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Abstract - Hoarseness speech detection through machine learning has been discussed quite extensively. However, not many 

people are trying to apply with different datasets and identify the type of algorithm that would be able to produce high accuracy, 

with the appropriate precision, recall, and F1-score. Two types of datasets are used in this study, including the Kaggle Speech 

dataset and the Saarbrucken Voice Dataset (SVD). The disadvantages of the Mel Frequency Cepstral Coefficient that affect the 

accuracy rate are overcome by using feature selection techniques, pitch features, and the selection of appropriate coefficients. 

From this technique, the accuracy rate has increased, especially using the selection of different coefficient parameters and the 

feature selection technique. Through this study, the increase in accuracy and increased performance metrics show the advantages 

of machine learning techniques in identifying hoarse and normal voices, especially in cancer patients. 

Keywords - Speech hoarseness, Normal, Hoarse speech, Ant colony optimization, Long short-term memory, Feature selection, 

Feature vector. 

1. Introduction  
Hoarseness often manifests as a change in voice quality, 

including breathiness, roughness, or strain, which introduces 

variability in the spectral structure of the speech signal. Mel-

Frequency Cepstral Coefficients (MFCCs) are consistently 

highlighted as a crucial and widely utilized feature extraction 

technique in the field of voice analysis, particularly for voice 

pathology detection and speech recognition. However, the 

sources also implicitly and explicitly point toward areas where 

MFCCs might have limitations or require further 

consideration.  

The final consideration is that the algorithm's 

implementation could not be strong enough [1], and this study 

started to conduct a more detailed study to produce more 

significant and fulfilling results. Patients' prognosis and 

quality of life can be greatly enhanced by improving laryngeal 

cancer diagnosis and therapy. There is potential for Artificial 

Intelligence (AI) technology to be a useful diagnostic tool for 

laryngeal cancer. However, obtaining accuracy and efficiency 

in AI-based diagnosis offers obstacles since laryngeal cancer 

lesions are hidden and heterogeneous [2]. The usage of 

machine learning algorithms may well improve the finding 

and justification of laryngeal cancer that contributes to speech 

hoarseness (Kim H et. al(2020) [3]; Marrero-Gonzalez et. al 

(2025)) [4]. The study [5] reveals that detection accuracy is 

significantly influenced by the MFCC frame length, with a 

longer frame length of 500 ms yielding the best results in their 

experiments. The paper details the standard MFCC extraction 

process and notes that MFCCs are also part of larger feature 

sets. This study directly addresses a lack of systematic 

investigation into the effect of a basic MFCC attribute, like 

frame length, in voice pathology detection.  

As in Table 1, previous research shows that longer frame 

lengths can enhance the laryngeal pathology detection by 

providing more data using frame-to-frame analysis. Overall, 

spectral shapes, incorporated with feature selection of speech 

signals, may be helpful with feature extraction to improve the 

final results of classification and find the best technique to be 

used in detecting speech hoarseness. The MFCCs may capture 

similar sound patterns for different types of voice disorders, 

making it difficult to classify them accurately. MFCCs have 

weaknesses in low-frequency analysis, which can be 

important for capturing certain aspects of hoarseness. Below 

are some preliminary analyses by three researchers that 

utilizing MFCC with a comparison of a few techniques of 

classification focusing on speech hoarseness. The results are 

quite convincing, but in-depth studies are needed to present an 

optimizing robust algorithm in identifying speech hoarseness.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 1. Analysis of feature extraction and classification for speech hoarseness 

Feature Leite et al. (2022) [6] Islam et al. (2022) [7] Narendra & Alku (2020) [8] 

Dataset Used 

Analyzed 435 samples (/e/ vowel) 

from dysphonic (384) and non-

dysphonic (51) individuals. 

Categorization based on laryngeal 

examination and perceptual 

judgment. 

Saarbrücken Voice Database (SVD). 

Binary: 150 control, 65 pathological 

(/a/ vowel). Multiclass: subset of 

pathological samples. 

Not explicitly stated in the 

provided text for review. 

Feature 

Extraction 

Extracted 34 acoustic measures. 

Used variance threshold for 

selection, resulting in 15 features 

(PA, HNR, CPP, CPPs, SFR, PM, 

ENTR, RPDE). 

Raw EGG and speech signals were 

used directly as input to CNNs 

(avoiding explicit extraction). 

Explored glottal source 

features (QCP, ZFF, direct 

acoustic) and openSMILE 

features. Compared to MFCC 

and PLP. 

Classification 

Methods 

Compared 10 supervised ML 

classifiers (RF, NB, SVM, 

MLPC, DT, GBC, KNN, SGDC, 

ETC, LR) with k-fold cross-

validation and Bayesian 

optimization. 

Proposed a dual cascaded CNN 

system (CNN-1 for binary, CNN-2 

for multiclass) with 5-fold cross-

validation. 

Used SVM and deep learning 

networks (CNN+MLP, 

CNN+LSTM) for 

classification. 

Key Findings 

NB and SGDC performed best on 

15 acoustic features (SGDC: 

Accuracy 0.91, Kappa 0.57; NB: 

Accuracy 0.76, Kappa 0.45). 

Variance threshold found useful 

for feature selection. 

Binary: Speech signals better than 

EGG. Multiclass: EGG generally has 

better F1 for laryngitis and polyps 

(accuracy 88.67%). Aimed for low 

computational burden. 

Glottal source features 

comparable or better than 

MFCC/PLP with SVM. Raw 

glottal flow improved the 

accuracy in deep learning 

models. 

Signal 

Type(s) Used 
Acoustic (sustained /e/ vowel) 

Electroglottographic (EGG) and 

speech signals (sustained /a/ vowel). 

Acoustic (implied for glottal 

flow and comparison to 

MFCC/PLP), likely glottal 

source signals, and possibly 

others for openSMILE. 

Voice 

Disorder 

Focus 

General dysphonia detection. 

Binary (pathological vs. healthy) and 

specific disorders (dysphonia, 

laryngitis, vocal fold polyps). 

General voice classification 

(likely including disordered 

voices based on the context in 

Islam et al.). 

 

The above Table 1 summarized those studies that explore 

different approaches to voice disorder detection, utilizing 

various signal types (acoustic, EGG, glottal source), feature 

extraction techniques (explicit acoustic features, direct signal 

input, glottal source parameters), and classification methods 

(traditional machine learning and deep learning). The findings 

highlight the potential of different feature sets and classifiers 

for achieving accurate and efficient voice disorder detection.  

From Leite et. al [6], the classification process that took 

place; compared 10 supervised machine learning classifiers: 

Random Forest (RF), Naive Bayes (NB), Support Vector 

Machines (SVM), Multilayer Perceptron Classifier (MLPC), 

Decision Tree (DT), Gradient Boosting Classifier (GBC), K-

Nearest Neighbor (KNN), Stochastic Gradient Descent 

Classifier (SGDC), Extra-Tree Classifier (ETC), and Logistic 

Regression (LR). Used k-fold cross-validation for training and 

testing. Bayesian optimization was used to efficiently tune the 

parameters for each model, ensuring the best configuration 

was found before training. And for the results acquired for the 

Naive Bayes (NB) and Stochastic Gradient Descent Classifier 

(SGDC) performed best on the reduced dataset of 15 acoustic 

measures. SGDC achieved an accuracy of 0.91 and a Kappa 

of 0.57, while NB achieved an accuracy of 0.76 and a Kappa 

of 0.45. Only NB and SGDC met the eligibility criteria 

(accuracy, sensitivity, specificity, and F1-Score > 0.70, and 

Kappa > 0.40) with variance thresholds of 0.020, 0.025, and 

0.030. The study concluded that the variance threshold is 

useful for automatic feature selection and reduction.  

The researcher in [8] explored glottal source features 

(using QCP, ZFF, and directly from acoustic signals) and 

openSMILE features and used SVM and deep learning 

networks (CNN+MLP, CNN+LSTM) for classification. The 

glottal source features are comparable to or better than MFCC 

and PLP with SVM, and glottal flow as raw input improved 

accuracy in deep learning models. The study on MFCC frame 

length focuses on task-specific optimization [5, 9] and clearly 

demonstrates that the default parameters of MFCC extraction 

might not be optimal for all tasks. The best frame length for 

voice pathology detection (500 ms in their study) differed 

significantly from the typical shorter frame lengths used in 
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Automatic Speech Recognition (ASR). This highlights the 

deficiency in the MFCC that it is a universal, one-size-fits-all 

approach to MFCC parameterization. While MFCCs 

effectively capture spectral envelope information related to 

the vocal tract, the research proposing a hybrid model [10] 

suggests that relying solely on MFCCs might not be sufficient 

for achieving the highest accuracy in complex tasks like 

discerning various voice disorders. The integration of features 

like fundamental frequency (related to vocal fold vibration) 

and spectral centroid (related to spectral energy distribution) 

provides a more comprehensive view of vocal quality, 

indicating a potential lack in MFCCs when used in isolation 

for nuanced pathological voice analysis. The review paper 

[11] points out that the interaction between MFCC features 

can lead to redundancy, potentially increasing computational 

cost without necessarily adding significant discriminative 

information. This implies a deficiency in the raw MFCC 

output regarding inherent feature selection or optimization for 

efficiency, necessitating additional feature selection 

techniques. 

2. Methodology 
Throughout these findings, the algorithm used for this 

research has tried to overcome the shortcomings that exist in 

MFCC by integrating different coefficient settings, feature 

selection techniques, including ACO and CNN or SVM 

algorithms, to prove which enhancement of the algorithm. Can 

produce robust results compared to previous researchers.  

Some researchers utilize feature selection methods to 

optimize the accuracy for speech hoarseness detection. This 

study has already selected different classification algorithms 

and 2 sets of datasets (the Saarbrucken voice dataset and the 

Kaggle Dataset on hoarseness and normal dataset), to identify 

the variety of performance analysis, including accuracies, F1-

score, and recall. 

 

 
Fig. 1 Speech processing flow chart 

Figure 1 depicts several types of algorithms involved 

from the beginning of recognising sound types involving 

hoarse sounds and normal sounds. In the feature extraction 

phase, Mel Frequency Cepstral Coefficients (MFCC) were 

used. During this study, two datasets were used, namely the 

Saarbrucken Voice Dataset (SVD) and the Kaggle Patient 

Dataset. This dataset is used on each of the specified 

algorithms. MFCC is an algorithm that has been identified as 

the best algorithm for feature extraction in the field of voice 

recognition. The MFCC process involves the speech data in 
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the range of 20-40ms, and the MFCC algorithm process 

involves framing, windowing, Discrete Fourier Transform 

(DFT) or Fast Fourier Transform (FFT) that is applied for each 

frame to convert the signal from the time domain to the 

frequency domain. The deficient addressed in MFCC has been 

tried to overcome by integrating different feature techniques 

in improving the final result with a few types of classification. 

The format frequencies, pitch variation, and feature selection 

with parameter tuning on selected coefficients have been used 

in this study to get improved and robust results of speech 

hoarseness detection. The frequency spectrum is processed 

using Mel's filter bank. The bank consists of a triangular filter 

that is more closely spaced at lower frequencies, reflecting the 

nonlinear frequency perception of the human auditory system 

and the magnitude of the filtered spectrum is converted to a 

logarithmic scale. Discrete Cosine Transformation (DCT) [12-

14] is used on the log-mail spectrum to further compress the 

information and produce the MFCC coefficient, which will be 

used in conjunction with the classification algorithm, namely 

Long Short Term Memory (LSTM) and Support Vector 

Machine (SVM) [15]. For this classification stage, this voice 

dataset has been tested with the Ant Colony Optimization 

(ACO) algorithm to identify the advantages of using this 

feature selection technique. At the initial stage of the 

algorithm, the ants are placed at the starting point (e.g., the 

nest) and start looking for the best route at random. Each ant 

builds a path by choosing the next node to visit 

probabilistically, considering the level of pheromones and 

other heuristic information. Once the route is complete, the 

ants deposit pheromones on the route they take. The number 

of pheromones deposited depends on the quality of the 

pathway (e.g., shorter pathways receive more pheromones). 

Over time, the pheromones in the pathway evaporate, 

encouraging the ant to explore other options. This process is 

repetitive, with the ants following the traces of stronger 

pheromones, which leads to better identification of pathways 

over time.  

For the classification process, two types of algorithms are 

used, namely Long Short Term Memory Algorithm (LSTM), 

the same technique used [16, 17], and Support Vector 

Machine (SVM). LSTMs receive sequential data, such as 

word sequences, time series data, or audio. The input data, 

along with the hidden state and the previous state of the cell, 

is fed into the LSTM unit. The gate selectively controls the 

flow of information, storing, updating and retrieving 

information from memory cells. LSTM units generate new 

hidden states based on current inputs, previous hidden states, 

and cell states. The hidden state is then used as the output for 

the current time step, and the LSTM unit moves to process the 

next input. The researchers utilize an LSTM network, a type 

of recurrent neural network, to analyze the combined feature 

sets and effectively classify voice pathologies [18]. For 

Support Vector Machines (SVMs), SVMs are trained on 

labeled data, meaning they learn from instances where the 

desired output is already known. Although known primarily 

for classification, SVM can also be used for regression tasks 

by modifying objective functions. In a multidimensional 

characteristic space, the boundaries of results between classes 

are represented by hyperplanes. SVM focuses on finding 

hyperplanes that maximize margins, which provide wider 

separation between classes and are less sensitive to noise [19, 

20]. The experiments also involved two types of datasets, 

which are known as the Saarbrucken Voice Dataset(SVD) and 

the Kaggle Patient Speech Dataset. The coefficients selected 

involved 1 to 13 coefficients, and another involved 13 to 20 

coefficients. 

3. Results and Discussion  
Based on the sources provided, the results pertain to 

different methods and datasets used for detecting speech 

hoarseness. The performance is evaluated using metrics such 

as Accuracy, Precision, Recall, and F1-Score. Different 

combinations of features and classifiers are tested, as in Table 

2 below: 

Table 2. Algorithms used for feature extraction, feature selection and pattern classification 

a) MFCC (Mel-Frequency Cepstral Coefficients) combined with Pitch and SVM (Support Vector Machine). 

b) MFCC (Mel-Frequency Cepstral Coefficients) combined with Pitch and SVM (Support Vector Machine). 

c) MFCC is only combined with SVM. 

d) MFCC coefficients (specifically 1-13 or 13-39) combined with SVM. 

e) MFCC combined with ACO (Ant Colony Optimization) for feature selection and SVM. 

f) MFCC combined with LSTM (Long Short-Term Memory) and SVM. 

Table 3. Results for MFCC and SVM-based methods (without ACO or LSTM) 

Method Accuracy (%) F1-Score (%) Recall (%) Precision (%) 

MFCC + Pitch + SVM (SVD) 66.67 66 66 66 

MFCC + SVM only (SVD) 66.67 62 62 62 

MFCC + SVM (Kaggle Dataset) 87.50 47 50 44 

 
By using the SVD dataset, with   MFCC and Pitch for the 

feature extraction, SVM achieved 66.67% accuracy,  66% F1-

Score, 66% Recall, and 66% Precision. MFCC and SVM also 

achieved 66.67% Accuracy, with 62% F1-score, 62% Recall, 

and 62% Precision.   Specifically using MFCC coefficients 1-

13 with SVM, the SVD dataset showed 66.67% accuracy, 0.62 

precision, 0.62 recall, and 0.62 F1-Score. Using MFCC 

coefficients 13-39 with SVM, the SVD dataset achieved 
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100.00% Accuracy, 1.00 Precision, 1.00 Recall, and 1.00 F1-

Score. This indicates a perfect score across all metrics for this 

specific configuration on the SVD dataset, as depicted in 

Table 3. 

With the Kaggle Dataset analysis utilizing MFCC  and 

SVM, achieved 87.50% Accuracy, with a 47% F1-Score, 50% 

Recall, and 44% Precision.    For  MFCC coefficients selected 

1 to 13 with SVM, the Kaggle dataset showed 87.50% 

Accuracy, 0.44 Precision, 0.50 Recall, and 0.47 F1-Score. 

With 13-39 coefficients, 13-39 with MFCC and SVM, the 

Kaggle dataset showed 87.50% Accuracy, but 0.00 Precision, 

0.00 Recall, and 0.00 F1-score. Despite high accuracy, the 

zero values for Precision, Recall, and F1-Score suggest 

potential issues, such as an imbalanced dataset where the 

model predicts the majority class correctly most of the time 

but fails to identify instances of the minority class. 

For results for MFCC and ACO with SVM (Kaggle 

dataset), these models used 10 iterations of ACO for feature 

selection and 5-fold cross-validation for SVM evaluation; 

whereby Model 1 (using ACO-selected features from MFCC 

1-13) achieved 86.96% Accuracy. However, Precision, 

Recall, and F1-Score were reported as 0.00. Model 2 (using 

ACO-selected features from MFCC 13-39) achieved 86.96% 

Accuracy, but Precision, Recall, and F1-score were not 

reported. 

For the Kaggle dataset utilizing MFCC, LSTM and SVM 

with 13 coefficients, training logs show Mini-batch Accuracy 

reaching 87.50% and validation accuracy consistently around 

85.16% across different iterations. Validation loss stabilizes 

around 0.42-0.43. For the SVD dataset using 13 coefficients, 

training logs show Mini-batch Accuracy reaching 70.83% and 

validation accuracy reaching 66.67%. Validation loss 

stabilizes around 0.69. On the SVD dataset, using MFCC 

coefficients 13-39 with SVM achieved perfect scores (100% 

Accuracy, 1.00 Precision, 1.00 Recall, 1.00 F1-Score), which 

is a very strong result. However, other methods and coefficient 

ranges on SVD yielded lower performance, around 66% 

Accuracy. On the Kaggle dataset, SVM-based methods 

generally showed higher Accuracy (around 87%) compared to 

SVD,  but often had very low or zero values for Precision, 

Recall, and F1-score, especially when using MFCC 13-39 or 

with ACO feature selection. This discrepancy between high 

accuracy and low other metrics on the Kaggle dataset suggests 

the model might be biased towards predicting one class, 

performing poorly at identifying instances of the other class. 

The LSTM model on the Kaggle dataset showed a validation 

accuracy of about 85.16%, while on the SVD dataset, it 

showed about 66.67%. 

The results highlight that the choice of dataset, the range 

of MFCC coefficients used, and the specific method (SVM, 

SVM and Pitch, SVM+ACO, LSTM+SVM) significantly 

impact the performance metrics. The stark difference in results 

between using MFCC 1-13 and 13-39 on the Kaggle and SVD 

datasets is particularly notable, suggesting that the higher-

order coefficients (13-39) might not be suitable for this dataset 

with a simple SVM classifier. Therefore, suggested that the 

dataset used may affect the final classification with the 

selection of coefficients of the features. Both models used 10 

iterations of ACO and a 5-fold cross-validation for final SVM 

evaluation. 

In summary, the results table and logs present 

performance figures for various machine learning models and 

feature sets applied to two different datasets for speech 

hoarseness detection, as shown in Figures 2 to 5. The metrics 

indicate varying levels of success depending on the specific 

combination used. Despite high accuracy, the extremely 

low/zero Precision, Recall, and F1-scores on the Kaggle 

dataset for certain configurations point to potential issues in 

the model's ability to correctly classify all instances, possibly 

due to dataset characteristics like class imbalance, as depicted 

in Table 4. 

 
Fig. 2 Performance for SVM-based models and SVD
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Dataset MFCC Coefficients Accuracy Precision Recall F1-Score 

SVD 1–13 66.67% 0.62 0.62 0.62 

Kaggle 1–13 87.50% 0.44 0.50 0.47 

SVD 13–39 100.00% 1.00 1.00 1.00 

Kaggle 13–39 87.50% 0.00 0.00 0.00 
Fig. 3 Comparison between SVD and Kaggle  dataset perfomance 

 
Fig. 4 Performance comparison for 13 to 39 coefficients without ACO selected features (SVD vs Kaggle dataset) 

Table 4. Performance comparison for different coefficients with ACO selected features (SVD vs Kaggle dataset) 

Model 
MFCC 

Coefficients 
ACO-Selected Features 

Accuracy 

(%) 
Precision Recall 

F1-

Score 

MFCC + ACO + SVM (Model 1) 1–13 [9 11 12 2 5 4 3 6 1 13] 86.96 0.00 0.00 0.00 

MFCC + ACO + SVM (Model 2) 13–39 [11 8 26 14 7 2 18 5 3 19] 86.96 — — — 

 

 
Fig. 5 MFCC, MFCC-ACO and SVM (for Kaggle and SVD dataset) 
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Table 5. MFCC, LSTM and  SVM (Kaggle dataset) 13 coefficients 

Epoch Iteration 
Time Elapsed 

(hh:mm:ss) 

Mini-batch 

Accuracy 

Validation 

Accuracy 

Mini-

batch Loss 

Validation 

Loss 

Learning 

Rate 

1 1 00:00:16 90.62% 85.16% 0.6360 0.6122 0.0010 

7 50 00:00:21 84.38% 85.16% 0.4554 0.4270 0.0010 

13 100 00:00:23 89.06% 85.16% 0.3369 0.4266 0.0010 

19 150 00:00:25 87.50% 85.16% 0.3792 0.4260 0.0010 

20 160 00:00:25 84.38% 85.16% 0.4326 0.4279 0.0010 

Table 6. MFCC + LSTM + SVM (SVD dataset) 13 coefficients 

Epoch Iteration 
Time Elapsed 

(hh:mm:ss) 

Mini-batch 

Accuracy 

Validation 

Accuracy 

Mini-

batch Loss 

Validation 

Loss 

Learning 

Rate 

1 1 00:00:08 47.92% 41.67% 0.6980 0.6931 0.0010 

20 20 00:00:11 70.83% 66.67% 0.6623 0.6905 0.0010 

 

The performance of the models varied significantly 

between the Saarbrucken Voice Dataset and the Kaggle 

Patient Speech Dataset, as shown in Tables 4 and 5. For the 

initial MFCC (1-13 coefficients) with SVM, the Kaggle 

dataset yielded much higher accuracy (87.50%) compared to 

the Saarbrucken dataset (66.67%). This suggests that these 

datasets might have different characteristics or levels of 

complexity regarding the features relevant for the 

classification task. However, when using MFCC (13-39 

coefficients) with SVM without ACO, the Saarbrucken 

dataset achieved perfect classification (100% accuracy, 

precision, recall, F1-score), while the Kaggle dataset showed 

a high accuracy (87.50%). Focusing on different ranges of 

MFCC coefficients (1-13 vs. 13-39) substantially impacted 

performance.  

For the Saarbrucken dataset, using the 13-39 coefficients 

resulted in a perfect score, a dramatic improvement over the 

1-13 coefficients. This indicates that the higher-order MFCC 

coefficients might capture more discriminative information 

for this specific dataset. Conversely, for the Kaggle dataset 

without ACO, the 13-39 coefficients resulted in a degenerate 

classifier (0% precision, recall, F1-score), despite a relatively 

high accuracy. This suggests a potential issue with class 

imbalance or the features themselves in this higher-order 

range for this dataset. Applying the Ant Colony Optimization 

(ACO) algorithm for feature selection on the Kaggle dataset 

(using both 1-13 and 13-39 coefficients) resulted in similar 

accuracy (around 86.96%) across different ACO iterations. 

Interestingly, despite the consistent accuracy reported by 

ACO, the precision, recall, and F1-score remained at 0.00% 

after evaluating the SVM with the selected features.  

This strongly suggests that while ACO might have 

identified subsets of features that lead to good overall 

accuracy, these subsets might be failing to correctly classify at 

least one of the classes, leading to the zero values in other 

metrics. The selected feature indices also differ between the 

two coefficient ranges. The initial epochs of the 

MFCC+LSTM+SVM model on a single CPU show promising 

training and validation accuracies (around 90% and 85% 

respectively, in the first epoch). The loss values also decrease 

as training progresses. This suggests that combining temporal 

modeling (LSTM) with spectral features (MFCC) and a 

classifier (SVM) could be a viable approach. However, the 

training was still in progress, and further epochs would be 

needed to assess its ultimate performance. The meaningful 

differences in performance between the two datasets show that 

understanding the specific characteristics of the data matters. 

All these variations could stem from factors such as noise 

levels, recording conditions, the distribution of classes, and 

the nature of the speech tasks.  

The datasets themselves warrant further analysis to 

determine more of the perceptions. This is to understand why 

certain features and models perform better on one versus the 

other. The contrasting results with different MFCC coefficient 

ranges suggest that the relevant information for the 

classification task might be concentrated in different 

frequency bands for the two datasets. The higher-order 

coefficients seem crucial for the Saarbrucken dataset, while 

for the Kaggle dataset (without ACO), they lead to a 

problematic classifier. The Kaggle results with 13-39 

coefficients (without ACO) and the ACO-selected features 

demonstrate a crucial point: high accuracy alone is not a 

sufficient metric for evaluating classifier performance, 

especially in cases of potential class imbalance. The 0% 

precision, recall, and F1-score indicate a severe issue in 

correctly identifying instances of at least one class. The 

consistent accuracy of nearly 87% merits deeper study with 

0% precision, recall, and F1-score after ACO feature selection 

on the Kaggle dataset. Per its current settings, the ACO 

algorithm may consistently select features for a biased 

classifier. Alternatively, intrinsic challenges inside the Kaggle 

dataset itself might make it difficult to achieve good precision 

and recall with these feature sets and the SVM classifier. 

Combining different types of models for capturing spectral 

and temporal dependencies in speech might be a fruitful 

direction, as the initial results of the MFCC+LSTM+SVM 

model suggested in the analysis. The complete capacity of this 

model is not known yet. Therefore, training must be 

continued, and hyperparameters must be fine-tuned. 
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4. Conclusion  
In conclusion, this study offers insightful information 

about the difficulties and possibilities of classifying speech 

data. Careful data exploration and algorithm selection are 

crucial, as evidenced by the strong dataset dependency and the 

contrasting performance with various feature sets and 

selection techniques. The hybrid LSTM-based model's early 

success points to a promising direction for further study. 

Perhaps more balanced feature subsets can be selected for the 

future direction of this research, and different parameters for 

the ACO algorithm should be tested. Better precision, along 

with recall, may be achieved through this experimentation. 

These findings also offer insightful information about the 

difficulties and possibilities in classifying speech data. Careful 

data exploration and algorithm selection are crucial, as 

evidenced by the strong dataset dependency and the 

contrasting performance with various feature sets and 

selection techniques. The hybrid LSTM-based model's early 

success points to a promising direction for further study. 
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