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Abstract - This research study focuses on designing models to optimize and predict the ultimate tensile strength of mild steel
weldment by the use of response surface methodology and artificial neural network analyses. The input variables are current,
voltage, and gas flow rate. Ultimate Tensile Strength (UTS) is the response variable. The welding method used is the Tungsten
Inert Gas (TIG) welding process. Ultimate Tensile Strength (UTS) was adopted in this research study to measure weld quality,
as it is a main mechanical property that can define weld joint efficiency. The adequately optimized response variable certainly
will aid in achieving an improved weld with the preferred strength and quality. The response surface methodology analyses
yielded the optimal solutions to be: current, 180.00Amps; voltage, 21.672Volts and gas flow rate, 15.504L/min, for the input
parameters, and 579.000MPa for the response variable. These optimal solutions, the RSM analyses, gave the Global
Desirability (Dg) of achieving to be 83.62%. Weld current has the most significant effect on the response variable, as shown
by the variance analysis (ANOVA) result. The predicted optimal solution for the response variable is 530.077MPa by the
artificial neural network analyses, with an overall strong correlation (R) between the input parameters and the response
variable of 99.893%. Deductively, it is recommended that the optimal solutions be used for modeling and application, whereas
the optimal solution of the artificial neural network analyses obtained is better and more robust for practical implementation

considering its higher Regression (R) value. Therefore, the results are recommended for more idealistic decision-making.
Keywords - ANN, Mild Steel, RSM, TIG, Ultimate Tensile Strength.

geometry, porosity, resistance to corrosion, joint strength,
brittleness and hardness of the weld metal [2]. Therefore, the
expendable composition of the shielding gas also
significantly contributes to the weld joint strength and
quality. This experiment employed the use of 100% pure

1. Introduction

Welding is a method commonly used to join materials in
several industrial applications. It is a procedure used to join
metals by heating to a certain degree of temperature, with or
without the use of pressure, with or without the use of filler

metals. Mild steel is a broadly used industrial material, and
its welding is of priority importance to numerous industries
[1]. TIG welding process is an arc welding process that
employs a non-consumable tungsten electrode to create an
arc and a filler metal wire to join the metal parts together
while protecting the welding process at the same time with
the use of inert gas such as helium or argon in order to shield
the molten weld puddle from atmospheric contamination [7].
The decision of the shielding gas to employ depends on the
materials to be joined and the impact on the welding cost, the
weld temperature, the stability of the arc, the welding speed,
the splatter, the electrode life, etc. It also affects the
penetration depth of the completed weld and the surface

OSE)

argon (Ar) shielding (inert) gas. It protected the electrode, the
arc, and the weld puddle from atmospheric contaminants.

Ultimate tensile strength (interchangeably called “tensile
strength”) is the peak stress that a weld joint can
accommodate prior to failure or rupture. Ultimate tensile
strength is used to calculate the peak load that a weld joint
can entertain without failing. Process input parameters such
as current, voltage and gas flow rate have a major influence
on the mechanical properties of weld joints in all welding
processes. The mechanical and metallurgical characteristics
of weld joints are dependent on the bead geometry, which is
a subject of the process parameters. Consequently, the
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strength and quality of weld joints are dependent on the
process parameters. The quality and efficiency of the welding
process of mild steel are highly dependent on the selection of
appropriate parameters. The selection of inappropriate
parameters can lead to poor weldment strength and
undesirable properties. Mechanical properties emphasize
weld integrity, which expresses the ability of joints to
withstand failure and the features of the weld under the
impact of external load [11]. Tensile strength is decisively
affected by variables such as welding current, welding
voltage, and gas flow rate, which are the key input parameters
that affect the quality, strength, efficiency, productivity, and
cost of a weld joint [6]. This is the rationale and the main
reason for selecting the three input variables for this novel
research study and experiment. To the best of our knowledge,
no present or previous researcher has combined the trio of
these process input factors to optimize and model an efficient
mild steel weld joint, and this is the gap that this current and
novel research study seeks to cover. To combine the three
process input parameters, namely current, voltage, and gas
flow rate, to optimize and model an efficient mild steel weld
joint of resilient strength and desired quality. Tensile strength
is a vital mechanical property that defines weld joint
efficiency. The UTS of a weld joint is significant as it is an
assessment of the peak load that a weld joint can bear. Hence,
adequate carefulness should be given when selecting welding
parameters and their optimization in order to obtain the
anticipated strength and quality of the weld joint. Care should
be given in the selection of key welding input process
parameters such as current, voltage and gas flow rate, as
inappropriate welding variables and values can result in poor
welds with inadequate mechanical properties such as tensile
strength, toughness, hardness, etc., thus, giving rise to
increased failure of structures in infrastructures [10].

Welded joints are essential parts in the stress-bearing
assemblies of infrastructures. Any compromise in a welded
joint can result in a tragic breakage or failure of structures.
Welding parameters, such as ultimate tensile strength,
crucially impart the resulting weldment strength and quality.
Hence, there is a pivotal need to optimize this parameter in
order to obtain the strength and quality needed for the weld
joint. Response Surface Methodology (RSM) and Artificial
Neural Network (ANN) are universally used in optimizing
welding parameters. RSM demonstrates the values of the
process input parameters at which the responses reach the
optimum. Optimum could be either the minimum or
maximum of a certain function with respect to the input
parameter. The optimization course of this study is to
maximize the response variable, Ultimate Tensile Strength
(UTS). RSM employs a sequence of Design of Experiment
(DOE) to deduce the optimal response(s). ANN is used
mainly to model with respect to parameters of the equipment,
such as current, voltage, and gas flow rate, in order to
determine the efficiency of artificial neural networks for weld
modeling. ANN can deliver real-time results of equal or
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better accuracy and reliability comparable to most traditional
or trending predictive techniques.

Nevertheless, there is a need to establish a more robust
optimization model that can accurately predict the optimal
ultimate tensile strength and its effect on the mild steel
weldment strength, which is the main objective of this
research study. This will improve the quality and efficiency
of the mild steel welded joint, leading to cost savings and
reduced failure rates. This research study would commence
with the gathering of data from the experimental welding and
the mechanical tests, which were later analyzed using the
RSM and ANN methods to develop the models. The data
analyses deduced the optimal solutions of the process
parameters that resulted in the improved strength and quality
of the mild steel weld joint. This research study will
investigate the effects of these welding parameters on the
microstructure, as well as the mechanical properties of mild
steel weld metal. The findings of this research study will
benefit the welding industry as they serve as a framework for
the optimization of the welding process and the prediction of
the resultant weldment strength. This research study has also
developed and as well as introduced a new technique for the
efficient welding of mild steel. In general, the objective of
this research study is to advance the quality and efficiency of
welding of mild steel, which will proactively impact various
industries that deal with this technological procedure and
material, and which will also save cost and time and reduce
failure rates in numerous industries, for example,—ship
industries, structures, steel manufacturing industries, welding
industries, etc.

Mild steel is a low carbon steel alloy made up of iron
(Fe) and carbon (C) with a percentage carbon content
between 0.20 % - 0.30%C. It is cheaper compared to other
steel alloys. Hence, it is commonly and versatilely used in
fabrication. It is easily forged, welded and fabricated due to
its low carbon content. It is ductile and machinable and has a
high melting point. All these qualities lead to a lack of
hardened zones in the Heat-Affected Zones (HAZ) and in the
welds of mild steel. Mild steel produces a clean and precise
weld with TIG welding. Advantages of TIG welding include,
but not limited to: production of high and clean quality welds
chiefly due to the absence of fluxes, eliminating the
possibility of slag inclusions; production of stable arc due to
the use of the shielding or inert gas, which also protects the
weld pool from atmospheric contamination; high reliability;
welding of thin materials; low tolerance to contamination;
easy to use etc. In this experimental study, the TIG welding
process used is the direct current electrode positive (DCEP),
where the electrode is connected to the positive terminal of
the power source, and electrons flow from the work to the
electrode tip. This method provides a good oxide cleaning
action in the arc and also contributes to the production of the
clean welds realized from the TIG welding technique. The
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tungsten electrode used in the experiment was the thoriated
type.

A number of investigations have been performed to
investigate mild steel weldment strength and quality. [8]
“SMAW: The Effects of Currents and Welding Rod
Diameters on Welded Joint Ultimate Tensile Strength Using
the Full Factorial DOE” studied the effects of current and rod
diameter on SMAW welded joint. The Mild Steel (AISI
1018) was used as the base material to be welded using the
E-6013 welding rod. The experiment was constructed
according to the full factorial Design of the Experiment
(DOE). This project found that the current and rod diameter
are the significant factors affecting the Ultimate Tensile
Strength (UTS). The research showed that the interaction
between current and rod diameter is significant in affecting
the UTS. This interaction was also found to be more
significant with current but less significant with rod diameter
in affecting the UTS of the welded joint. In addition, this
research showed that the tensile strength increases when the
current is increased from 80A to 100A. However, the tensile
strength decreased as the current was set between 110A to
130A. [4] in “Welding Penetration and Mechanical
Properties of Welded Joints of V-shaped Surface Grooves”,
focused on the forming quality of surface-groove backing
welds of Gas Metal Arc Welding (GMAW). The Box-
Behnken design in Response Surface Methodology (RSM)
was used to explore the effects of welding voltages, welding
currents, welding speeds, and surface radians on the
properties of welded joints. Experimental results showed that
the unmelted gap decreased with the increased welding
voltage, welding current, welding speed, and surface radian.
Tensile strength increased with the increased welding voltage
and welding speed and decreased after increasing with the
increased surface radian.

Elongation first increased and then decreased with the
increased welding voltage, welding speed, and surface
radian. [3] in her research work, ‘“Prediction of mechanical
properties as a function of welding variables in robotic gas
metal arc welding of duplex stainless steels SAF 2205 welds
through artificial neural networks”, found out that the quality
of a weld joint of joined Dual-phase Duplex Stainless Steel
(DSS) is strongly influenced by the welding conditions. It
was observed from the results of the experiment that the
tensile strength values of the welds were higher than that of
the base metal and that this increased when the arc current
was increased. [12] in “Study on microstructure evolution
and mechanical properties of the similar joint of Al-Mg-Si
alloy by tungsten inert gas welding”, researched to
investigate mechanical properties and microstructure
evolution with varying welding current. In the present work,
a similar joint of the A6061 aluminium was carried out using
the TIG method using an ER 5356 filler rod and current
intensities (90A, 100A, and 110 A). It was clearly observed
that the weld metal area has a finer grain as the intensity of
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weld current progresses to 110 A current in comparison with
other current intensities, which is an indication of a more
stronger and higher quality weld joint and ultimate tensile
strength. [5] “Influence of welding parameters on
optimization of the tensile strength and peak temperature in
AISI 1020 alloy joints welded by SAW” focuses on
maximizing the ultimate tensile strength and minimizing the
peak temperature using Taguchi, Genetic Algorithm (GA),
and Simulated Annealing (SA) algorithms. The input
parameters in the three techniques were voltage (V), welding
speed (S), and wire feed rate (F). They found out that with
the increase of the welding parameters (welding speed, arc
voltage, and feed rate), the ultimate tensile strength was
increased. Lastly, [9] in “Optimization of Tensile Strength of
Butt Joint Weldment on Mild Steel Plate Using Response
Surface Methodology”, worked to predict and optimize the
tensile strength of a butt joint weldment on a mild steel plate
using Response Surface Methodology (RSM). The results
obtained show that the current and voltage have a powerful
influence on the tensile strength.

From all these cited articles and many others more
reviewed, it was observed that no present or previous
researcher has delved into the research on the optimization
and prediction of the ultimate tensile strength of mild steel
weldment using current, voltage, and gas flow rate as joint
process input variables in order to establish the effects of the
optimal values of the process parameters on mild steel
weldment strength using RSM and ANN, from TIG welding
process, using the process factor design model. This is the
gap this investigative, innovative, current and novel research
study covered. This research study is centered on the
designing of an optimal numerical approach to study the
effects of the optimal values of these parameters on mild steel
weldment strength using RSM and ANN. The optimal
solution from this research study is novel, as well as an
innovation and improvement on the mild steel weld joint,
giving birth to a more resilient and quality mild steel weld
joint, which will altogether minimize failure rates in welded
structures and industries. This novel and innovative study
will serve as a pivot to several industries that rely on this
process, aiding them to benchmark the optimization of the
welding process and the prediction of the resultant weldment
strength. This novel research and innovation in the welding
of mild steel with the optimal solutions derived from this
research study will reduce cost, save time and also minimize
rates of failure in several industries, e.g. in buildings,
infrastructures, welded structures, ship industries, steel, and
welding industries, etc.

2. Materials and Methods

The test for the mechanical properties of the specimens,
the ultimate tensile strength, in the compressive tests were
conducted with the aid of a Universal Testing Machine
(UTM). Twenty (20) pieces of mild steel coupons measuring
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60mm X 40mm X 10mm were prepared and used for this
experiment. The welded specimens were then subjected to
compressive tests according to ASTM E8 standard procedure
using a Universal Testing Machine (UTM). The compressive
test specimens were loaded on the table of the Load frame
(Loading unit) of the UTM, where the weld specimens were
placed for the compressive test. Loads are applied from the
control unit of the machine until the specimens permanently
deform or fracture. The variations in the application of the
load and the corresponding test result were obtained from the
control unit of the UTM. The laboratory where the
mechanical tests were conducted on the mild steel welded
specimens is a state-of-the-art laboratory with the most
current and updated types of equipment, and the software
used for the RSM and ANN optimization analyses is the most
modern and current.

The design of the experimental matrix for the process
factors using Central Composite Design (CCD) for twenty
(20) experimental runs was done for the Response Surface
Methodology (RSM) analyses with the aid of an analytical
tool, Design Expert Software 10.0.1 (DX 10.0.1). Central
Composite Design (CCD) was employed in this research
study owing to its simplicity and flexibility in variable
adjustment and analyses of process interactions relating to
process factor combinations. The process input parameters
and output parameters make up the experimental matrix, and
the results recorded from the weld specimens were used as
the data. A Neural Network (NN) model was selected and
trained and was used for the Artificial Neural Network
(ANN) or Time Series (TS) analysis. The analytical method
used by the neural network or the time series analyses is the
Back Propagation Network (BPN).

The main process input parameters in this experimental
study are current, voltage, and gas flow rate. Their ranges
(lowest and highest) from the experiment runs are indicated
in Table 1 below:

Table 1. Process input variables boundary limits

. AXis AXis

Factor Unit Symbol Low (-) | High (+)
Welding

current Amp. A 180 210
Welding

Voltage Volt. \V 20 23
Gas Flow || inin. F 15 18

Rate

Table 1 shows the boundary ranges of the process input
parameters. They are thus selected based on literature and
were to develop the experimental matrix. The experimental
matrix comprised of the input variables: current (Amps.),
voltage (Volts.), gas flow rate (L/min.) and five (5) response
variables, namely Liquidus Temperature, Weld Time, Heat
Transfer Coefficient, Ultimate Tensile Strength and
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Percentage Elongation in their actual values, are indicated in
Table 2.

Table 2. Central Composite Design (CCD) Matrix of Experimental
Results and Data

Input Parameters Output
Parameter

: Gas Ultimate

Trials Current | Voltage Flow Tensile

(Amp.) (Volt.) Rate Strength

(L/min) (MPa)

1 180 20 18 526
2 195 20 15 478
3 210 20 18 494
4 180 215 18 574
5 180 20 16.5 579
6 195 215 18 542
7 210 23 18 508
8 210 23 15 542
9 180 23 15 482
10 210 215 18 545
11 210 23 15 520
12 210 23 15 536
13 180 20 18 544
14 195 215 16.5 553
15 210 23 16.5 558
16 210 23 18 578
17 180 20 18 546
18 180 23 18 548
19 210 215 16.5 545
20 210 20 16.5 505

Table 2 is made up of the actual values of the process
parameters from the experimental trials. The values are the
lowest, median, and highest of each of the process input
parameters and the equivalent value of the response recorded
at each level of the input factors as implemented during the
actual experimental welding of the specimens. These values
were implemented in the development of the Central
Composite Design (CCD) matrix used for the data analyses.

3. Results and Discussion

The response surface technique deployed for the data
analyses in this research study indicated a result that the
selected models are more of the quadratic types, which calls
for the polynomial analysis order. For flexibility and
simplicity of model analysis, the Central Composite Design
(CCD) expert suggests more quadratic models for the process
order, which requires polynomial analysis. In this regard, the
highest order polynomial, where the additional terms are
significant for the process factors, and the model is not
aliased and also has an insignificant lack of fit, was selected
as the best-fitted model for the response variable. The
selected model would also be established on the basis of the
best probability value with less error, i.e., the least PRESS
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value, to determine the expected error in the selected model
system. The selected model for Ultimate Tensile Strength is

a Quadratic non-linear polynomial model with the best
significance value that is less than 0.0001, i.e. < 0.0001.

Table 3. Summary statistics of the model fit for ultimate tensile strength response variable

Model Sequential p- Lack-of-fit p- Adjusted R? Predicted R2
value value
Linear .2319 .0590 .0847 -.3502
2FI .5740 .0512 .0282 -2.2205
Quadratic <0.0001 7021 .8912 .7854 Selected
Cubic 7021 .8587 Aliased
Table 4. Summary statistics of the model for ultimate tensile strength response variable
Model Standard R? Adjusted R? | Predicted R? PRESS
Deviation
Linear 23.72 2292 .0847 -.3502 15771.06
2FI 24.44 .3351 .0282 -2.2205 37617.27
Quadratic 8.18 .9428 .8912 .7854 2506.67 Selected
Cubic 9.32 9777 .8587 * Aliased

Attention should be given to the model maximizing the
Adjusted R2 and the Predicted R2 values, i.e. the model with
the highest order polynomial (having the highest values of
Adjusted R? and Predicted R?), and the model is not aliased,
as evidenced in the selected Quadratic model for the response
variable.

The summary statistics of the model show the Standard
Deviation, Coefficient of Determination (R?), Adjusted R?,
Predicted R? and the PRESS values of the selected Quadratic
model for the Ultimate Tensile Strength response variable.
To assess the strength of the selected Quadratic Model in
optimizing the Ultimate Tensile Strength response variable,
the Analysis of Variance (ANOVA) model below was used.

Table 5. ANOVA model summary statistics for ultimate tensile strength response variable

Model Sum of Sqgrs. Eigggir?]f Mean Sqr. F-value p-value
Model 11011.93 9 1223.55 18.30 <0.0001 Significant
A-Current 855.46 1 855.46 12.79 0.0050
B-Voltage 147.04 1 147.04 2.20 0.1689
C'ngt';'ow 26.22 1 26.22 0.3921 0.5452
AB 2313.22 1 2313.22 34.60 0.0002
AC 160.94 1 160.94 2.41 0.1518
BC 393.98 1 393.98 5.89 0.0356
A2 2418.57 1 2418.57 36.17 0.0001
B2 3333.69 1 3333.69 49.86 <0.0001
C? 2112.08 1 2112.08 31.59 0.0002
Residual 668.62 10 66.86
Lack-of-fit 407.96 7 58.28 0.6707 0.7021 . l\_lo_t
Significant
Pure Error 260.67 3 86.89
Cor Total 11680.55 19

The ANOVA table shows that the developed model is
significant with a significance value that is less than 0.0001
(i.e. <0.0001). From the ANOVA table, the F-value of 18.30
of the model indicates that the model is significant. There
would only be a 0.01% chance that an F-value this large could
occur due to error. Suppose the Prob.>F, sometimes called p-
value (see p-value column in ANOVA table above) of the
model, and each term in the model does not exceed the level
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of significance (a = 0.05). In that case, the model may be
considered adequate within the confidence interval of 100(1-
a) %—values of p-value less than 0.0500 show that model
terms are significant. Thus, the significant model terms from
the ANOVA table above are: current (A), interaction of
current and voltage (AB), interaction of voltage and gas flow
rate (BC), square of the current (A?), square of the voltage
(B?) and square of the gas flow rate (C?). These are significant
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model terms in the optimization (maximization) of the
ultimate tensile strength response variable estimation. For the
Lack-of-Fit test, the Lack-of-Fit could be considered
insignificant if the Prob.>F (p-value) of the Lack-of-Fit
exceeds the level of significance. The lack-of-fit p-value of
0.7021 shows that the lack-of-fit is insignificant. The lack-of-
fit F-value of 0.6707 implies that the lack-of-fit is not
significant relative to the pure error. There would only be a
70.21% chance that the lack-of-fit F-value this large could
occur due to error. Insignificant lack of fit is good and makes
the model fit.

Table 6. ANOVA model fit summary statistics for validating model
significance towards optimizing (maximizing) ultimate tensile strength
and the model comparison statistics

Standard

L 8.18 R? 0.9428
Deviation
Mean 534.65 Adjusted R? 0.8912
CV% 1.53 Predicted R? 0.7854
Adequacy | 44 6106
Precision

PRESS 2506.67

-2 log Likelihood 126.95

BIC 156.90

AlCc 171.39

Table 6 above shows the ANOVA model summary
statistics. It indicates that the Coefficient of Determination
(R?) of the joint input and response variables for the model
are significantly adequate to the model developed for the
Ultimate Tensile Strength response variable. The Coefficient
of Determination (R?) of the variables indicates that 94.28%
of the input factors will be explained in the response variable
of Ultimate Tensile Strength. The Predicted R2 of 0.7854 is
in agreement with the Adjusted R2 of 0.8912; i.e. the
difference is less than 0.2. A higher R? and Adjusted R?
values are always desirable. If the difference between R? and
Adjusted R? is large enough, or when the value of Adjusted
R? is very small, comparable to the value of R?, it indicates
that there is a probable error in the values of the results of the
variables obtained from the experimental trials, and this will
cause a bias/error in the system, requiring that the
experimental trials be properly checkmated and be replaced
if need be. Adequacy Precision measures the signal-to-noise
ratio. A ratio greater than 4 is desirable. The ratio of 16.619
indicates an adequate signal. Therefore, this model can be
used for real-world design and practical modeling of the
Ultimate Tensile Strength response variable.

In model comparison statistics, the Bayesian Information
Criterion (BIC) and Akaike Information Criterion (AlCc),
which are above a thousand, are inadequate for modelling.
However, the Bayesian Information Criterion (BIC) in this
model developed is 156.90, and that of Akaike Information
Criterion (AICc) in the model developed is 171.39. This
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shows that the model developed has less predicting error and
is more adequate to achieve the optimum solution of the
experimental results.

Based on the results of this novel, investigative and
innovative research study, which was conducted on 60mm X
40mm X 10mm mild steel specimens, there is a need for
further research to be conducted on larger steel plates with
higher thicknesses in order to ascertain the validity of the
claims of the optimal solutions obtained from this research
study, putting into consideration other external and internal
factors that can affect the quality of the welds in higher
thickness steel plates. For instance, there would be an
increased heat input requiring an adjustment of the current
and voltage ranges/settings and an increased gas flow rate
when welding higher thickness mild steel plates in order to
achieve a better, stronger, more efficient and quality weld
joint. The analytical tools used in this research study could
only analyze the data obtained from the welding of the thin,
mild steel plates used in this research study, which produced
the optimal solutions. This is the limitation of this current
research study, for with higher thickness mild steel plates, the
nature and the values of the data results that would be
obtained from the welding would be different.

3.1. Diagnostic Plots

The diagnostic case statistics actually give insight into
the model strength and the adequacy of the optimal second-
order polynomial equation.

Design-Expert® Software
Ultimate Tensile Strength

Residuals vs. Predicted

Color points by value of
Ultimate Tensile Strength:
579

6.00

4.14579

478

2,00 o

-2.00—

4,00 —] 414579

-6.00 —

| T T T T T
480 500 520 540 560 580

X1: Predicted
X2: Externally Studentized Residuals

Fig. 1 Studentized residuals vs. Predicted to check for constant error

Figure 1 above is the plot of the variations of the
Predicted and the Residual values to verify for constant
errors. The figure shows that the errors in the Predicted and
the Residuals are within values of errors that are limited and
insignificant in the system. This is because all the data points
of the errors, as can be seen from the figure above, lie within
the acceptable range of values, -4.00 and +4.00 (the two red
lines).
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Design-Expent® Software
Uttimate Tensile Strength

Residuals vs. Run

Color points by value of

6.00—
Ultimate Tensile Strength:
579

478

424579
4.00—

2.00

2,00

4,00 —| 414579

6.00 —

X1: Run Number
X2: Externally Studentized Residuals
Fig. 2 Externally Studentized residuals to look for outliers, i.e.,
influential values

Figure 2 shows the variations in the number of runs and
the residual values to verify for outliers that may cause
influential points in the system. The plot shows that the
influential points in the number of runs and the residuals are
within a few, and the control values of the influential points
are minimal and insignificant in the system.

From the figure, it is seen that all the data points lie
within the acceptable range of values, -4.00 and +4.00 (the
two red lines) and that no data point is of an influential value
of concern to cause bias in the system.

Design-Expert® Software
Factor Coding: Actual
Utiimate Tensile Strength ((MPa))

§579
478
XL =A: Welding Current
X2 = B: Welding Voltage

Ultimate Tensile Strength ((MPa))

Actual Factor
C: Gas Flow Rate = 16.5

186 192 198 204

X1: A: Welding Current ((Ampere))
X2: B: Welding Voltage ((Volt))

Fig. 3 Contour plot of the Ultimate Tensile Strength: Welding: Current
vs. Voltage

The Contour Plot reveals the influence of the input
factors on the Ultimate Tensile Strength response variable. It
reveals that an increase in the welding current towards its
mean slightly decreases the Ultimate Tensile Strength, while
the increase of the welding current from its mean to
maximum slightly increases the Ultimate Tensile Strength.
Also, the increase in welding voltage towards its mean
increases the Ultimate Tensile Strength, while the increase in
welding voltage from its mean to maximum decreases the
Ultimate Tensile Strength.
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Design-Expert® Software
Factor Coding: Adtual

Ultimate Tensile Strength ((MPa))
47:

X1 = B: Welding Voltage
X2 = C: Gas Flow Rate

Actual Factor
A: Welding Current = 195
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Fig. 4 3-D Surface plot revealing the effects of welding voltage and gas
flow rate on the Ultimate Tensile Strength response variable

The 3-dimensional Surface Plot shows the influence of
the input variables on the Ultimate Tensile Strength response
variable. It reveals that the increase in the welding voltage
towards its mean increases the Ultimate Tensile Strength,
while the increase in welding voltage from its mean to
maximum decreases the Ultimate Tensile Strength response
variable. Also, the increase in gas flow rate towards its mean
slightly increases the Ultimate Tensile Strength, but an
increase in gas flow rate from its mean to its maximum will
slightly decrease the Ultimate Tensile Strength in the system.

3.2. Optimal Solutions

The optimization analysis produced twenty (20) optimal
solutions from the twenty (20) experimental runs. The
optimal solutions from the RSM analysis for the process input
factors indicate that the optimal solutions for welding current
are 180.00Amps, welding voltage is 21.672Volts gas flow
rate is 15.504L/min, and the optimal solution for the response
variable, Ultimate Tensile Strength is 579.000MPa.,
indicating that the experimental trials are good and fit to
predict the feasible response of Ultimate Tensile Strength
response variable in the system. Therefore, this model can be
used for modeling and practical application.

3.2.1. Artificial Neural Network (ANN) or Time Series (TS)
Analyses

ANN has input and output data layers and works like the
human brain.

Artificial Neural Network analyses take place in stages
and through layers of neural networks consisting of neurons.

Stage 1: Data Selection

An ANN model is first selected and trained using
historical data. The trained predictive model is then used to
analyze the current data (real data from the experiment) to
predict future outcomes. The current data (real data from the
experiment) fed into the neural network for analyses are both
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the input and output parameters recorded from the
experimental trials (See Table 2). The artificial neural
network will select and analyze the data (the individual
records) and predict outcomes for each of the experimental
results.

Stage 2: Training of Data, Validation of Data, and Testing of
Data

Artificial Neural Network (ANN) randomly shares the
100% target time steps (real data) into three sets: data training
(70%), data validation (15%) and data testing (15%). The
network is trained with seventy percent (70%) of the data,
and the network is adjusted according to the errors of the data.
The network uses fifteen percent (15%) of the data to
measure generalizations from the analyses and to stop the
training of the data when the generalizations stop improving.

This is called data validation. Testing of the data uses the
remaining fifteen percent (15%) of the data. It has no effect
on the training of the data, but it’s used as an independent
measure of the performance of the network during and after
the data training. The Backpropagation Network (BPN) of the
neural network analyses was used for the data
training/analyses.

Data training automatically stops when generalizations
stop to improve, as we can see in this analysis by an increase
in the Mean Square Error (MSE) of the samples for data
validation. If training is done several times, it will also
generate different results due to different initial boundary
conditions and sampling.

Mean Square Error (MSE) is the average squared
difference between outputs and targets. The smaller the mean
square error value (MSE), the better the predicted result,
while a Mean Square Error (MSE) of zero (0) means that
there is no error. Regression (R) values measure the
correlation between the output and the target values. A
regression (R) value of one (1) means a close relationship,
but an R-value of zero (0) means a random relationship.

Stage 3: Results of the Trained Data of the Neural Network
Analyses

The Neural Network (NN) then indicates the least Mean
Square Error (MSE) value that gives the best-fit data (the
predicted optimal or target results). The data performance in
this study reveals that the lowest value of the Mean Square
Error (MSE) in the data is very insignificant, with an average
value of 4.35x 107 units at the eighth (8) iteration of the
training of the data which is the best-fit data result.

The best validation of the performance result is
2382.3681 units at the eight (8) iterations of the training of
the data. The validation performance data value, testing data
and the best-fit data are closely related. However, the best-fit
data is obtained at the eight iterations of training of the data
with the least MSE in the system.
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Stage 4: Results of the Regression of the Artificial Neural
Network Data Analyses

Results of the trained Artificial Neural Network data
analyses revealed that the trained output variable has a
regression correlation (R) value of unity (1). The validation
data or the fit data generated in the system has a regression
correlation (R) value of 0.99646 units. The testing data
generated also have a regression correlation (R) value of
0.99791 units. However, the Overall regression correlation
(R) value of the predicted optimal (target) result data is
0.99893 units. This indicates that the process input variables
and the process output variables have strong correlations at
an average of 0.99893 units (99.893%). This is an indication
that the data used in the research study are good and fit for
statistical analysis and modeling.

Table 7. Predicted results of ANN analyses

. Predicted
Predicted Output Residual
S/N Ultimate Tensile Ultimate Tensile
Strength (MPa) Strength (MPa)
1 425.9874 94.01259
2 636.1302 -101.13
3 558.6603 -73.6603
4 589.8437 -5.84368
5 518.0085 50.99145
6 528.1659 -36.1659
7 419.2361 128.7639
8 672.3808 -190.381
9 653.9527 -161.953
10 526.9483 -1.94829
11 619.8479 -69.8479
12 664.1948 -128.195
13 618.2879 -94.2879
14 575.3584 -12.3584
15 464.7805 93.21951
16 637.5148 -139.515
17 570.247 -52.247
18 566.8626 -18.8626
19 491.1547 -6..15468
20 530.077 48.923

Table 7 above is the Artificial Neural Network (ANN)
predicted results for the Ultimate Tensile Strength response
variable. The result shows that the predicted optimal solution
for the Ultimate Tensile Strength response variable is
530.077MPa.

The ANN predicted result reveals that the process input
parameters and the process output parameters have strong
Regression or Coefficient of Determination (R) of the
variables with an average of 0.99893 units (i.e. 99.893%).
This is an indication that the data used in the study are good
and fit for adequate modeling and practical application.
Therefore, the predictive model used is suitable for statistical
analyses and modeling.
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4. Discussion of Results

This research study involves using the Response Surface
Methodology (RSM) and Atrtificial Neural Network (ANN)
to optimize and predict weld parameters. The aim of the
optimization process is to determine the most appropriate
percentage combination of the ultimate tensile strength
(response variable) with the optimum values of each of the
input variables, namely welding current (Amps), welding
voltage (Volts) and gas flow rate (L/min.) needed to
adequately optimize (maximize) the ultimate tensile strength
content in the mild steel weldment. The overall target of the
optimization model was to determine the most appropriate
percentage combination of each of the response variables,
namely the liquidus temperature, Welding Time, Heat
Transfer Coefficient, Ultimate Tensile Strength, and
Percentage Elongation in the mild steel weldment, with the
optimum values of each of the input variables, namely:
welding current, welding voltage and gas flow rate needed to
adequately optimize (minimize) liquidus temperature, weld
time and heat transfer coefficient response variables in the
weldment, and adequately optimize (maximize) ultimate
tensile strength and percentage elongation response variables
in the mild steel weldment.

During the experimental welding of the mild steel
specimens, ranges of values of the input variables and the
output variables were observed and recorded, which made up
the experimental data for the analysis. A statistical Design of
the Experiment (DOE) using the Central Composite Design
(CCD) was generated. An experimental matrix consisting of
twenty (20) experimental runs was developed. The input
variables and the output variables make up the experimental
matriXx. The RSM tool used for the Design of the Experiment
(DOE) is the Design Expert Software 10.0.1 (DX.10.0.1).
Central Composite Design was employed in this study owing
to its simplicity and flexibility to variable adjustment and
analyses of process interaction relating to process factor
combinations. It’s also used because of its multi-intput—
output process factor design analysis.

The results of the model analyses revealed a Quadratic
model for the process order requiring the polynomial
analyses selected for each of the response variables. The
Quadratic models selected, which are also the best-fit models,
proved to be the highest-order polynomials where the
additional terms are significant for the process factors and the
model is not aliased. Also, the selected Quadratic models
have an insignificant lack of fit. Models with a significant
lack of fit cannot be employed for optimization or prediction.
The Quadratic models were selected due to there is a
reasonable agreement between the p-value, the Coefficient of
Determination (R?) value, the Predicted R? value, the
Adjusted R? value, and the PRESS value. The summary of
the model design indicates the following for the ultimate
tensile strength response variable: minimum value of
576.379MPa, maximum value of 600.996MPa, mean value
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of 534.65MPa, and a standard deviation of 8.18MPa. The
optimal solution of the response surface methodology
revealed that the optimum solution of the ultimate tensile
strength response variable is 579.000MPa. The model has a
high signal-to-noise ratio with a value of 16.6186. To assess
the strength of the Quadratic Model in optimizing
(maximizing) the ultimate tensile strength response variable,
a one-way Analysis of Variance (ANOVA) table was
generated for the response variable, and the results derived
are shown in Table 5. The Analysis of Variance (ANOVA),
Table 5, indicates that the Welding Current (WC) process
input variable has a more significant effect on the ultimate
tensile strength response variable. However, the RSM
analyses indicate that the desirability of achieving the
optimum solution results is 83.62%.

In validating the adequacy of the Quadratic model based
on its ability to maximize the ultimate Tensile Strength
response variable, the model fit statistics summary, Table 6,
was employed.

The Coefficient Estimation Analyses of the models
showed that the models possess low standard error ranging.
Standard errors should be similar within the type of
coefficient; however, the smaller the standard error, the better
the design result. Variance Inflation Factor (VIF) lies
between one (1) and three-point forty five (3.45) for all the
Quadratic models selected in this research study, indicating
that the Coefficient of Estimation of the input variables to the
response variables is adequate, good, and as well as fit for
more appropriate statistical modeling of the system. When
VIF is greater than ten (10), it can cause bias (error) in the
modeling system, and there would be a need to checkmate
such variables or even replace the experimental trial. But VIF
close to unity is good and fit for adequate modeling of the
response variable. When the calculated VIF is less than 10.00
for all the terms in the design system, it indicates a significant
model in which the input variables are well correlated with
the response.

The ANN analyses in this study were conducted with
predictive modeling software called Neural Power
Algorithm, Version 2.5, which uses the Backpropagation
Network (BPN). The rationale for using the backpropagation
algorithm is because it can perform multiple data training and
analyses for a complex data set. Using the time series or
Artificial Neural Network (ANN) modeling, results shown in
Table 7, it was observed that the predicted optimal solution
for the welding would produce a weldment with an ultimate
tensile strength of an optimum value of 530.077MPa. The
ANN analyses produced an overall strong correlation (R) of
99.893% between the input variables and the output
variables.

This research study has successfully demonstrated and
established that a Response Surface Methodology (RSM) and
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Artificial Neural Network (ANN)) Algorithms can be used
efficiently to optimize and predict mild steel weld metal
variables. This research study employed the use of welding
input variables design to determine the optimal solutions of
the response variables of the mild steel weldment.

In this research study, the development of a second-order
polynomial solution was successfully achieved, authenticated
by statistical and graphical results such as calculated
Standard Error, VIF, Normal Probability Plot, Cook’s
Distance plot, etc. Hence, a scientific methodology to
establish the cause-and-effect relationship between the
process variables using expert systems was successfully
established and well-determined in this research study.

In testing the accuracy of the models in actual
application, conformity tests were conducted by assigning
different values for process variables within their working
limits but different from the design matrix. These tests
conducted revealed that the models developed are good and
adequate for proper statistical modeling of the system and
real-world application and can be employed in
manufacturable qualities, steel manufacturing companies and
industrialization generally. Hence, the optimal solutions
determined by the modeling systems in this research study
can be adopted for real-world applications and will influence
the activities of mild steel production and usage. Therefore,
the application of the optimal solutions from this research
study will be of strategic economic value to the utilizing
companies and in the material usage. This research study will
serve as a reference guide to the users of mild steel material
and its application in welding and industrialization in general.

5. Conclusion

This research study conducted experiments and data
analyses to produce the optimization and prediction models
that will establish the optimal values of liquidus temperature,
welding time, heat transfer coefficient, ultimate tensile
strength and percentage elongation, which are weld metal
response variables from welding current, welding voltage,
and gas flow rate as input variables in TIG welding process
using RSM and ANN techniques. The thesis is “Experimental
Investigation of the Effects of Optimal Process Parameters on
Mild Steel Weldment Strength using Response Surface
Methodology and Artificial Neural Network,” and the topic
of this research study is: “Application of Expert Methods for
Optimizing and Predicting the Ultimate Tensile Strength of
Mild Steel Weldment.”

The design of the experimental matrix for the process
input variables using Central Composite Design (CCD) for
the RSM analyses was done for twenty (20) experimental
runs using the Design Expert Software 10.0.1 (DX10.0.1).
Both the input and the response parameters made up the
experimental matrix. The mild steel specimens were welded
for the experiment. Results were recorded from the weld
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specimens used as the experimental data for the data analysis.
The Universal Testing Machine (UTM) was used to
determine the mechanical properties of the mild steel
weldments. The Artificial Neural Network (ANN) analyses
were done using the software Neural Power Algorithm,
Version 2.5. From the RSM analyses, the optimal solutions
of the process input variables are: welding current,
180.00Amps; welding voltage, 21.672Volts and gas flow
rate, 15.504L/min, while the optimal solutions of the
response variables are: liquidus temperature, 1484.783%;
welding time, 44.000secs; heat transfer coefficient,
238.819w/m®c; ultimate tensile strength, 579.000mpa and
percentage elongation, 22.111%. The RSM analyses
produced the “Desirability” of achieving the optimal
solutions to be 83.62%. The RSM analyses suggested only
the Quadratic models for each of the five responses.

The models have a high significance with the p-values of
all the five response variables less than 0.05 (i.e. p < 0.05),
and all the five response variables possessed Variance
Inflation Factor (VIF’s) that is less than 10 (i.e. VIF < 10).
This affirms that the models have a high Goodness of Fit
(GOF). Results of the ANN analyses produced the predicted
optimal solutions of each of the response variables to be:
liquidus temperature, 1464.490°c; welding time, 53.7132sec;
heat transfer coefficient, 256.663w/m?°c; ultimate tensile
strength, 530.077mpa and percentage elongation, 18.504%.
The input factors and the response variables have an overall
strong Regression (R) of 99.893%. Conclusively, the results
obtained from the two analytical techniques suggest that both
analytical tools can be employed for the effective
optimization and prediction of the weld factors, but the
optimal solutions of the ANN analyses proved to be better
and more robust than those of the RSM analyses because of
its higher Regression or Coefficient of Determination (R)
value of 99.893% from the ANN analyses when compared
with 83.62% produced from the RSM analyses. Hence, the
ANN model is recommended for ideal application and use
and systematic decision-making. This is a great and
innovative improvement in the mild steel weld quality.

The findings in this study also underscore part of the
innovative and novel aspect of this research study, and it
hinges on the optimal solutions and the desirability of
achieving the optimal solutions as given by each of the
analytical tools deployed in this research study and as seen in
the analyses. From the results of the RSM analyses, the
optimal solutions of the process input variables are: welding
current, 180.00Amps; welding voltage, 21.672Volts and gas
flow rate, 15.504L/min, while the optimal solutions of each
of the five response variables are liquidus temperature,
1484.783°C; welding time, 44.000Secs; heat transfer
coefficient, 238.819W/m?c; ultimate tensile strength,
579.000MPa and percentage elongation, 22.111%. The RSM
analyses produced the “Global Desirability (Dg)” of
achieving the optimal solutions to be 83.62%. From the ANN
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analyses, the predicted optimal solutions for each of the five
response variables are: liquidus temperature, 1464.490°C;
welding time, 53.7132Secs; heat transfer coefficient,
256.663W/m?°c; ultimate tensile strength, 530.077MPa and
percentage elongation, 18.504%. The input factors and the
response variables have an overall strong Regression (R) of
99.893%. Another key finding from this research study is that
the Welding Current (WC) process input variable has the
most significant effect on the ultimate tensile strength
response variable of the mild steel weldment.

Based on the results of this novel, investigative and
innovative research study, which was conducted on 60mm X
40mm X 10mm mild steel specimens, there is a need for
further research to be conducted on larger steel plates with
higher thicknesses in order to ascertain the validity of the
claims of the optimal solutions obtained from this research
study, putting into consideration other external and internal
factors that can affect the quality of the welds in higher
thickness steel plates. For instance, there would be an
increased heat input requiring an adjustment of the current
and voltage ranges/settings and an increased gas flow rate
when welding higher thickness mild steel plates in order to
achieve a better, stronger, more efficient and quality weld
joint. The analytical tools used in this research study could
only analyze the data obtained from the welding of the thin,
mild steel plates used in this research study, which produced
the optimal solutions. This is the limitation of this current
research study, for with higher thickness mild steel plates, the
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