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Abstract - This research study focuses on designing models to optimize and predict the ultimate tensile strength of mild steel 

weldment by the use of response surface methodology and artificial neural network analyses. The input variables are current, 

voltage, and gas flow rate. Ultimate Tensile Strength (UTS) is the response variable. The welding method used is the Tungsten 

Inert Gas (TIG) welding process. Ultimate Tensile Strength (UTS) was adopted in this research study to measure weld quality, 

as it is a main mechanical property that can define weld joint efficiency. The adequately optimized response variable certainly 

will aid in achieving an improved weld with the preferred strength and quality. The response surface methodology analyses 

yielded the optimal solutions to be: current, 180.00Amps; voltage, 21.672Volts and gas flow rate, 15.504L/min, for the input 

parameters, and 579.000MPa for the response variable. These optimal solutions, the RSM analyses, gave the Global 

Desirability (Dg) of achieving to be 83.62%. Weld current has the most significant effect on the response variable, as shown 

by the variance analysis (ANOVA) result. The predicted optimal solution for the response variable is 530.077MPa by the 

artificial neural network analyses, with an overall strong correlation (R) between the input parameters and the response 

variable of 99.893%. Deductively, it is recommended that the optimal solutions be used for modeling and application, whereas 

the optimal solution of the artificial neural network analyses obtained is better and more robust for practical implementation 

considering its higher Regression (R) value. Therefore, the results are recommended for more idealistic decision-making. 

Keywords - ANN, Mild Steel, RSM, TIG, Ultimate Tensile Strength.  

1. Introduction  
Welding is a method commonly used to join materials in 

several industrial applications. It is a procedure used to join 

metals by heating to a certain degree of temperature, with or 

without the use of pressure, with or without the use of filler 

metals. Mild steel is a broadly used industrial material, and 

its welding is of priority importance to numerous industries 

[1]. TIG welding process is an arc welding process that 

employs a non-consumable tungsten electrode to create an 

arc and a filler metal wire to join the metal parts together 

while protecting the welding process at the same time with 

the use of inert gas such as helium or argon in order to shield 

the molten weld puddle from atmospheric contamination [7]. 

The decision of the shielding gas to employ depends on the 

materials to be joined and the impact on the welding cost, the 

weld temperature, the stability of the arc, the welding speed, 

the splatter, the electrode life, etc. It also affects the 

penetration depth of the completed weld and the surface 

geometry, porosity, resistance to corrosion, joint strength, 

brittleness and hardness of the weld metal [2]. Therefore, the 

expendable composition of the shielding gas also 

significantly contributes to the weld joint strength and 

quality. This experiment employed the use of 100% pure 

argon (Ar) shielding (inert) gas. It protected the electrode, the 

arc, and the weld puddle from atmospheric contaminants.  

 

Ultimate tensile strength (interchangeably called “tensile 

strength”) is the peak stress that a weld joint can 

accommodate prior to failure or rupture. Ultimate tensile 

strength is used to calculate the peak load that a weld joint 

can entertain without failing. Process input parameters such 

as current, voltage and gas flow rate have a major influence 

on the mechanical properties of weld joints in all welding 

processes. The mechanical and metallurgical characteristics 

of weld joints are dependent on the bead geometry, which is 

a subject of the process parameters. Consequently, the 
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strength and quality of weld joints are dependent on the 

process parameters. The quality and efficiency of the welding 

process of mild steel are highly dependent on the selection of 

appropriate parameters. The selection of inappropriate 

parameters can lead to poor weldment strength and 

undesirable properties. Mechanical properties emphasize 

weld integrity, which expresses the ability of joints to 

withstand failure and the features of the weld under the 

impact of external load [11]. Tensile strength is decisively 

affected by variables such as welding current, welding 

voltage, and gas flow rate, which are the key input parameters 

that affect the quality, strength, efficiency, productivity, and 

cost of a weld joint [6]. This is the rationale and the main 

reason for selecting the three input variables for this novel 

research study and experiment. To the best of our knowledge, 

no present or previous researcher has combined the trio of 

these process input factors to optimize and model an efficient 

mild steel weld joint, and this is the gap that this current and 

novel research study seeks to cover. To combine the three 

process input parameters, namely current, voltage, and gas 

flow rate, to optimize and model an efficient mild steel weld 

joint of resilient strength and desired quality. Tensile strength 

is a vital mechanical property that defines weld joint 

efficiency. The UTS of a weld joint is significant as it is an 

assessment of the peak load that a weld joint can bear. Hence, 

adequate carefulness should be given when selecting welding 

parameters and their optimization in order to obtain the 

anticipated strength and quality of the weld joint. Care should 

be given in the selection of key welding input process 

parameters such as current, voltage and gas flow rate, as 

inappropriate welding variables and values can result in poor 

welds with inadequate mechanical properties such as tensile 

strength, toughness, hardness, etc., thus, giving rise to 

increased failure of structures in infrastructures [10]. 

 

Welded joints are essential parts in the stress-bearing 

assemblies of infrastructures. Any compromise in a welded 

joint can result in a tragic breakage or failure of structures. 

Welding parameters, such as ultimate tensile strength, 

crucially impart the resulting weldment strength and quality. 

Hence, there is a pivotal need to optimize this parameter in 

order to obtain the strength and quality needed for the weld 

joint. Response Surface Methodology (RSM) and Artificial 

Neural Network (ANN) are universally used in optimizing 

welding parameters. RSM demonstrates the values of the 

process input parameters at which the responses reach the 

optimum. Optimum could be either the minimum or 

maximum of a certain function with respect to the input 

parameter. The optimization course of this study is to 

maximize the response variable, Ultimate Tensile Strength 

(UTS). RSM employs a sequence of Design of Experiment 

(DOE) to deduce the optimal response(s). ANN is used 

mainly to model with respect to parameters of the equipment, 

such as current, voltage, and gas flow rate, in order to 

determine the efficiency of artificial neural networks for weld 

modeling. ANN can deliver real-time results of equal or 

better accuracy and reliability comparable to most traditional 

or trending predictive techniques. 

 

Nevertheless, there is a need to establish a more robust 

optimization model that can accurately predict the optimal 

ultimate tensile strength and its effect on the mild steel 

weldment strength, which is the main objective of this 

research study. This will improve the quality and efficiency 

of the mild steel welded joint, leading to cost savings and 

reduced failure rates. This research study would commence 

with the gathering of data from the experimental welding and 

the mechanical tests, which were later analyzed using the 

RSM and ANN methods to develop the models. The data 

analyses deduced the optimal solutions of the process 

parameters that resulted in the improved strength and quality 

of the mild steel weld joint. This research study will 

investigate the effects of these welding parameters on the 

microstructure, as well as the mechanical properties of mild 

steel weld metal. The findings of this research study will 

benefit the welding industry as they serve as a framework for 

the optimization of the welding process and the prediction of 

the resultant weldment strength. This research study has also 

developed and as well as introduced a new technique for the 

efficient welding of mild steel. In general, the objective of 

this research study is to advance the quality and efficiency of 

welding of mild steel, which will proactively impact various 

industries that deal with this technological procedure and 

material, and which will also save cost and time and reduce 

failure rates in numerous industries, for example,—ship 

industries, structures, steel manufacturing industries, welding 

industries, etc. 

 

Mild steel is a low carbon steel alloy made up of iron 

(Fe) and carbon (C) with a percentage carbon content 

between 0.20 % - 0.30%C. It is cheaper compared to other 

steel alloys. Hence, it is commonly and versatilely used in 

fabrication. It is easily forged, welded and fabricated due to 

its low carbon content. It is ductile and machinable and has a 

high melting point. All these qualities lead to a lack of 

hardened zones in the Heat-Affected Zones (HAZ) and in the 

welds of mild steel. Mild steel produces a clean and precise 

weld with TIG welding. Advantages of TIG welding include, 

but not limited to: production of high and clean quality welds 

chiefly due to the absence of fluxes, eliminating the 

possibility of slag inclusions; production of stable arc due to 

the use of the shielding or inert gas, which also protects the 

weld pool from atmospheric contamination; high reliability; 

welding of thin materials; low tolerance to contamination; 

easy to use etc. In this experimental study, the TIG welding 

process used is the direct current electrode positive (DCEP), 

where the electrode is connected to the positive terminal of 

the power source, and electrons flow from the work to the 

electrode tip. This method provides a good oxide cleaning 

action in the arc and also contributes to the production of the 

clean welds realized from the TIG welding technique. The 
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tungsten electrode used in the experiment was the thoriated 

type. 

 

A number of investigations have been performed to 

investigate mild steel weldment strength and quality. [8] 

“SMAW: The Effects of Currents and Welding Rod 

Diameters on Welded Joint Ultimate Tensile Strength Using 

the Full Factorial DOE” studied the effects of current and rod 

diameter on SMAW welded joint. The Mild Steel (AISI 

1018) was used as the base material to be welded using the 

E-6013 welding rod. The experiment was constructed 

according to the full factorial Design of the Experiment 

(DOE). This project found that the current and rod diameter 

are the significant factors affecting the Ultimate Tensile 

Strength (UTS). The research showed that the interaction 

between current and rod diameter is significant in affecting 

the UTS. This interaction was also found to be more 

significant with current but less significant with rod diameter 

in affecting the UTS of the welded joint. In addition, this 

research showed that the tensile strength increases when the 

current is increased from 80A to 100A. However, the tensile 

strength decreased as the current was set between 110A to 

130A. [4] in “Welding Penetration and Mechanical 

Properties of Welded Joints of V-shaped Surface Grooves”, 

focused on the forming quality of surface-groove backing 

welds of Gas Metal Arc Welding (GMAW). The Box-

Behnken design in Response Surface Methodology (RSM) 

was used to explore the effects of welding voltages, welding 

currents, welding speeds, and surface radians on the 

properties of welded joints. Experimental results showed that 

the unmelted gap decreased with the increased welding 

voltage, welding current, welding speed, and surface radian. 

Tensile strength increased with the increased welding voltage 

and welding speed and decreased after increasing with the 

increased surface radian.  

 

Elongation first increased and then decreased with the 

increased welding voltage, welding speed, and surface 

radian. [3] in her research work, “Prediction of mechanical 

properties as a function of welding variables in robotic gas 

metal arc welding of duplex stainless steels SAF 2205 welds 

through artificial neural networks”, found out that the quality 

of a weld joint of joined Dual-phase Duplex Stainless Steel 

(DSS) is strongly influenced by the welding conditions. It 

was observed from the results of the experiment that the 

tensile strength values of the welds were higher than that of 

the base metal and that this increased when the arc current 

was increased. [12] in “Study on microstructure evolution 

and mechanical properties of the similar joint of Al-Mg-Si 

alloy by tungsten inert gas welding”, researched to 

investigate mechanical properties and microstructure 

evolution with varying welding current. In the present work, 

a similar joint of the A6061 aluminium was carried out using 

the TIG method using an ER 5356 filler rod and current 

intensities (90A, 100A, and 110 A). It was clearly observed 

that the weld metal area has a finer grain as the intensity of 

weld current progresses to 110 A current in comparison with 

other current intensities, which is an indication of a more 

stronger and higher quality weld joint and ultimate tensile 

strength. [5] “Influence of welding parameters on 

optimization of the tensile strength and peak temperature in 

AISI 1020 alloy joints welded by SAW” focuses on 

maximizing the ultimate tensile strength and minimizing the 

peak temperature using Taguchi, Genetic Algorithm (GA), 

and Simulated Annealing (SA) algorithms. The input 

parameters in the three techniques were voltage (V), welding 

speed (S), and wire feed rate (F). They found out that with 

the increase of the welding parameters (welding speed, arc 

voltage, and feed rate), the ultimate tensile strength was 

increased. Lastly, [9] in “Optimization of Tensile Strength of 

Butt Joint Weldment on Mild Steel Plate Using Response 

Surface Methodology”, worked to predict and optimize the 

tensile strength of a butt joint weldment on a mild steel plate 

using Response Surface Methodology (RSM). The results 

obtained show that the current and voltage have a powerful 

influence on the tensile strength. 

 

From all these cited articles and many others more 

reviewed, it was observed that no present or previous 

researcher has delved into the research on the optimization 

and prediction of the ultimate tensile strength of mild steel 

weldment using current, voltage, and gas flow rate as joint 

process input variables in order to establish the effects of the 

optimal values of the process parameters on mild steel 

weldment strength using RSM and ANN, from TIG welding 

process, using the process factor design model. This is the 

gap this investigative, innovative, current and novel research 

study covered. This research study is centered on the 

designing of an optimal numerical approach to study the 

effects of the optimal values of these parameters on mild steel 

weldment strength using RSM and ANN. The optimal 

solution from this research study is novel, as well as an 

innovation and improvement on the mild steel weld joint, 

giving birth to a more resilient and quality mild steel weld 

joint, which will altogether minimize failure rates in welded 

structures and industries. This novel and innovative study 

will serve as a pivot to several industries that rely on this 

process, aiding them to benchmark the optimization of the 

welding process and the prediction of the resultant weldment 

strength. This novel research and innovation in the welding 

of mild steel with the optimal solutions derived from this 

research study will reduce cost, save time and also minimize 

rates of failure in several industries, e.g. in buildings, 

infrastructures, welded structures, ship industries, steel, and 

welding industries, etc. 

 

2. Materials and Methods  
The test for the mechanical properties of the specimens, 

the ultimate tensile strength, in the compressive tests were 

conducted with the aid of a Universal Testing Machine 

(UTM). Twenty (20) pieces of mild steel coupons measuring 
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60mm X 40mm X 10mm were prepared and used for this 

experiment. The welded specimens were then subjected to 

compressive tests according to ASTM E8 standard procedure 

using a Universal Testing Machine (UTM). The compressive 

test specimens were loaded on the table of the Load frame 

(Loading unit) of the UTM, where the weld specimens were 

placed for the compressive test. Loads are applied from the 

control unit of the machine until the specimens permanently 

deform or fracture. The variations in the application of the 

load and the corresponding test result were obtained from the 

control unit of the UTM. The laboratory where the 

mechanical tests were conducted on the mild steel welded 

specimens is a state-of-the-art laboratory with the most 

current and updated types of equipment, and the software 

used for the RSM and ANN optimization analyses is the most 

modern and current.  

 

The design of the experimental matrix for the process 

factors using Central Composite Design (CCD) for twenty 

(20) experimental runs was done for the Response Surface 

Methodology (RSM) analyses with the aid of an analytical 

tool, Design Expert Software 10.0.1 (DX 10.0.1). Central 

Composite Design (CCD) was employed in this research 

study owing to its simplicity and flexibility in variable 

adjustment and analyses of process interactions relating to 

process factor combinations. The process input parameters 

and output parameters make up the experimental matrix, and 

the results recorded from the weld specimens were used as 

the data. A Neural Network (NN) model was selected and 

trained and was used for the Artificial Neural Network 

(ANN) or Time Series (TS) analysis. The analytical method 

used by the neural network or the time series analyses is the 

Back Propagation Network (BPN). 

 

The main process input parameters in this experimental 

study are current, voltage, and gas flow rate. Their ranges 

(lowest and highest) from the experiment runs are indicated 

in Table 1 below: 

 
Table 1. Process input variables boundary limits 

Factor Unit Symbol 
Axis 

Low (-) 

Axis 

High (+) 

Welding 

Current 
Amp. A 180 210 

Welding 

Voltage 
Volt. V 20 23 

Gas Flow 

Rate 
Lit/Min. F 15 18 

 

Table 1 shows the boundary ranges of the process input 

parameters. They are thus selected based on literature and 

were to develop the experimental matrix. The experimental 

matrix comprised of the input variables: current (Amps.), 

voltage (Volts.), gas flow rate (L/min.) and five (5) response 

variables, namely Liquidus Temperature, Weld Time, Heat 

Transfer Coefficient, Ultimate Tensile Strength and 

Percentage Elongation in their actual values, are indicated in 

Table 2. 

 
Table 2. Central Composite Design (CCD) Matrix of Experimental 

Results and Data 

Trials 

Input Parameters 
Output 

Parameter 

Current 

(Amp.) 

Voltage 

(Volt.) 

Gas 

Flow 

Rate 

(L/min) 

Ultimate 

Tensile 

Strength 

(MPa) 

1 180 20 18 526 

2 195 20 15 478 

3 210 20 18 494 

4 180 21.5 18 574 

5 180 20 16.5 579 

6 195 21.5 18 542 

7 210 23 18 508 

8 210 23 15 542 

9 180 23 15 482 

10 210 21.5 18 545 

11 210 23 15 520 

12 210 23 15 536 

13 180 20 18 544 

14 195 21.5 16.5 553 

15 210 23 16.5 558 

16 210 23 18 578 

17 180 20 18 546 

18 180 23 18 548 

19 210 21.5 16.5 545 

20 210 20 16.5 505 

 

Table 2 is made up of the actual values of the process 

parameters from the experimental trials. The values are the 

lowest, median, and highest of each of the process input 

parameters and the equivalent value of the response recorded 

at each level of the input factors as implemented during the 

actual experimental welding of the specimens. These values 

were implemented in the development of the Central 

Composite Design (CCD) matrix used for the data analyses. 

 

3. Results and Discussion  
The response surface technique deployed for the data 

analyses in this research study indicated a result that the 

selected models are more of the quadratic types, which calls 

for the polynomial analysis order. For flexibility and 

simplicity of model analysis, the Central Composite Design 

(CCD) expert suggests more quadratic models for the process 

order, which requires polynomial analysis. In this regard, the 

highest order polynomial, where the additional terms are 

significant for the process factors, and the model is not 

aliased and also has an insignificant lack of fit, was selected 

as the best-fitted model for the response variable. The 

selected model would also be established on the basis of the 

best probability value with less error, i.e., the least PRESS 
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value, to determine the expected error in the selected model 

system. The selected model for Ultimate Tensile Strength is 

a Quadratic non-linear polynomial model with the best 

significance value that is less than 0.0001, i.e. < 0.0001.  

 
Table 3. Summary statistics of the model fit for ultimate tensile strength response variable 

Model 
Sequential p-

value 

Lack-of-fit p-

value 
Adjusted R2 Predicted R2  

Linear .2319 .0590 .0847 -.3502  

2FI .5740 .0512 .0282 -2.2205  

Quadratic <0.0001 .7021 .8912 .7854 Selected 

Cubic .7021  .8587  Aliased 

 
Table 4. Summary statistics of the model for ultimate tensile strength response variable 

Model 
Standard 

Deviation 
R2 Adjusted R2 Predicted R2 PRESS  

Linear 23.72 .2292 .0847 -.3502 15771.06  

2FI 24.44 .3351 .0282 -2.2205 37617.27  

Quadratic 8.18 .9428 .8912 .7854 2506.67 Selected 

Cubic 9.32 .9777 .8587  * Aliased 

 

Attention should be given to the model maximizing the 

Adjusted R² and the Predicted R² values, i.e. the model with 

the highest order polynomial (having the highest values of 

Adjusted R2 and Predicted R2), and the model is not aliased, 

as evidenced in the selected Quadratic model for the response 

variable. 

 

The summary statistics of the model show the Standard 

Deviation, Coefficient of Determination (R2), Adjusted R2, 

Predicted R2 and the PRESS values of the selected Quadratic 

model for the Ultimate Tensile Strength response variable. 

To assess the strength of the selected Quadratic Model in 

optimizing the Ultimate Tensile Strength response variable, 

the Analysis of Variance (ANOVA) model below was used. 

 
Table 5.  ANOVA model summary statistics for ultimate tensile strength response variable 

Model Sum of Sqrs. 
Degree of 

Freedom 
Mean Sqr. F-value p-value  

Model 11011.93 9 1223.55 18.30 <0.0001 Significant 

A-Current 855.46 1 855.46 12.79 0.0050  

B-Voltage 147.04 1 147.04 2.20 0.1689  

C-Gas Flow 

Rate 
26.22 1 26.22 0.3921 0.5452  

AB 2313.22 1 2313.22 34.60 0.0002  

AC 160.94 1 160.94 2.41 0.1518  

BC 393.98 1 393.98 5.89 0.0356  

A2 2418.57 1 2418.57 36.17 0.0001  

B2 3333.69 1 3333.69 49.86 <0.0001  

C2 2112.08 1 2112.08 31.59 0.0002  

Residual 668.62 10 66.86    

Lack-of-fit 407.96 7 58.28 0.6707 0.7021 
Not 

Significant 

Pure Error 260.67 3 86.89    

Cor Total 11680.55 19     

The ANOVA table shows that the developed model is 

significant with a significance value that is less than 0.0001 

(i.e. < 0.0001). From the ANOVA table, the F-value of 18.30 

of the model indicates that the model is significant. There 

would only be a 0.01% chance that an F-value this large could 

occur due to error. Suppose the Prob.>F, sometimes called p-

value (see p-value column in ANOVA table above) of the 

model, and each term in the model does not exceed the level 

of significance (a = 0.05). In that case, the model may be 

considered adequate within the confidence interval of 100(1- 

a) %—values of p-value less than 0.0500 show that model 

terms are significant. Thus, the significant model terms from 

the ANOVA table above are: current (A), interaction of 

current and voltage (AB), interaction of voltage and gas flow 

rate (BC), square of the current (A2), square of the voltage 

(B2) and square of the gas flow rate (C2). These are significant 
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model terms in the optimization (maximization) of the 

ultimate tensile strength response variable estimation. For the 

Lack-of-Fit test, the Lack-of-Fit could be considered 

insignificant if the Prob.>F (p-value) of the Lack-of-Fit 

exceeds the level of significance. The lack-of-fit p-value of 

0.7021 shows that the lack-of-fit is insignificant. The lack-of-

fit F-value of 0.6707 implies that the lack-of-fit is not 

significant relative to the pure error. There would only be a 

70.21% chance that the lack-of-fit F-value this large could 

occur due to error. Insignificant lack of fit is good and makes 

the model fit. 

 
Table 6. ANOVA model fit summary statistics for validating model 

significance towards optimizing (maximizing) ultimate tensile strength 

and the model comparison statistics 

Standard 

Deviation 
8.18 R2 0.9428 

Mean 534.65 Adjusted R2 0.8912 

C.V % 1.53 Predicted R2 0.7854 

  
Adequacy 

Precision 
16.6186 

 

PRESS 2506.67 

-2 log Likelihood 126.95 

BIC 156.90 

AICc 171.39 

 

Table 6 above shows the ANOVA model summary 

statistics. It indicates that the Coefficient of Determination 

(R2) of the joint input and response variables for the model 

are significantly adequate to the model developed for the 

Ultimate Tensile Strength response variable. The Coefficient 

of Determination (R2) of the variables indicates that 94.28% 

of the input factors will be explained in the response variable 

of Ultimate Tensile Strength. The Predicted R² of 0.7854 is 

in agreement with the Adjusted R² of 0.8912; i.e. the 

difference is less than 0.2. A higher R2 and Adjusted R2 

values are always desirable. If the difference between R2 and 

Adjusted R2 is large enough, or when the value of Adjusted 

R2 is very small, comparable to the value of R2, it indicates 

that there is a probable error in the values of the results of the 

variables obtained from the experimental trials, and this will 

cause a bias/error in the system, requiring that the 

experimental trials be properly checkmated and be replaced 

if need be. Adequacy Precision measures the signal-to-noise 

ratio. A ratio greater than 4 is desirable. The ratio of 16.619 

indicates an adequate signal. Therefore, this model can be 

used for real-world design and practical modeling of the 

Ultimate Tensile Strength response variable.  

 

In model comparison statistics, the Bayesian Information 

Criterion (BIC) and Akaike Information Criterion (AICc), 

which are above a thousand, are inadequate for modelling. 

However, the Bayesian Information Criterion (BIC) in this 

model developed is 156.90, and that of Akaike Information 

Criterion (AICc) in the model developed is 171.39. This 

shows that the model developed has less predicting error and 

is more adequate to achieve the optimum solution of the 

experimental results. 

 

Based on the results of this novel, investigative and 

innovative research study, which was conducted on 60mm X 

40mm X 10mm mild steel specimens, there is a need for 

further research to be conducted on larger steel plates with 

higher thicknesses in order to ascertain the validity of the 

claims of the optimal solutions obtained from this research 

study, putting into consideration other external and internal 

factors that can affect the quality of the welds in higher 

thickness steel plates. For instance, there would be an 

increased heat input requiring an adjustment of the current 

and voltage ranges/settings and an increased gas flow rate 

when welding higher thickness mild steel plates in order to 

achieve a better, stronger, more efficient and quality weld 

joint. The analytical tools used in this research study could 

only analyze the data obtained from the welding of the thin, 

mild steel plates used in this research study, which produced 

the optimal solutions. This is the limitation of this current 

research study, for with higher thickness mild steel plates, the 

nature and the values of the data results that would be 

obtained from the welding would be different. 

 

3.1. Diagnostic Plots  

The diagnostic case statistics actually give insight into 

the model strength and the adequacy of the optimal second-

order polynomial equation. 

 
Fig. 1 Studentized residuals vs. Predicted to check for constant error 

 

Figure 1 above is the plot of the variations of the 

Predicted and the Residual values to verify for constant 

errors. The figure shows that the errors in the Predicted and 

the Residuals are within values of errors that are limited and 

insignificant in the system. This is because all the data points 

of the errors, as can be seen from the figure above, lie within 

the acceptable range of values, -4.00 and +4.00 (the two red 

lines). 

Design-Expert® Software
Ultimate Tensile Strength

Color points by value of
Ultimate Tensile Strength:

579

478

X1: Predicted
X2: Externally Studentized Residuals

Residuals vs. Predicted

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

480 500 520 540 560 580

4.14579

-4.14579

0
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Fig. 2 Externally Studentized residuals to look for outliers, i.e., 

influential values 

 

Figure 2 shows the variations in the number of runs and 

the residual values to verify for outliers that may cause 

influential points in the system. The plot shows that the 

influential points in the number of runs and the residuals are 

within a few, and the control values of the influential points 

are minimal and insignificant in the system.  

 

From the figure, it is seen that all the data points lie 

within the acceptable range of values, -4.00 and +4.00 (the 

two red lines) and that no data point is of an influential value 

of concern to cause bias in the system. 

 
Fig. 3 Contour plot of the Ultimate Tensile Strength: Welding: Current 

vs. Voltage 

 

The Contour Plot reveals the influence of the input 

factors on the Ultimate Tensile Strength response variable. It 

reveals that an increase in the welding current towards its 

mean slightly decreases the Ultimate Tensile Strength, while 

the increase of the welding current from its mean to 

maximum slightly increases the Ultimate Tensile Strength. 

Also, the increase in welding voltage towards its mean 

increases the Ultimate Tensile Strength, while the increase in 

welding voltage from its mean to maximum decreases the 

Ultimate Tensile Strength. 

 
Fig. 4 3-D Surface plot revealing the effects of welding voltage and gas 

flow rate on the Ultimate Tensile Strength response variable 

 

The 3-dimensional Surface Plot shows the influence of 

the input variables on the Ultimate Tensile Strength response 

variable. It reveals that the increase in the welding voltage 

towards its mean increases the Ultimate Tensile Strength, 

while the increase in welding voltage from its mean to 

maximum decreases the Ultimate Tensile Strength response 

variable. Also, the increase in gas flow rate towards its mean 

slightly increases the Ultimate Tensile Strength, but an 

increase in gas flow rate from its mean to its maximum will 

slightly decrease the Ultimate Tensile Strength in the system.  

 

3.2. Optimal Solutions 

The optimization analysis produced twenty (20) optimal 

solutions from the twenty (20) experimental runs. The 

optimal solutions from the RSM analysis for the process input 

factors indicate that the optimal solutions for welding current 

are 180.00Amps, welding voltage is 21.672Volts gas flow 

rate is 15.504L/min, and the optimal solution for the response 

variable, Ultimate Tensile Strength is 579.000MPa., 

indicating that the experimental trials are good and fit to 

predict the feasible response of Ultimate Tensile Strength 

response variable in the system. Therefore, this model can be 

used for modeling and practical application.   

 

3.2.1. Artificial Neural Network (ANN) or Time Series (TS) 

Analyses 

ANN has input and output data layers and works like the 

human brain. 

 

Artificial Neural Network analyses take place in stages 

and through layers of neural networks consisting of neurons. 

 

Stage 1: Data Selection 

An ANN model is first selected and trained using 

historical data. The trained predictive model is then used to 

analyze the current data (real data from the experiment) to 

predict future outcomes. The current data (real data from the 

experiment) fed into the neural network for analyses are both 

Design-Expert® Software
Ultimate Tensile Strength

Color points by value of
Ultimate Tensile Strength:

579

478

X1: Run Number
X2: Externally Studentized Residuals

Residuals vs. Run

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

1 4 7 10 13 16 19

4.14579

-4.14579

0

Design-Expert® Software
Factor Coding: Actual
Ultimate Tensile Strength ((MPa))

579

478

X1 = A: Welding Current
X2 = B: Welding Voltage

Actual Factor
C: Gas Flow Rate = 16.5

180 186 192 198 204 210

20

20.6

21.2

21.8

22.4

23
Ultimate Tensile Strength ((MPa))

X1: A: Welding Current ((Ampere))
X2: B: Welding Voltage ((Volt))

500

520

520

540

540

560

560

580

580

600



Chukwunedum Ogochukwu Chinedum et al. / IJIE, 12(1), 32-43, 2025 

 

39 

the input and output parameters recorded from the 

experimental trials (See Table 2). The artificial neural 

network will select and analyze the data (the individual 

records) and predict outcomes for each of the experimental 

results.  

 

Stage 2: Training of Data, Validation of Data, and Testing of 

Data 

Artificial Neural Network (ANN) randomly shares the 

100% target time steps (real data) into three sets: data training 

(70%), data validation (15%) and data testing (15%). The 

network is trained with seventy percent (70%) of the data, 

and the network is adjusted according to the errors of the data. 

The network uses fifteen percent (15%) of the data to 

measure generalizations from the analyses and to stop the 

training of the data when the generalizations stop improving.  

 

This is called data validation. Testing of the data uses the 

remaining fifteen percent (15%) of the data. It has no effect 

on the training of the data, but it’s used as an independent 

measure of the performance of the network during and after 

the data training. The Backpropagation Network (BPN) of the 

neural network analyses was used for the data 

training/analyses.  
 

Data training automatically stops when generalizations 

stop to improve, as we can see in this analysis by an increase 

in the Mean Square Error (MSE) of the samples for data 

validation. If training is done several times, it will also 

generate different results due to different initial boundary 

conditions and sampling.  
 

Mean Square Error (MSE) is the average squared 

difference between outputs and targets. The smaller the mean 

square error value (MSE), the better the predicted result, 

while a Mean Square Error (MSE) of zero (0) means that 

there is no error. Regression (R) values measure the 

correlation between the output and the target values. A 

regression (R) value of one (1) means a close relationship, 

but an R-value of zero (0) means a random relationship.  
 

Stage 3: Results of the Trained Data of the Neural Network 

Analyses 

The Neural Network (NN) then indicates the least Mean 

Square Error (MSE) value that gives the best-fit data (the 

predicted optimal or target results). The data performance in 

this study reveals that the lowest value of the Mean Square 

Error (MSE) in the data is very insignificant, with an average 

value of 4.35x 10-26 units at the eighth (8) iteration of the 

training of the data which is the best-fit data result.  
 

The best validation of the performance result is 

2382.3681 units at the eight (8) iterations of the training of 

the data. The validation performance data value, testing data 

and the best-fit data are closely related. However, the best-fit 

data is obtained at the eight iterations of training of the data 

with the least MSE in the system. 

 Stage 4: Results of the Regression of the Artificial Neural 

Network Data Analyses 

Results of the trained Artificial Neural Network data 

analyses revealed that the trained output variable has a 

regression correlation (R) value of unity (1). The validation 

data or the fit data generated in the system has a regression 

correlation (R) value of 0.99646 units. The testing data 

generated also have a regression correlation (R) value of 

0.99791 units. However, the Overall regression correlation 

(R) value of the predicted optimal (target) result data is 

0.99893 units. This indicates that the process input variables 

and the process output variables have strong correlations at 

an average of 0.99893 units (99.893%). This is an indication 

that the data used in the research study are good and fit for 

statistical analysis and modeling.  

 
Table 7. Predicted results of ANN analyses 

 Predicted Output 
Predicted 

Residual 

S/N 
Ultimate Tensile 

Strength (MPa) 

Ultimate Tensile 

Strength (MPa) 

1 425.9874 94.01259 

2 636.1302 -101.13 

3 558.6603 -73.6603 

4 589.8437 -5.84368 

5 518.0085 50.99145 

6 528.1659 -36.1659 

7 419.2361 128.7639 

8 672.3808 -190.381 

9 653.9527 -161.953 

10 526.9483 -1.94829 

11 619.8479 -69.8479 

12 664.1948 -128.195 

13 618.2879 -94.2879 

14 575.3584 -12.3584 

15 464.7805 93.21951 

16 637.5148 -139.515 

17 570.247 -52.247 

18 566.8626 -18.8626 

19 491.1547 -6..15468 

20 530.077 48.923 
 

Table 7 above is the Artificial Neural Network (ANN) 

predicted results for the Ultimate Tensile Strength response 

variable. The result shows that the predicted optimal solution 

for the Ultimate Tensile Strength response variable is 

530.077MPa.  
 

The ANN predicted result reveals that the process input 

parameters and the process output parameters have strong 

Regression or Coefficient of Determination (R) of the 

variables with an average of 0.99893 units (i.e. 99.893%). 

This is an indication that the data used in the study are good 

and fit for adequate modeling and practical application. 

Therefore, the predictive model used is suitable for statistical 

analyses and modeling. 
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4. Discussion of Results 
This research study involves using the Response Surface 

Methodology (RSM) and Artificial Neural Network (ANN) 

to optimize and predict weld parameters. The aim of the 

optimization process is to determine the most appropriate 

percentage combination of the ultimate tensile strength 

(response variable) with the optimum values of each of the 

input variables, namely welding current (Amps), welding 

voltage (Volts) and gas flow rate (L/min.) needed to 

adequately optimize (maximize) the ultimate tensile strength 

content in the mild steel weldment. The overall target of the 

optimization model was to determine the most appropriate 

percentage combination of each of the response variables, 

namely the liquidus temperature, Welding Time, Heat 

Transfer Coefficient, Ultimate Tensile Strength, and 

Percentage Elongation in the mild steel weldment, with the 

optimum values of each of the input variables, namely: 

welding current, welding voltage and gas flow rate needed to 

adequately optimize (minimize) liquidus temperature, weld 

time and heat transfer coefficient response variables in the 

weldment, and adequately optimize (maximize)  ultimate 

tensile strength and percentage elongation response variables 

in the mild steel weldment.  

 

During the experimental welding of the mild steel 

specimens, ranges of values of the input variables and the 

output variables were observed and recorded, which made up 

the experimental data for the analysis. A statistical Design of 

the Experiment (DOE) using the Central Composite Design 

(CCD) was generated. An experimental matrix consisting of 

twenty (20) experimental runs was developed. The input 

variables and the output variables make up the experimental 

matrix. The RSM tool used for the Design of the Experiment 

(DOE) is the Design Expert Software 10.0.1 (DX.10.0.1). 

Central Composite Design was employed in this study owing 

to its simplicity and flexibility to variable adjustment and 

analyses of process interaction relating to process factor 

combinations. It’s also used because of its multi–intput–

output process factor design analysis. 

 

The results of the model analyses revealed a Quadratic 

model for the process order requiring the polynomial 

analyses selected for each of the response variables. The 

Quadratic models selected, which are also the best-fit models, 

proved to be the highest-order polynomials where the 

additional terms are significant for the process factors and the 

model is not aliased. Also, the selected Quadratic models 

have an insignificant lack of fit. Models with a significant 

lack of fit cannot be employed for optimization or prediction. 

The Quadratic models were selected due to there is a 

reasonable agreement between the p-value, the Coefficient of 

Determination (R2) value, the Predicted R2 value, the 

Adjusted R2 value, and the PRESS value. The summary of 

the model design indicates the following for the ultimate 

tensile strength response variable: minimum value of 

576.379MPa, maximum value of 600.996MPa, mean value 

of 534.65MPa, and a standard deviation of 8.18MPa. The 

optimal solution of the response surface methodology 

revealed that the optimum solution of the ultimate tensile 

strength response variable is 579.000MPa. The model has a 

high signal-to-noise ratio with a value of 16.6186. To assess 

the strength of the Quadratic Model in optimizing 

(maximizing) the ultimate tensile strength response variable, 

a one-way Analysis of Variance (ANOVA) table was 

generated for the response variable, and the results derived 

are shown in Table 5. The Analysis of Variance (ANOVA), 

Table 5, indicates that the Welding Current (WC) process 

input variable has a more significant effect on the ultimate 

tensile strength response variable. However, the RSM 

analyses indicate that the desirability of achieving the 

optimum solution results is 83.62%.  

 

In validating the adequacy of the Quadratic model based 

on its ability to maximize the ultimate Tensile Strength 

response variable, the model fit statistics summary, Table 6, 

was employed. 

 

The Coefficient Estimation Analyses of the models 

showed that the models possess low standard error ranging. 

Standard errors should be similar within the type of 

coefficient; however, the smaller the standard error, the better 

the design result. Variance Inflation Factor (VIF) lies 

between one (1) and three-point forty five (3.45) for all the 

Quadratic models selected in this research study, indicating 

that the Coefficient of Estimation of the input variables to the 

response variables is adequate, good, and as well as fit for 

more appropriate statistical modeling of the system. When 

VIF is greater than ten (10), it can cause bias (error) in the 

modeling system, and there would be a need to checkmate 

such variables or even replace the experimental trial. But VIF 

close to unity is good and fit for adequate modeling of the 

response variable. When the calculated VIF is less than 10.00 

for all the terms in the design system, it indicates a significant 

model in which the input variables are well correlated with 

the response.  

 

The ANN analyses in this study were conducted with 

predictive modeling software called Neural Power 

Algorithm, Version 2.5, which uses the Backpropagation 

Network (BPN). The rationale for using the backpropagation 

algorithm is because it can perform multiple data training and 

analyses for a complex data set. Using the time series or 

Artificial Neural Network (ANN) modeling, results shown in 

Table 7, it was observed that the predicted optimal solution 

for the welding would produce a weldment with an ultimate 

tensile strength of an optimum value of 530.077MPa. The 

ANN analyses produced an overall strong correlation (R) of 

99.893% between the input variables and the output 

variables.  

 

This research study has successfully demonstrated and 

established that a Response Surface Methodology (RSM) and 



Chukwunedum Ogochukwu Chinedum et al. / IJIE, 12(1), 32-43, 2025 

 

41 

Artificial Neural Network (ANN)) Algorithms can be used 

efficiently to optimize and predict mild steel weld metal 

variables. This research study employed the use of welding 

input variables design to determine the optimal solutions of 

the response variables of the mild steel weldment.  

 

In this research study, the development of a second-order 

polynomial solution was successfully achieved, authenticated 

by statistical and graphical results such as calculated 

Standard Error, VIF, Normal Probability Plot, Cook’s 

Distance plot, etc. Hence, a scientific methodology to 

establish the cause-and-effect relationship between the 

process variables using expert systems was successfully 

established and well-determined in this research study. 

 

In testing the accuracy of the models in actual 

application, conformity tests were conducted by assigning 

different values for process variables within their working 

limits but different from the design matrix. These tests 

conducted revealed that the models developed are good and 

adequate for proper statistical modeling of the system and 

real-world application and can be employed in 

manufacturable qualities, steel manufacturing companies and 

industrialization generally. Hence, the optimal solutions 

determined by the modeling systems in this research study 

can be adopted for real-world applications and will influence 

the activities of mild steel production and usage. Therefore, 

the application of the optimal solutions from this research 

study will be of strategic economic value to the utilizing 

companies and in the material usage. This research study will 

serve as a reference guide to the users of mild steel material 

and its application in welding and industrialization in general. 

 

5. Conclusion  
This research study conducted experiments and data 

analyses to produce the optimization and prediction models 

that will establish the optimal values of liquidus temperature, 

welding time, heat transfer coefficient, ultimate tensile 

strength and percentage elongation, which are weld metal 

response variables from welding current, welding voltage, 

and gas flow rate as input variables in TIG welding process 

using RSM and ANN techniques. The thesis is “Experimental 

Investigation of the Effects of Optimal Process Parameters on 

Mild Steel Weldment Strength using Response Surface 

Methodology and Artificial Neural Network,” and the topic 

of this research study is: “Application of Expert Methods for 

Optimizing and Predicting the Ultimate Tensile Strength of 

Mild Steel Weldment.” 

 

The design of the experimental matrix for the process 

input variables using Central Composite Design (CCD) for 

the RSM analyses was done for twenty (20) experimental 

runs using the Design Expert Software 10.0.1 (DX10.0.1). 

Both the input and the response parameters made up the 

experimental matrix. The mild steel specimens were welded 

for the experiment. Results were recorded from the weld 

specimens used as the experimental data for the data analysis. 

The Universal Testing Machine (UTM) was used to 

determine the mechanical properties of the mild steel 

weldments. The Artificial Neural Network (ANN) analyses 

were done using the software Neural Power Algorithm, 

Version 2.5. From the RSM analyses, the optimal solutions 

of the process input variables are: welding current, 

180.00Amps; welding voltage, 21.672Volts and gas flow 

rate, 15.504L/min, while the optimal solutions of the 

response variables are: liquidus temperature, 1484.7830c; 

welding time, 44.000secs; heat transfer coefficient, 

238.819w/m2oc; ultimate tensile strength, 579.000mpa and 

percentage elongation, 22.111%. The RSM analyses 

produced the “Desirability” of achieving the optimal 

solutions to be 83.62%. The RSM analyses suggested only 

the Quadratic models for each of the five responses.  

 

The models have a high significance with the p-values of 

all the five response variables less than 0.05 (i.e. p < 0.05), 

and all the five response variables possessed Variance 

Inflation Factor (VIF’s) that is less than 10 (i.e. VIF < 10). 

This affirms that the models have a high Goodness of Fit 

(GOF). Results of the ANN analyses produced the predicted 

optimal solutions of each of the response variables to be: 

liquidus temperature, 1464.490˚с; welding time, 53.7132sec; 

heat transfer coefficient, 256.663w/m2oc; ultimate tensile 

strength, 530.077mpa and percentage elongation, 18.504%. 

The input factors and the response variables have an overall 

strong Regression (R) of 99.893%. Conclusively, the results 

obtained from the two analytical techniques suggest that both 

analytical tools can be employed for the effective 

optimization and prediction of the weld factors, but the 

optimal solutions of the ANN analyses proved to be better 

and more robust than those of the RSM analyses because of 

its higher Regression or Coefficient of Determination (R) 

value of 99.893% from the ANN analyses when compared 

with 83.62% produced from the RSM analyses. Hence, the 

ANN model is recommended for ideal application and use 

and systematic decision-making. This is a great and 

innovative improvement in the mild steel weld quality. 

  

 The findings in this study also underscore part of the 

innovative and novel aspect of this research study, and it 

hinges on the optimal solutions and the desirability of 

achieving the optimal solutions as given by each of the 

analytical tools deployed in this research study and as seen in 

the analyses. From the results of the RSM analyses, the 

optimal solutions of the process input variables are: welding 

current, 180.00Amps; welding voltage, 21.672Volts and gas 

flow rate, 15.504L/min, while the optimal solutions of each 

of the five response variables are liquidus temperature, 

1484.7830C; welding time, 44.000Secs; heat transfer 

coefficient, 238.819W/m2oc; ultimate tensile strength, 

579.000MPa and percentage elongation, 22.111%. The RSM 

analyses produced the “Global Desirability (Dg)” of 

achieving the optimal solutions to be 83.62%. From the ANN 
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analyses, the predicted optimal solutions for each of the five 

response variables are: liquidus temperature, 1464.490˚C; 

welding time, 53.7132Secs; heat transfer coefficient, 

256.663W/m2oc; ultimate tensile strength, 530.077MPa and 

percentage elongation, 18.504%. The input factors and the 

response variables have an overall strong Regression (R) of 

99.893%. Another key finding from this research study is that 

the Welding Current (WC) process input variable has the 

most significant effect on the ultimate tensile strength 

response variable of the mild steel weldment. 

  

Based on the results of this novel, investigative and 

innovative research study, which was conducted on 60mm X 

40mm X 10mm mild steel specimens, there is a need for 

further research to be conducted on larger steel plates with 

higher thicknesses in order to ascertain the validity of the 

claims of the optimal solutions obtained from this research 

study, putting into consideration other external and internal 

factors that can affect the quality of the welds in higher 

thickness steel plates. For instance, there would be an 

increased heat input requiring an adjustment of the current 

and voltage ranges/settings and an increased gas flow rate 

when welding higher thickness mild steel plates in order to 

achieve a better, stronger, more efficient and quality weld 

joint. The analytical tools used in this research study could 

only analyze the data obtained from the welding of the thin, 

mild steel plates used in this research study, which produced 

the optimal solutions. This is the limitation of this current 

research study, for with higher thickness mild steel plates, the 

nature and the values of the data results that would be 

obtained from the welding would be different. 

  

Finally, the main goal of this research study is to improve 

the quality and efficiency of welding, which will positively 

impact innumerable industries that rely on this process, save 

the cost and time of welding, and also drastically lessen the 

rate of failures in various industries. The models developed 

from this research study are laudable, and thus, they’re 

suggested for industrial application and systematic decision-

making. The models and the optimal solutions from this 

research study can be adopted in numerous industries, 

including for example, ship industry, structures and steel 

manufacturing industries, welding industries, etc., that make 

use of the steel material and apply the industrial process.  

 

5.1. Recommendation 

Recommendation is made for the use of other data 

analytical tools, e.g. Taguchi method, Genetic Algorithm, 

TOPSIS, Particle Swarm Optimization (PSO), Optimized 

Particle Swarm Optimization (OPSO), Simulated Annealing 

(SA), etc., for the same weld parameters optimization and 

prediction in order to achieve a more broad and integrated 

knowledge and information on the welding process 

optimization, and for comparative study, and also to address 

any limitations presented by this research study and the 

analytical methods employed. 
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