DT, 

Bagging with RF and Bagging 

with SVM 

5 ES5 

AdaBoost with DT, AdaBoost 

with RF and AdaBoost with 

SVM 
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It automatically selects the most relevant features, leading 

to improved performance. On the other hand, LR-L2 

outperformed LR-L1 in the case of Ds2 because, in Ds2, all 

features are considered relevant. This indicates that ridge 

regularization is useful when all features are relevant or when 

multicollinearity is present. Figure 3 depicts the analysis of 

accuracy results obtained from the Ds1 and Ds2 datasets, 

considering the variation in epochs. The aim was to observe 

how different epoch values influenced the accuracy of the 

applied models. The findings revealed only minor variations 

across the range of epochs. 

For ES2, the selection of the value of k was initially 

performed using cross-validation and the square root method. 

Figure 4 depicts the selection of k based on the accuracy 

obtained during epochs, considering the Ds1 and Ds2 datasets. 

The results indicate that the highest accuracy was achieved 

within the range of k (4-7) for Ds1, while for Ds2, the highest 

accuracy was attained within the range of k (8-11). Since both 

ranges yielded the same best score, a smaller value for k was 

chosen after carefully examining the individual accuracies. 

This decision was made because higher values of k may 

involve the inclusion of data points that are farther away from 

the original. Consequently, for Ds1, k = 5 was selected, and 

for Ds2, k = 8 was chosen.  

To improve the efficiency of the kNN algorithms by 

hierarchically organizing the data points, the KD tree data 

structure was employed. This structure allows for faster search 

times for the nearest neighbors. Additionally, the Ball tree data 

structure was utilized for optimizing the kNN algorithms. 

Subsequently, a voting method was applied to reduce bias and 

variance, with distance-based voting being considered for this 

purpose. This selection is referred to as the optimized version 

of kNN, denoted as kNNO.  

Further assessment was conducted based on kNNO. 

Figure 5 presents the results of precision, recall, specificity, 

F1-score, and accuracy metrics considering different 

variations of kNN with the Ds1 and Ds2 datasets. kNNO-ED 

outperforms all other variations with an average accuracy of 

90% for D1 and 91% for D2. The combination of the ED or 

MD metrics with the kNN algorithm has demonstrated a 

substantial improvement in accuracy. In contrast, when kNN 

is combined with the PC coefficient, the achieved results are 

less significant compared to the ED or MD. These findings 

suggest that utilizing either the ED or MD metrics in 

conjunction with the kNN algorithm leads to more substantial 

enhancements in accuracy, while the PC coefficient does not 

yield the same level of improvement.  

For ES3, in the case of SVM, parameter combinations and 

hyperparameter tuning were performed considering various 

factors. Given that the dataset has been thoroughly cleaned 

and preprocessed, a higher value of C was chosen to prioritize 

the accurate classification of the training set.  In the first case, 

SVMO1, the SVM model with the RBFK was employed. The 

RBFK is effective in capturing complex, non-linear 

relationships within the data. The decision boundary was 

constructed using Gaussian functions. The choice of gamma 

value is crucial, as a higher gamma makes the decision 

boundary more focused on individual training examples, 

which can potentially lead to overfitting. Conversely, a lower 

gamma value results in a smoother decision boundary that 

may generalize better. 

 Therefore, the selection of the optimal gamma value is 

crucial. In the second case, SVMO2, the degree parameter was 

considered in combination with the PK. The degree parameter 

controls the flexibility of the decision boundary and 

determines the complexity of the polynomial function used to 

transform the data. A higher degree allows for more complex 

decision boundaries, but it also increases the risk of 

overfitting. Finally, SVMO3 represents the combination of 

optimal parameter values obtained through the combined 

approach. Figure 6 shows the results of precision, recall, 

specificity, F1-score, and accuracy metrics considering SVM 

variations considering the Ds1 and Ds2 datasets. The average 

accuracy achieved from the final selection, SVMO3, is 91% 

for Ds1 and 93% for Ds2. 

For ES4, the parameters considered are MD, MSS and 

MSL. The MD of a DT and RF limits the number of splits and 

controls the complexity of the tree. MSS establishes the 

minimum number of samples necessary to split an internal 

node. Raising this value can help prevent overfitting by 

ensuring an internal node has enough samples before it is split, 

but it might lead to a more generalized tree.  

MSL, on the other hand, signifies the minimum number 

of samples that must be present in a leaf node. Setting a higher 

value for MSL can help prevent overfitting by ensuring that 

each leaf contains enough samples. By enforcing this 

constraint, the model avoids creating leaf nodes with very few 

samples, which could lead to capturing noise or outliers in the 

data. It encourages the model to make more generalized splits, 

resulting in a simpler and less complex tree structure.  

To determine the optimal range of sub-models, we created 

bagging ensemble models for each base learner, with a varying 

number of component sub-models. Specifically, we generated 

bagging ensembles with 20 sub-models each, ranging from 10 

to 200 sub-models in increments of 10. To identify the best 

structures, we examined the correlation coefficient values 

between the sub-models within each ensemble. High 

correlation coefficients indicated strong agreement among the 

sub-models and were used as a criterion for selecting the best 

structures.  

By analysing these correlation coefficients, we were able 

to identify the optimal range of sub-models for each base 

learner. Figure 7 shows the R2 score result for ensemble 
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models predicting compressive strength using different sub-

models (Bagging with DT, Bagging with RF and Bagging with 

SVM). As depicted in Figure 7, the ensemble model utilizing 

DT outperforms other boosting models.  

Notably, the ensemble model demonstrates strong 

performance with values exceeding 0.70, indicating 

favourable results. Figure 8 presents the results of precision, 

recall, specificity, F1-score, and accuracy metrics for different 

bagging variations, considering the D1 and D2 datasets. 

Bagging with DT achieves the highest average accuracy, 

reaching 94% for Ds1 and 96% for Ds2, showcasing its 

superior performance in both cases. For ES5, the 

implementation of AdaBoost with DT, AdaBoost with RF, 

and AdaBoost with SVM was considered. Figure 9 illustrates 

the performance of the ensemble models using Adaboost, with 

a particular focus on the R2 metric for prediction accuracy.  

The ensemble model combining Adaboost with DT 

outperforms the other boosting models, yielding a high R2 

value. Notably, the ensemble model demonstrates strong 

performance with values exceeding 0.72, indicating 

favourable results. Figure 10 showcases the comprehensive 

results of precision, recall, specificity, F1-score, and accuracy 

metrics for various bagging variations, considering the Ds1 

and Ds2 datasets.  Boosting with DT exhibits remarkable 

performance, achieving the highest average accuracy of 95% 

for Ds1 and 96% for Ds2. These results highlight the 

superiority of the ensemble model employing boosting with 

DT, indicating its effectiveness in both cases.  

Figure 11 depicts the accuracy of the Ds1 and Ds2 

datasets in evaluating the impact and average impact of 

different split ratios. The aim was to investigate how varying 

split ratios, such as 70:30, 75:25, and 80:20, affected the 

accuracy of the applied models and determine their average 

impact. The observed differences in the split ratios were 

negligible, suggesting that any of the examined split ratios can 

be selected without causing a significant impact on the results. 

The Receiver Operating Characteristic (ROC) curve serves as 

a visual depiction of a classifier's efficacy across diverse 

discrimination thresholds, offering insights into the trade-offs 

between sensitivity and false positive rates. In contrast, the 

Area Under the Curve (AUC) is a singular numerical metric 

encapsulating the classifier's overall performance. This scalar 

value ranges from 0 to 1, with 0.5 denoting a classifier akin to 

random chance and 1 indicating perfection. The ROC curve 

materializes by plotting sensitivity against the false positive 

rate across distinct threshold settings. As illustrated in Figure 

12, it becomes apparent that the AUC values for the ROC 

curves of RF surpass those of LR, kNN, SVM and DT in the 

case of Ds1. Notably, the RF exhibits superiority across all 

assessed metrics. This suggests that the RF model outperforms 

others. The consistently higher AUC values for RF indicate its 

robust performance in achieving a balanced trade-off between 

sensitivity and specificity across diverse classification 

thresholds. RF's proficiency in capturing complex 

relationships and handling intricate data patterns contributes 

to its superior discrimination ability.  

In the case of Ds2, it is indicated that SVM outperforms 

LR, kNN, DT, and RF when it comes to multi-class 

classification (Figure 13). The superior performance of SVM 

in Ds2's multi-class classification scenario is due to handling 

cdecision boundaries and intricate relationships within the 

data effectively. SVM excels in finding optimal hyperplanes 

that separate different classes, making it particularly robust 

when dealing with diverse and overlapping class distributions. 

The data was divided into ten segments to align with the 

tenfold cross-validation approach. Cross-validation assesses 

each method's performance on simulated data. The mean 

cross-validation score, computed by averaging results across 

the ten folds, is presented in Tables 2 and 3. The outcomes 

highlight the superior performance of both RF and DT over all 

other algorithms. 

 

 
Fig. 2 The performance metrics (Precision, Sensitivity, Specificity, F1-Score, and Accuracy) were evaluated for both the Ds1 and Ds2 datasets in the 

case of LR 
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Fig. 3 Accuracy obtained from the Ds1 and Ds2 datasets was examined, considering the variation in epochs 

 
Fig. 4 Selection of k based on the accuracy obtained on epochs, considering the Ds1 and Ds2 datasets 

 
Fig. 5 The performance measures (Precision, Sensitivity, Specificity, F1-Score, and Accuracy) for various kNN variations were evaluated using 

the Ds1 and Ds2 datasets 
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Fig. 6 The performance metrics (Precision, Sensitivity, Specificity, F1-Score, and Accuracy) for different variants of SVM utilizing Ds1 and Ds2 

datasets.  

 

Fig. 7 R2 score measure for ensemble models predicting compressive strength using different sub-models (DT, RF, Bagging with DT, Bagging 

with RF and Bagging with SVM) 
 

 
Fig. 8 The performance measures (Precision, Sensitivity, Specificity, F1-Score, and Accuracy) for bagging variations utilizing the Ds1 and Ds2 

datasets. 
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Fig. 9 R2 score measure for ensemble models predicting compressive strength using different sub-models (AdaBoost with DT, AdaBoost with RF and 

AdaBoost with SVM) 

 
Fig. 10 The performance measures (Precision, Sensitivity, Specificity, F1-Score, and Accuracy) for different boosting variations were evaluated using 

the Ds1 and Ds2 datasets 

 
Fig. 11 Accuracy of the Ds1 and Ds2 datasets to assess the impact and average impact of varying split ratios 
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(a) 

 
(b) 

 

 
(c) 

 
(d)

 
(e) 

Fig. 12 ROC curve for (a) LR, (b) kNN, (c) SVM, (d) DT and (e) RF classifier on Ds1 dataset 
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(e) 

Fig. 13 ROC curve for (a) LR, (b) kNN, (c) SVM, (d) DT and (e)RF classifier on Ds2 dataset 

Table 2. K-fold cross-validation of the machine learning algorithms with best optimal values in the case of Ds1 (LR, kNN, SVM, DT, RF) 

Algorithms I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 Mean accuracy 

LR 0.88 0.83 0.87 0.85 0.87 0.88 0.86 0.84 0.87 0.89 0.864 

kNN 0.91 0.91 0.9 0.87 0.9 0.91 0.92 0.9 0.89 0.91 0.902 

SVM 0.92 0.93 0.9 0.93 0.9 0.92 0.89 0.92 0.89 0.93 0.913 

DT 0.94 0.93 0.95 0.94 0.92 0.92 0.92 0.94 0.94 0.95 0.935 

RF 0.93 0.94 0.94 0.94 0.92 0.92 0.92 0.94 0.93 0.93 0.931 

I denote the iterations. 

Table 3. K-fold cross-validation of the machine learning algorithms with best optimal values in the case of Ds2 (LR, kNN, SVM, DT, RF) 

Algorithms I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 Mean accuracy 

LR 0.93 0.92 0.93 0.92 0.91 0.93 0.93 0.93 0.91 0.93 0.924 

kNN 0.94 0.96 0.94 0.94 0.95 0.95 0.94 0.96 0.95 0.95 0.948 

SVM 0.96 0.95 0.95 0.95 0.96 0.95 0.97 0.96 0.95 0.95 0.955 

DT 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.96 0.96 0.96 0.964 

RF 0.98 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.968 

I denote the iterations. 

5. Limitations and Future Scope 
1. The sample size of the Ds1, consisting of limited 

participants, may raise concerns about its 

representativeness. The predominance of male 

participants, approximately 80%, and the low percentage 

of unidentified gender (less than 1%) could potentially 

introduce biases in the results. Additionally, the dataset's 

composition, collected over multiple years, may pose 

challenges in maintaining consistency across different 

temporal contexts. The Ds2 dataset's regional focus may 

limit the generalizability of findings to a broader 

population.  

2. Variability in mental health conditions and symptom 

presentation across diverse populations can affect the 

generalizability of algorithm effectiveness. The 

sensitivity of algorithms to the specific characteristics of 

mental health data introduces uncertainty in their relative 

effectiveness. 

3. This study utilized a combined approach to determine the 
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optimal parameter values for the models. However, 

alternative parameter optimization processes can also be 

employed. Future research can consider alternative 

optimization techniques, such as grid search or Bayesian 

optimization, to enhance model performance and 

reproducibility. 

4. While this study emphasizes predictive accuracy, it is 

equally important to consider the interpretability of the 

models. Alongside predictive accuracy, future studies can 

focus on the interpretability of models. Techniques such 

as feature importance ranking, model explanations, or 

decision rules can be employed to understand the factors 

driving predictions, thereby increasing the transparency 

and trustworthiness of the models. 

 

6. Conclusion  
In this study, a variety of machine learning algorithms 

(LR, kNN, SVM, DT, RF) were individually employed with 

different variable parameters. Additionally, bagging and 

boosting techniques were utilized with DT, RF, and SVM for 

mental health assessment. Two distinct datasets were utilized 

to evaluate the algorithms' performance, and the results 

revealed varying levels of effectiveness among them. LR-OT 

achieved high accuracy, considering different performance 

measures, highlighting its suitability for mental health 

assessment.  

Among the different variations of kNN, the version with 

optimized parameters and ED outperformed the others. SVM 

with the RBFK and optimal parameter values demonstrated 

the best performance among all SVM variations. RF and DT 

with bagging and boosting techniques showcased remarkable 

results, surpassing other algorithms in terms of R2 score and 

accuracy. Boosting with DT exhibited remarkable 

performance, achieving the highest average accuracy of 95% 

for Ds1 and 96% for Ds2.  

These findings emphasize the significance of ensemble 

methods in enhancing the accuracy and predictive power of 

mental health assessment models. The research outcomes 

provide valuable insights for leveraging machine learning 

algorithms to gain a deeper understanding of mental health 

assessment models and facilitate effective interventions across 

various domains, including the tech industry.The limited size 

of the datasets, particularly in certain mental health categories, 

introduces a level of uncertainty in the findings. Emphasizing 

the need for more rigorous evaluation and validation in future 

studies is crucial.  

A larger and more diverse sample size would enhance the 

reliability and generalizability of the results. Future research 

can prioritize datasets that encompass a broader spectrum of 

mental health conditions, ensuring a comprehensive 

representation of the population. It is imperative to emphasize 

the necessity for exploring and testing other ensemble 

methods and deep learning techniques in future studies. 
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