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Abstract - Hoarseness speech detection through machine learning has been discussed quite extensively. However, not many
people are trying to apply with different datasets and identify the type of algorithm that would be able to produce high accuracy,
with the appropriate precision, recall, and F1-score. Two types of datasets are used in this study, including the Kaggle Speech
dataset and the Saarbrucken Voice Dataset (SVD). The disadvantages of the Mel Frequency Cepstral Coefficient that affect the
accuracy rate are overcome by using feature selection techniques, pitch features, and the selection of appropriate coefficients.
From this technique, the accuracy rate has increased, especially using the selection of different coefficient parameters and the
feature selection technique. Through this study, the increase in accuracy and increased performance metrics show the advantages

of machine learning techniques in identifying hoarse and normal voices, especially in cancer patients.

Keywords - Speech hoarseness, Normal, Hoarse speech, Ant colony optimization, Long short-term memory, Feature selection,

Feature vector.

1. Introduction

Hoarseness often manifests as a change in voice quality,
including breathiness, roughness, or strain, which introduces
variability in the spectral structure of the speech signal. Mel-
Frequency Cepstral Coefficients (MFCCs) are consistently
highlighted as a crucial and widely utilized feature extraction
technique in the field of voice analysis, particularly for voice
pathology detection and speech recognition. However, the
sources also implicitly and explicitly point toward areas where

MFCCs might have limitations or require further
consideration.
The final consideration is that the algorithm's

implementation could not be strong enough [1], and this study
started to conduct a more detailed study to produce more
significant and fulfilling results. Patients' prognosis and
quality of life can be greatly enhanced by improving laryngeal
cancer diagnosis and therapy. There is potential for Artificial
Intelligence (AI) technology to be a useful diagnostic tool for
laryngeal cancer. However, obtaining accuracy and efficiency
in Al-based diagnosis offers obstacles since laryngeal cancer
lesions are hidden and heterogeneous [2]. The usage of
machine learning algorithms may well improve the finding
and justification of laryngeal cancer that contributes to speech
hoarseness (Kim H et. al(2020) [3]; Marrero-Gonzalez et. al

(2025)) [4]. The study [5] reveals that detection accuracy is
significantly influenced by the MFCC frame length, with a
longer frame length of 500 ms yielding the best results in their
experiments. The paper details the standard MFCC extraction
process and notes that MFCCs are also part of larger feature
sets. This study directly addresses a lack of systematic
investigation into the effect of a basic MFCC attribute, like
frame length, in voice pathology detection.

As in Table 1, previous research shows that longer frame
lengths can enhance the laryngeal pathology detection by
providing more data using frame-to-frame analysis. Overall,
spectral shapes, incorporated with feature selection of speech
signals, may be helpful with feature extraction to improve the
final results of classification and find the best technique to be
used in detecting speech hoarseness. The MFCCs may capture
similar sound patterns for different types of voice disorders,
making it difficult to classify them accurately. MFCCs have
weaknesses in low-frequency analysis, which can be
important for capturing certain aspects of hoarseness. Below
are some preliminary analyses by three researchers that
utilizing MFCC with a comparison of a few techniques of
classification focusing on speech hoarseness. The results are
quite convincing, but in-depth studies are needed to present an
optimizing robust algorithm in identifying speech hoarseness.
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Table 1. Analysis of feature extraction and classification for speech hoarseness

Feature Leite et al. (2022) [6] Islam et al. (2022) [7] Narendra & Alku (2020) [8]
Analyzed 435 samples (/e/ vowel)
from dysphonic (384) and non- Saarbriicken Voice Database (SVD).
Dataset Used dysphonic (51) individuals. Binary: 150 control, 65 pathological Not explicitly stated in the
Categorization based on laryngeal (/a/ vowel). Multiclass: subset of provided text for review.
examination and perceptual pathological samples.
judgment.
Extracted 34 acoustic measures. Explored glottal source
Feature Used variance threshold for Raw EGG and speech signals were features (QCP, ZFF, direct
Extraction selection, resulting in 15 features used directly as input to CNNs acoustic) and openSMILE
(PA, HNR, CPP, CPPs, SFR, PM, (avoiding explicit extraction). features. Compared to MFCC
ENTR, RPDE). and PLP.
Compared 10 supervised ML
classifiers (RF, NB, SVM, Proposed a dual cascaded CNN Used SVM and deep learning
Classification | MLPC, DT, GBC, KNN, SGDC, system (CNN-1 for binary, CNN-2 networks (CNN+MLP,
Methods ETC, LR) with k-fold cross- for multiclass) with 5-fold cross- CNN+LSTM) for
validation and Bayesian validation. classification.
optimization.
NB and SGDC performed best on . . Glottal source features
: Binary: Speech signals better than
15 acoustic features (SGDC: EGG. Multiclass: EGG wenerally has comparable or better than
L Accuracy 0.91, Kappa 0.57; NB: ' BV 8 Y MFCC/PLP with SVM. Raw
Key Findings better F1 for laryngitis and polyps .
Accuracy 0.76, Kappa 0.45). . . glottal flow improved the
. (accuracy 88.67%). Aimed for low . .
Variance threshold found useful . accuracy in deep learning
. computational burden.
for feature selection. models.
Acoustic (implied for glottal
. . flow and comparison to
Signal Acoustic (sustained /e/ vowel) Electrgglottographp (EGG) and MFCC/PLP), likely glottal
Type(s) Used speech signals (sustained /a/ vowel). . .
source signals, and possibly
others for openSMILE.
Voice Binary (pathological vs. healthy) and G'e nera} voice classlﬁcatlon
. . . : . 4 (likely including disordered
Disorder General dysphonia detection. specific disorders (dysphonia, . .
Focus laryngitis, vocal fold polyps) voices based on the context in
’ ) Islam et al.).

The above Table 1 summarized those studies that explore
different approaches to voice disorder detection, utilizing
various signal types (acoustic, EGG, glottal source), feature
extraction techniques (explicit acoustic features, direct signal
input, glottal source parameters), and classification methods
(traditional machine learning and deep learning). The findings
highlight the potential of different feature sets and classifiers
for achieving accurate and efficient voice disorder detection.

From Leite et. al [6], the classification process that took
place; compared 10 supervised machine learning classifiers:
Random Forest (RF), Naive Bayes (NB), Support Vector
Machines (SVM), Multilayer Perceptron Classifier (MLPC),
Decision Tree (DT), Gradient Boosting Classifier (GBC), K-
Nearest Neighbor (KNN), Stochastic Gradient Descent
Classifier (SGDC), Extra-Tree Classifier (ETC), and Logistic
Regression (LR). Used k-fold cross-validation for training and
testing. Bayesian optimization was used to efficiently tune the
parameters for each model, ensuring the best configuration
was found before training. And for the results acquired for the
Naive Bayes (NB) and Stochastic Gradient Descent Classifier
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(SGDC) performed best on the reduced dataset of 15 acoustic
measures. SGDC achieved an accuracy of 0.91 and a Kappa
of 0.57, while NB achieved an accuracy of 0.76 and a Kappa
of 0.45. Only NB and SGDC met the eligibility criteria
(accuracy, sensitivity, specificity, and F1-Score > 0.70, and
Kappa > 0.40) with variance thresholds of 0.020, 0.025, and
0.030. The study concluded that the variance threshold is
useful for automatic feature selection and reduction.

The researcher in [8] explored glottal source features
(using QCP, ZFF, and directly from acoustic signals) and
openSMILE features and used SVM and deep learning
networks (CNN+MLP, CNN+LSTM) for classification. The
glottal source features are comparable to or better than MFCC
and PLP with SVM, and glottal flow as raw input improved
accuracy in deep learning models. The study on MFCC frame
length focuses on task-specific optimization [5, 9] and clearly
demonstrates that the default parameters of MFCC extraction
might not be optimal for all tasks. The best frame length for
voice pathology detection (500 ms in their study) differed
significantly from the typical shorter frame lengths used in
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Automatic Speech Recognition (ASR). This highlights the
deficiency in the MFCC that it is a universal, one-size-fits-all
approach to MFCC parameterization. While MFCCs
effectively capture spectral envelope information related to
the vocal tract, the research proposing a hybrid model [10]
suggests that relying solely on MFCCs might not be sufficient
for achieving the highest accuracy in complex tasks like
discerning various voice disorders. The integration of features
like fundamental frequency (related to vocal fold vibration)
and spectral centroid (related to spectral energy distribution)
provides a more comprehensive view of vocal quality,
indicating a potential lack in MFCCs when used in isolation
for nuanced pathological voice analysis. The review paper
[11] points out that the interaction between MFCC features
can lead to redundancy, potentially increasing computational
cost without necessarily adding significant discriminative
information. This implies a deficiency in the raw MFCC
output regarding inherent feature selection or optimization for

efficiency, necessitating additional feature selection
techniques.
2. Methodology

Throughout these findings, the algorithm used for this
research has tried to overcome the shortcomings that exist in
MFCC by integrating different coefficient settings, feature
selection techniques, including ACO and CNN or SVM
algorithms, to prove which enhancement of the algorithm. Can
produce robust results compared to previous researchers.

Some researchers utilize feature selection methods to
optimize the accuracy for speech hoarseness detection. This
study has already selected different classification algorithms
and 2 sets of datasets (the Saarbrucken voice dataset and the
Kaggle Dataset on hoarseness and normal dataset), to identify
the variety of performance analysis, including accuracies, F1-
score, and recall.

Speech Processing Flowchart

L

S
¢

Fig. 1 Speech processing flow chart

Figure 1 depicts several types of algorithms involved
from the beginning of recognising sound types involving
hoarse sounds and normal sounds. In the feature extraction
phase, Mel Frequency Cepstral Coefficients (MFCC) were
used. During this study, two datasets were used, namely the
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Saarbrucken Voice Dataset (SVD) and the Kaggle Patient
Dataset. This dataset is used on each of the specified
algorithms. MFCC is an algorithm that has been identified as
the best algorithm for feature extraction in the field of voice
recognition. The MFCC process involves the speech data in
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the range of 20-40ms, and the MFCC algorithm process
involves framing, windowing, Discrete Fourier Transform
(DFT) or Fast Fourier Transform (FFT) that is applied for each
frame to convert the signal from the time domain to the
frequency domain. The deficient addressed in MFCC has been
tried to overcome by integrating different feature techniques
in improving the final result with a few types of classification.
The format frequencies, pitch variation, and feature selection
with parameter tuning on selected coefficients have been used
in this study to get improved and robust results of speech
hoarseness detection. The frequency spectrum is processed
using Mel's filter bank. The bank consists of a triangular filter
that is more closely spaced at lower frequencies, reflecting the
nonlinear frequency perception of the human auditory system
and the magnitude of the filtered spectrum is converted to a
logarithmic scale. Discrete Cosine Transformation (DCT) [12-
14] is used on the log-mail spectrum to further compress the
information and produce the MFCC coefficient, which will be
used in conjunction with the classification algorithm, namely
Long Short Term Memory (LSTM) and Support Vector
Machine (SVM) [15]. For this classification stage, this voice
dataset has been tested with the Ant Colony Optimization
(ACO) algorithm to identify the advantages of using this
feature selection technique. At the initial stage of the
algorithm, the ants are placed at the starting point (e.g., the
nest) and start looking for the best route at random. Each ant
builds a path by choosing the next node to wvisit
probabilistically, considering the level of pheromones and
other heuristic information. Once the route is complete, the
ants deposit pheromones on the route they take. The number
of pheromones deposited depends on the quality of the
pathway (e.g., shorter pathways receive more pheromones).
Over time, the pheromones in the pathway evaporate,
encouraging the ant to explore other options. This process is
repetitive, with the ants following the traces of stronger
pheromones, which leads to better identification of pathways
over time.

For the classification process, two types of algorithms are
used, namely Long Short Term Memory Algorithm (LSTM),
the same technique used [16, 17], and Support Vector
Machine (SVM). LSTMs receive sequential data, such as
word sequences, time series data, or audio. The input data,
along with the hidden state and the previous state of the cell,
is fed into the LSTM unit. The gate selectively controls the
flow of information, storing, updating and retrieving
information from memory cells. LSTM units generate new
hidden states based on current inputs, previous hidden states,
and cell states. The hidden state is then used as the output for
the current time step, and the LSTM unit moves to process the
next input. The researchers utilize an LSTM network, a type
of recurrent neural network, to analyze the combined feature
sets and effectively classify voice pathologies [18]. For
Support Vector Machines (SVMs), SVMs are trained on
labeled data, meaning they learn from instances where the
desired output is already known. Although known primarily
for classification, SVM can also be used for regression tasks
by modifying objective functions. In a multidimensional
characteristic space, the boundaries of results between classes
are represented by hyperplanes. SVM focuses on finding
hyperplanes that maximize margins, which provide wider
separation between classes and are less sensitive to noise [19,
20]. The experiments also involved two types of datasets,
which are known as the Saarbrucken Voice Dataset(SVD) and
the Kaggle Patient Speech Dataset. The coefficients selected
involved 1 to 13 coefficients, and another involved 13 to 20
coefficients.

3. Results and Discussion

Based on the sources provided, the results pertain to
different methods and datasets used for detecting speech
hoarseness. The performance is evaluated using metrics such
as Accuracy, Precision, Recall, and F1-Score. Different
combinations of features and classifiers are tested, as in Table
2 below:

Table 2. Algorithms used for feature extraction, feature selection and pattern classification

a) MFCC (Mel-Frequency Cepstral Coefficients) combined with Pitch and SVM (Support Vector Machine).
b) MFCC (Mel-Frequency Cepstral Coefficients) combined with Pitch and SVM (Support Vector Machine).
¢) MFCC is only combined with SVM.
d) MFCC coefficients (specifically 1-13 or 13-39) combined with SVM.
¢) MFCC combined with ACO (Ant Colony Optimization) for feature selection and SVM.
f)  MFCC combined with LSTM (Long Short-Term Memory) and SVM.
Table 3. Results for MFCC and SVM-based methods (without ACO or LSTM)
Method Accuracy (%) F1-Score (%) Recall (%) Precision (%)
MFCC + Pitch + SVM (SVD) 66.67 66 66 66
MFCC + SVM only (SVD) 66.67 62 62 62
MFCC + SVM (Kaggle Dataset) 87.50 47 50 44

By using the SVD dataset, with  MFCC and Pitch for the
feature extraction, SVM achieved 66.67% accuracy, 66% F1-
Score, 66% Recall, and 66% Precision. MFCC and SVM also
achieved 66.67% Accuracy, with 62% F1-score, 62% Recall,
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and 62% Precision. Specifically using MFCC coefficients 1-
13 with SVM, the SVD dataset showed 66.67% accuracy, 0.62
precision, 0.62 recall, and 0.62 F1-Score. Using MFCC
coefficients 13-39 with SVM, the SVD dataset achieved
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100.00% Accuracy, 1.00 Precision, 1.00 Recall, and 1.00 F1-
Score. This indicates a perfect score across all metrics for this
specific configuration on the SVD dataset, as depicted in
Table 3.

With the Kaggle Dataset analysis utilizing MFCC and
SVM, achieved 87.50% Accuracy, with a 47% F1-Score, 50%
Recall, and 44% Precision. For MFCC coefficients selected
1 to 13 with SVM, the Kaggle dataset showed 87.50%
Accuracy, 0.44 Precision, 0.50 Recall, and 0.47 F1-Score.
With 13-39 coefficients, 13-39 with MFCC and SVM, the
Kaggle dataset showed 87.50% Accuracy, but 0.00 Precision,
0.00 Recall, and 0.00 Fl-score. Despite high accuracy, the
zero values for Precision, Recall, and F1-Score suggest
potential issues, such as an imbalanced dataset where the
model predicts the majority class correctly most of the time
but fails to identify instances of the minority class.

For results for MFCC and ACO with SVM (Kaggle
dataset), these models used 10 iterations of ACO for feature
selection and 5-fold cross-validation for SVM evaluation;
whereby Model 1 (using ACO-selected features from MFCC
1-13) achieved 86.96% Accuracy. However, Precision,
Recall, and F1-Score were reported as 0.00. Model 2 (using
ACO-selected features from MFCC 13-39) achieved 86.96%
Accuracy, but Precision, Recall, and Fl-score were not
reported.

For the Kaggle dataset utilizing MFCC, LSTM and SVM
with 13 coefficients, training logs show Mini-batch Accuracy
reaching 87.50% and validation accuracy consistently around
85.16% across different iterations. Validation loss stabilizes
around 0.42-0.43. For the SVD dataset using 13 coefficients,
training logs show Mini-batch Accuracy reaching 70.83% and
validation accuracy reaching 66.67%. Validation loss
stabilizes around 0.69. On the SVD dataset, using MFCC
coefficients 13-39 with SVM achieved perfect scores (100%
Accuracy, 1.00 Precision, 1.00 Recall, 1.00 F1-Score), which

is a very strong result. However, other methods and coefficient
ranges on SVD yielded lower performance, around 66%
Accuracy. On the Kaggle dataset, SVM-based methods
generally showed higher Accuracy (around 87%) compared to
SVD, but often had very low or zero values for Precision,
Recall, and F1-score, especially when using MFCC 13-39 or
with ACO feature selection. This discrepancy between high
accuracy and low other metrics on the Kaggle dataset suggests
the model might be biased towards predicting one class,
performing poorly at identifying instances of the other class.
The LSTM model on the Kaggle dataset showed a validation
accuracy of about 85.16%, while on the SVD dataset, it
showed about 66.67%.

The results highlight that the choice of dataset, the range
of MFCC coefficients used, and the specific method (SVM,
SVM and Pitch, SVM+ACO, LSTM+SVM) significantly
impact the performance metrics. The stark difference in results
between using MFCC 1-13 and 13-39 on the Kaggle and SVD
datasets is particularly notable, suggesting that the higher-
order coefficients (13-39) might not be suitable for this dataset
with a simple SVM classifier. Therefore, suggested that the
dataset used may affect the final classification with the
selection of coefficients of the features. Both models used 10
iterations of ACO and a 5-fold cross-validation for final SVM
evaluation.

In summary, the results table and logs present
performance figures for various machine learning models and
feature sets applied to two different datasets for speech
hoarseness detection, as shown in Figures 2 to 5. The metrics
indicate varying levels of success depending on the specific
combination used. Despite high accuracy, the extremely
low/zero Precision, Recall, and Fl-scores on the Kaggle
dataset for certain configurations point to potential issues in
the model's ability to correctly classify all instances, possibly
due to dataset characteristics like class imbalance, as depicted
in Table 4.

Performance Trend of SVM-Based Models
—4—MFCC+Pitch+SVM (SVD)  ==MFCC+SVM Only (SVD) MFCC+SVM (Kaggle)
250 875
200 66 66 66
&\C’/
2 150 66.67
%" B— 62 62 62
S 100 5667 = = —
(0] .
50 — =C—= ¢ J—
0 T T T 1
Accuracy F1-Score Recall Precision

Fig. 2 Performance for SVM-based models and SVD
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Dataset MFCC Coefficients Accuracy Precision Recall F1-Score
SVD 1-13 66.67% 0.62 0.62 0.62
Kaggle 1-13 87.50% 0.44 0.50 0.47
SVD 13-39 100.00% 1.00 1.00 1.00
Kaggle 13-39 87.50% 0.00 0.00 0.00
Fig. 3 Comparison between SVD and Kaggle dataset perfomance
Performance Comparison: MFCC(13-39) + SVM (SVD vs Kaggle)
=¢—MFCC(13-39) + SVM (SVD, no ACO) =@l—-MFCC(13-39)+SVM (Kaggle, no ACO)
120
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s 60
: N\
5 40
o \
20
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Accuracy F1-Score Recall Precision
Fig. 4 Performance comparison for 13 to 39 coefficients without ACO selected features (SVD vs Kaggle dataset)
Table 4. Performance comparison for different coefficients with ACO selected features (SVD vs Kaggle dataset)
MFCC Accuracy .. F1-
Model Coefficients ACO-Selected Features (%) Precision | Recall Score
MFCC + ACO + SVM (Model 1) 1-13 [91112254361 13] 86.96 0.00 0.00 0.00
MFCC + ACO + SVM (Model 2) 13-39 [118261472185319] 86.96 — — —
Performance Comparison: MFCC + SVM + ACO Models
1001 I MFCC(13-39) 1 SVM (SVD, no ACO)
[ MFCC(13-39) | SVM (Kaggle, no ACO)
I MECC-13)+ACO = SVM (Kagglc)
90 I (13-39)+ACO + SVM (Kaggle)
801
70+
S 60F
o
&
£ 50
5]
5 40}
2
30r
20
10+
O | L \. -
Accuracy F1-Score Recall Precision

Fig. 5§ MFCC, MFCC-ACO and SVM (for Kaggle and SVD dataset)
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Table 5. MFCC, LSTM and SVM (Kaggle dataset) 13 coefficients

Epoch | Iteration Time Elapsed Mini-batch Validation Mini- Validation | Learning
(hh:mm:ss) Accuracy Accuracy batch Loss Loss Rate
1 1 00:00:16 90.62% 85.16% 0.6360 0.6122 0.0010
7 50 00:00:21 84.38% 85.16% 0.4554 0.4270 0.0010
13 100 00:00:23 89.06% 85.16% 0.3369 0.4266 0.0010
19 150 00:00:25 87.50% 85.16% 0.3792 0.4260 0.0010
20 160 00:00:25 84.38% 85.16% 0.4326 0.4279 0.0010
Table 6. MFCC + LSTM + SVM (SVD dataset) 13 coefficients
Epoch | Iteration Time Elapsed Mini-batch Validation Mini- Validation | Learning
(hh:mm:ss) Accuracy Accuracy batch Loss Loss Rate
1 1 00:00:08 47.92% 41.67% 0.6980 0.6931 0.0010
20 20 00:00:11 70.83% 66.67% 0.6623 0.6905 0.0010

The performance of the models varied significantly
between the Saarbrucken Voice Dataset and the Kaggle
Patient Speech Dataset, as shown in Tables 4 and 5. For the
initial MFCC (1-13 coefficients) with SVM, the Kaggle
dataset yielded much higher accuracy (87.50%) compared to
the Saarbrucken dataset (66.67%). This suggests that these
datasets might have different characteristics or levels of
complexity regarding the features relevant for the
classification task. However, when using MFCC (13-39
coefficients) with SVM without ACO, the Saarbrucken
dataset achieved perfect classification (100% accuracy,
precision, recall, F1-score), while the Kaggle dataset showed
a high accuracy (87.50%). Focusing on different ranges of
MFCC coefficients (1-13 vs. 13-39) substantially impacted
performance.

For the Saarbrucken dataset, using the 13-39 coefficients
resulted in a perfect score, a dramatic improvement over the
1-13 coefficients. This indicates that the higher-order MFCC
coefficients might capture more discriminative information
for this specific dataset. Conversely, for the Kaggle dataset
without ACO, the 13-39 coefficients resulted in a degenerate
classifier (0% precision, recall, F1-score), despite a relatively
high accuracy. This suggests a potential issue with class
imbalance or the features themselves in this higher-order
range for this dataset. Applying the Ant Colony Optimization
(ACO) algorithm for feature selection on the Kaggle dataset
(using both 1-13 and 13-39 coefficients) resulted in similar
accuracy (around 86.96%) across different ACO iterations.
Interestingly, despite the consistent accuracy reported by
ACO, the precision, recall, and F1-score remained at 0.00%
after evaluating the SVM with the selected features.

This strongly suggests that while ACO might have
identified subsets of features that lead to good overall
accuracy, these subsets might be failing to correctly classify at
least one of the classes, leading to the zero values in other
metrics. The selected feature indices also differ between the
two coefficient ranges. The initial epochs of the
MFCC+LSTM+SVM model on a single CPU show promising
training and validation accuracies (around 90% and 85%
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respectively, in the first epoch). The loss values also decrease
as training progresses. This suggests that combining temporal
modeling (LSTM) with spectral features (MFCC) and a
classifier (SVM) could be a viable approach. However, the
training was still in progress, and further epochs would be
needed to assess its ultimate performance. The meaningful
differences in performance between the two datasets show that
understanding the specific characteristics of the data matters.
All these variations could stem from factors such as noise
levels, recording conditions, the distribution of classes, and
the nature of the speech tasks.

The datasets themselves warrant further analysis to
determine more of the perceptions. This is to understand why
certain features and models perform better on one versus the
other. The contrasting results with different MFCC coefficient
ranges suggest that the relevant information for the
classification task might be concentrated in different
frequency bands for the two datasets. The higher-order
coefficients seem crucial for the Saarbrucken dataset, while
for the Kaggle dataset (without ACO), they lead to a
problematic classifier. The Kaggle results with 13-39
coefficients (without ACO) and the ACO-selected features
demonstrate a crucial point: high accuracy alone is not a
sufficient metric for evaluating classifier performance,
especially in cases of potential class imbalance. The 0%
precision, recall, and Fl-score indicate a severe issue in
correctly identifying instances of at least one class. The
consistent accuracy of nearly 87% merits deeper study with
0% precision, recall, and F1-score after ACO feature selection
on the Kaggle dataset. Per its current settings, the ACO
algorithm may consistently select features for a biased
classifier. Alternatively, intrinsic challenges inside the Kaggle
dataset itself might make it difficult to achieve good precision
and recall with these feature sets and the SVM classifier.
Combining different types of models for capturing spectral
and temporal dependencies in speech might be a fruitful
direction, as the initial results of the MFCC+LSTM+SVM
model suggested in the analysis. The complete capacity of this
model is not known yet. Therefore, training must be
continued, and hyperparameters must be fine-tuned.
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4. Conclusion contrasting performance with various feature sets and
In conclusion, this study offers insightful information  selection techniques. The hybrid LSTM-based model's early

about the difficulties and possibilities of classifying speech success points to a promising direction for further study.

data. Careful data exploration and algorithm selection are

crucial, as evidenced by the strong dataset dependency and the Funding
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