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Abstract 

              this work deals about 1,3-Dipolar 

cycloaddition reactions between 1-allyl-5-

chloroindoline-2,3-dione 2 and 4-Chlorobenzaldoxime 

3 proceed under mild conditions, with complete 

regioselectivity. A DFT study was conducted by 

GAUSSIAN 09W software using the B3LYP functional 

and a 6-31G basis set elucidated the reactivity, 

selectivity, and mechanisms of such direct synthesis. 

The present study demonstrates that the theoretically 

obtained results were found to be consistent with the 

experimental data reported. 

 

Keywords: 1,3-Dipolar cycloaddition, DFT, 1-allyl-

5-chloroindoline-2,3-dione, 4-Chlorobenzaldoxime,1H 

NMR, 13C NMR. 

I. INTRODUCTION 

In recent years, the chemistry of heterocycles or 

heteroatoms has developed remarkably, and the 

majority of compounds developed in the fields of 

biological and industrial pharmaceutical chemistry are 

based on this family of molecules [1, 2]. Indeed, it 

should be noted that two thirds of the compounds 

known in the literature are heterocycles [3, 4]. It is 

therefore not surprising that this class of compounds 

has become the focus of a large community of 

experimental chemists and theorists. Generally, Isatin 

and its derivatives constitute a class of heterocyclic 

compounds which have interesting pharmacological 

and biological properties [5-8]. They are used in a 

very broad way for their anxiolytic [9, 10], 

anticonvulsant[11-13], muscle relaxant, antiviral, anti-

inflammatory[13-19], anticancer [20-23], 

anticorrosive[24, 25] and analgesic [26, 27] action. 

The study of the reactivity of aromatic 

heterocycles can be directly related to the study of 

their electrophilic substitution reaction [28, 29], 

because these systems are very rich in electrons.  

 

Moreover, due to the conjugation possessed by 

these systems, they can participate in cycloaddition 

reactions of the 1,3-type dipolar cycloaddition [30]. 

The cycloaddition reaction between alkynes and 

nitrous oxide provided one of the simplest methods for 

producing synthetically useful cycloadducts of 

isoxazoline and dioxazoline types. The quantum 

theory of reactivity allows us not only to elaborate the 

reaction mechanisms and the energy profiles but also 

to justify and predict the experimental 

chemoselectivities [31], stereoselectivities [32] and 

regioselectivities [33]. Several theories have been 

developed for the study of chemical reactivity, 

functional density theory (DFT) has emerged as the 

most popular in recent decades. Slater’s [34] 

simplification of the Hartree–Fock [35, 36] method, 

the theorems by Hohenberg and Kohn [37], and the 

orbital-based Kohn–Sham [38] equations mark the 

beginning of practical DFT calculations.  Kohn–

Shambased DFT calculates the energy of a non-

interacting reference system and approximates the 

difference to the real system using the exchange and 

correlation functionals. The first exchange and 

correlation functionals depend only on the electron 

density itself [39]. 

In this paper, we undertake a systematic study of 

DFT calculation to recognize the operative mechanism 

that occurs in the 1,3-dipolar cycloaddition reaction 

between allyl 5-chloroisatian and chlorobenzaldehyde, 

by powerful tools for prediction of reactive sites of 

systems Molecules [40]. Some of these concepts are 

well known by chemists as electronic chemical 

potential (m) and electronegativity (c). New concepts 

such as electrophilicity (ω) and hardness (η) have been 

derived from the fundamental equations of the DFT 

[41]. 

In our work, we used the B3LYP method which is 

the most successful variant of the DFT (Density 

Functional Theory) methods [42-44]. Our choice of 
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this method is justified by the fact that it takes into 

account the electronic correlation on the one hand and 

by the fact that it is less costly in computation time by 

comparing with the other correlation methods as CI 

Interaction) or MP2 (Moller-Plesset of order 2). 

The calculation of the atomic loads was carried out 

using Mulliken's natural and electrostatic population 

analyzes (Chelp, Chelpg and MK (Merz-Kollman).) 

All the calculations were carried out using the 

GAUSSIAN program 09W [45-46]. 

II. RESULTS AND DISCUSSION  

A. Synthesis and spectra: 

The mechanism of 1,3-dipolar cycloaddition 

reactions [47] is characterized by a 

nucleophilic/electrophilic interaction. In this work we 

have studied the reactivity of nitrile oxide on the 

dipolarophile. First, 5-Chloroisatin was condensed 

with propargyl bromide in the presence of potassium 

carbonate as the base, was carried out in 

dimethylformamide with stirring at 25°C, under the 

conditions of phase transfer catalysis. It thus leads to 

the formation of 1-allyl-5-chloroindoline-2,3-dione 

2(Scheme 1). 

Scheme 1 

Then, the action of 4-Chlorobenzaldoxime 3 

on 1-allyl-5-chloroindoline-2,3-dione 2dissolved 

chloroform in the presence of sodium hypochlorite 

(NaOCl) at a temperature between 0°C leads to 

compounds possessing the isoxazoline nucleus where 

the electron-attracting or electron donor substituent of 

the dipolarophile and also a dioxazoline nucleus 

(Scheme 2). Regioisomer structures were established 

on the basis of 1H NMR, 13C NMR spectral data. 

Scheme 2 
B. DFT Calculation: 

A theoretical study was also carried out in 

order to define the regiochemistry of the dipolar-1,3-

cycloaddition of  4-Chlorobenzaldoxime3 and the 

dipolarophile [48]. The optimized structures and the 

HOMO and LUMO energies of the compound 2 and 

4-Chlorobenzaldoxime 3 are represented according to 

the figures below. 

 

Figure 1: Optimized Structure of Compound 2 

 
HOMO                      LUMO    

Figure 2: The molecular orbitals of compound 2 by 

DFT / B3LYP / 6-31G. 

 
Figure 3: Optimized structure of 4-

Chlorobenzaldehyde 3 

 

 
HOMO            LUMO     

Figure 4: the molecular orbitals of 4-

Chlorobenzaldoxime 3 by DFT 
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C. Prediction of the character (NED or IED) of the 

reaction 

                  We calculated the HOMO/LUMO gaps for 

the two possible combinations as well as the electronic 

chemical potential and the electrophilicity index ω of 

the reagents in order to demonstrate the NED 

(Electronic Normal Demand) or Reverse Electronic 

Demand the reaction. In our case and granting the 

analysis of FMO boundary molecular orbitals, the 

HOMO oxime - LUMO Alcene and HOMO Alcene - 

LUMO oxime energy differences are respectively 3.32 

eV and 5.02 eV. These results suggest that the reaction 

is controlled by the interaction HOMO oxime - 

LUMO Alkene. This reaction was analyzed using the 

local and global indexes defined in the context of the 

functional density theory [49, 50]. The calculation 

parameters already mentioned are shown in Table 1 

below. 

Table 1: Quantum chemical parameters of dipole and dipolarophile in eV 

molecules E(HOMO) E(LUMO) EA PI 𝛘 𝜂 S 𝜔 𝜇 𝜟𝜇 

2 -6,6598 -3,1817 3,1817 6,6598 4,9208 1,7390 0,5750 6,9620 -4,9208 - 

3 -6,5099 -1,6342 1,6342 6,5099 4,0721 2,4378 0,4102 3,4010 -4,0721 0,8487 

Recent studies have shown that these indices are 

useful and powerful tools for studying nucleophilic 

and electrophilic reactions for a wide variety of 

systems. If the difference in chemical potential 

between 4-Chlorobenzaldehydoxime and alkyne is 

calculated, the direction of charge transfer can be 

determined. The result (Δ (μoxime-μ2) = 0.848 eV) 

indicates that the net charge transfer will occur from 

the nitrile oxide to the alkene.4-Chlorobenzaldoxime 

acts as a nucleophile and the alkene as an electrophile. 

Considering the values ω of the overall electrophilicity, 

the largest value corresponds to 1-allyl-5-

chloroindoline-2,3-dione, which implies that the 

dipolarophile acts as an electrophile. 

 In conclusion, the three theoretical approaches 

(GapsHOMO/LUMO, electronic chemical potentials μ, 

values of the electrophilicity indices ω) of the 1,3-

dipolar cycloaddition reaction between the dipole and 

the dipolarophile have a NED character (normal 

electronic request) . 

Use of Fukui indices: 

The Fukui nucleophilic indexes f- (and local softness 

S-) for dipolarophile 2 and electrophilic f+ (and local 

softness S +) for the dipole are summarized in the table 

below: 

Table 2: Relative indices of electrophilicity, nucleophilicity (in eV) and values of the Fukui fk condensed function for 

dipole and dipolarophile junction atoms [51]. 

 

 

 

 

 

From a local point of view, the relative electrophilicity 

indexes S+
k/S-

k (S-
k/S+

k) describe the electrophilicity 

of an atomic center compared with its own 

nucleophilicity .The site with the largest S+
k/S-

k ratio 

is the most likely site for nucleophilic attack and the 

one with the largest S-
k/S+

k, most likely to interact 

with an electrophile. According to Table 6, the most 

favored electrophilic/nucleophilic interaction will take 

place between the C21 carbon of the dipolarophile 

which is the most electrophilic site and the C11 

carbon of the dipole which is the most nucleophilic 

site. 

 

III. EXPERIMENTAL SECTION 

 

 A. Analytical techniques 

 Melting points were determined via the 

use of open capillaries with an Electrothermal melting 

point apparatus. The 1H and 13C NMR data were 

obtained on a Bruker Avance 300 MHz (1H) and 75 

MHz (13C) NMR in CDCl3 solution. Chemical shifts 

for proton NMR are reported in δ (ppm) downfield  

 

 

 

 

 

from tetramethylsilane as an internal standard. 

Coupling constants (J) are in Hz. The following 

abbreviations are used to describe peak patterns where 

appropriate: s,  

singlet; d, doublet; dd, double doublet; t, triplet; q, 

quartet; dt, double triplet; m, multiplet.  Flash column 

(Silica Gel, Premium Rf, 200-400 mesh, Sorbent 

Technologies) and thin layer chromatography 

reactions were performed on silica gel with indicated 

solvent systems. 

  

B. Synthesis 

1. Synthesis of dipolarophile 

                     5-Chloro-1H-indole-2,3-dione (0.4 g, 

2.20 mmol), potassium carbonate (0.5 g, 3.3 mmol) 

and tetra-n-butylammonium catalyst (0,1g, 0,3mmol) 

was dissolved in DMF (15 mL), then, 3-bromoprop-1-

ene (0.34 mL, 2.97 mmol) was added dropwise with 

stirring at room temperature for 48 hours. The product 

was obtained in 89% yield after a simple decantation 

and column purification. 

 

 Atomes f+
k f-

k S+
k/S-

k S-
k/S+

k 

2 
C19 -0,0011 -0,0017 0,6816 1,4669 

C21 0,0898 0,0803 1,1178 0,8945 

3  
C11 0,1067 0,1739 0,6138 1,6291 

O15 0,1747 0,1290 1,3542 0,7384 
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1-allyl-5-chloroindoline-2,3-dione (2) : Yield: 97%; 

mp: 140-142; Rf=0.78 (Ethyl acetate / hexane: 1/2). 1H 

NMR (CDCl3; 300MHz) δppm 7.52-7.58 (m, 2H, HAr); 

6.89 (d, H, HAr, 3JH-H=9Hz); 5.77-5.90 (m, 1H, CH); 

5.30-5.35 (m, 2H, CH2); 4.38 (d, 2H, CH2, 4JH-H=3Hz). 
13C NMR (CDCl3; 75MHz) δppm: 182.18 (C=O); 

157.34 (N-C=O); 149.07, 129.67, 118.93 (Cq); 137.64, 

130.02, 112.00 (CHAr); 125.25 (C=CH); 118.41 

(C=CH2); 42.63 (CH2). 

 

2. General procedure for preparation of cycloadduts: 

0.2 g (0.903 mmol) of dipolarophile 2 and 1.2 

equivalent of 4-Chlorobenzaldoxime 3 was added to a 

solution of chloroform (12 mL), when the mixture 

reaches 0°C, 4 mL of sodium hypochlorite (NaOCl) 

was putted and the mixture is left to stir for 4 hours, 

the reaction is followed by TLC and the compound 

obtained purified and recrystallized from ethanol. 

5-chloro-1-((3-(4-chlorophenyl)-4,5dihydroisoxazol-

5-yl)methyl)indoline-2,3-dione: Yield: 75% ; mp: 

210-215; Rf=0.55; (Ethyl acetate/Hexane (5:1)). 1H 

NMR(CDCl3; 300MHz) δppm 7.55-7.61 (m, 4H, HAr); 

7.40 (d, 2H, HAr, 3JH-H=9Hz); 7.21 (d, 1H, HAr,
3JH-

H=6Hz); 5.04-5.14 (m, H, CH); 3.92-4.09 (qd, 2H, 

CH2,3 JH-H =18Hz , 4JH-H=6Hz); 3.21-3.56 (qd, 2H, CH2, 
3JH-H =12Hz, 4JH-H =6Hz);13C NMR (CDCl3 ; 

75MHz) δppm: 181.55 (C=O); 158.57 (NC=O),149.45, 

145.81, 136.69, 130.03, 127.12, 116.76 (Cq); 138.03, 

129.16, 128.08, 125.07, 113.16 (CHAr); 79.39 (CH), 

44.02, 38.05 (CH2).  

5-chloro-3'-(4-chlorophenyl) -1-((3-(4-chlorophenyl) -

4,5-dihydroisoxazol-5 yl)methyl) spiro [indoline-3,5'-

[1,4,2]dioxazol]-2-one: Yield : 55%; mp : 224-228; 

Rf=0.53 (Ethyl acetate/Hexane (4: 1)). 1H NMR 

(CDCl3;. 300MHz). (CDCl3) δppm 7.80 (d, 2H, HAr, 
3JH-H =6Hz =8.4Hz); 7.50 (d, 2H, HAr, 4JH-H =6Hz 

=3.6Hz); 7.48-7.45 (m, 6H, HAr); 7.19 (d, H, HAr, 3JH-H 

= 9Hz, 4JH-H =6Hz); 5.12-5.05 (m, H, CH); 3.87-4,06 

(qd, H, CH2, 3JH-H= 15Hz,4JH-H= 6Hz); 3.21-3.55 (qd, 

H, CH2,3JH-H= 15Hz,4JH-H= 6Hz). 13C NMR (CDCl3; 

75MHz) δppm: 168.12 (NC=O); 166.03, 162.00 

(C=N); 141.45, 138.63, 136.51,130.20, 122.62, 120.05 

(Cq); 133.39, 128.52, 128.10, 126.77, 126.65, 126.62, 

111.11 (CHAr); 79.39 (CH); 44.06, 35.71 (CH2). 

 

3. Computational methods 

 All calculations were performed using 

Gaussian09 suite of programs. The full geometrical 

optimization of all structures and transition states (TSs) 

was realized with the Density Functional Theory (DFT) 

using non-local B3LYP hybrid functional and the 6-

31G basis set [52].  

In particular, For an element A, the (first) ionization 

potential is defined as the energy necessary to tear an 

electron from an A atom isolated in the gaseous state: 

IP = -EHOMO 

This quantity is generally positive (negative ΔU): the 

fixation of an electron releases energy. This is 

predictable from the orbital interpretation of the 

phenomenon: 

EA = -ELUMO 

The electronic chemical potentials (μ) and chemical 

hardness (η) of the reactants under study were 

evaluated in terms of the one-electron energies of the 

frontier molecular orbital, using the following 

equations [53, 54]: 

μ = (EHOMO + ELUMO)/2 

𝜂 =
𝐼𝑃 − 𝐸𝐴

2
 

Softness S is defined as the inverse of the hardness. 

σ =
1

η
 

The electrophilicity index ω is related to 

electronegativity by the following relation [55]: 

ω = 𝛘2/2ɳ 

The Positive and Negative Fukui functions are defined 

using the left and right drifts. The condensed form of 

Fukui functions in a molecule with N electrons has 

been proposed by Yang and Mortier [56]: 

• For nucleophilic attack 

f+ = q(N+1) – qN 

• For electrophilic etching 

f- = qN – q(N-1) 

• For free radical attack 

f° = (qN+1    +   qN-1)/2 

q(N): electron population of the atom k in the neutral 

molecule. 

q(N + 1): electronic population of the atom k in the 

anionic molecule. 

q(N-1): electronic population of the atom k in the 

cationic molecule. 

 

IV. LOCAL SOFTNESS SK 

 

 The condensed local softnesses Sk
± can be 

easily calculated from the condensed Fukui functions 

Sk
± and the overall softness S: 

Sk
+ = S[ qk(N+1) - qk(N) ]= S f+

k 

Sk
- = S[ qk(N) - qk(N-1) ]= S f-

k 

 

V. CONCLUSION 

 

 In this work, we used a systematic 

theoretical study on the regioselectivity in 1,3-dipolar 

cycloaddition reactions of 1-allyl-5-chloroindoline-

2,3-dione 2 using DFT method that, was conducted  

with the B3LYP method as implemented with the 

Gaussian 09 program package, in order to understand 

the mechanism and reactivity between dipolarophile 

and 4-Chlorobenzaldoxime. This theoretical study 

enabled us to confirm the results obtained 

experimentally 

. 
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