Industritrial Effluents Managed by Treating it using Indegeiously Preapred Cation-Excahnger from Agricultural Waste

Ms. Niti Sakhuja

Department of Applied Sciences Seth Jai Parkash Mukand Lal Institute of Engineering and Technology(Chotta Bans)Radaur(JMIT) Yamunanagar, Haryana,India

Abstract

Industrial waste means the waste produced by industries during their manufacturing processes and mining operations. .Some examples of industrial wastes are chemical solvents, pigments, sludge, metals, ash, paints, sandpaper, paper products, industrial byproducts, metals, and radioactive wastes. The managing of industrial waste has become a serious problem. Most industries produce waste water and its control has become a serious environmental threat. Its removal had become a challenging task for the environmentalist and engineers. Several methods have been developed for the removal of various contaminants from surface and waste water from various industries. The cation exchanger from wheat straw were used for the treatment of effluents of various industries like paper mill, distillery and steel industry. The cation exchanger made from wheat straw were subjected to various studies like exchange capacity, exchange equillibria, exchange kinetics, effect of concentration of electrolyte effect of flow and particle size on exchange. This newly formed Cation Exchanger has been used for treatment of various effluents from industries. The average exchange capacity is 0.9meq/gm as compared to synthetic cation exchanger *i.e* 1.4 to 2.9 meq/gm. But these are economically more viable as compared to synthetic exchangers. The commercially available product is R250/500gm and ours is Rs 40/500gm apprx. After tertiary treatment of effluent of paper, steel and distillery plant has been successfully used for irrigation purposes.

Keywords - *Cation exchanger, Effluent, Sulphonated Wheat Straw, contaminants, industrial*.

I. INTRODUCTION

The treatment of industrial effluents is a challenging topic in environmental science, as control of water pollution has become of increasing importance in recent years .Agricultural waste like wheat straw is abundantly available in developing countries like India. Wheat straw can be used for the manufacturing of ionexchanger and the same can be used for the treatment of various industrial effluents .The effluent of various industries should be tertiary treated so that it can be used for various useful purposes. The traditional tertiary treatment is being done by reverse osmosis, adsorption, ion-exchange techniques etc. This manuscript deals with treatment of paper mill effluent, distillery effluent and steel mill effluent by indigenously prepared cation exchangers from agricultural wastes.i.e wheat straw. Today there is a big need for exploring the possibilities to convert wheat straw into cation exchangers and ever growing realization among environmentalist and chemist to prepare new cation exchangers from industrial and agricultural wastes.

II. EXPERIMENTAL

A. STEP-1 Conversion of wheat straw into Cation Exchanger

Conversion of wheat straw into cation exchanger is an indigenous approach for making use of agricultural waste for the production of cation exchanger. The cation exchangers from wheat straw can reduced the pollution load of distillery spent wash to such an extent that it can be successfully used for irrigation purpose or may be drained into various water bodies. The cation exchanger has been prepared after reacting the wheat straw with ethyl alcohol to remove soluble gradients. The exchangers can also be prepared by oxidative treatment and sulphonation .We have synthesized cation exchanger by sulphonation of wheat straw .It was tried with chlorosulphonic acid and sulphuric acid under various conditions, then washing was given with distilled water, till the filtrate was free from sulphate ion. The washed product was dried and analyzed. The dried product was screened and graded with mesh sieves of different porosity.

B. STEP-2 Fundamental applications of cation Exchanger

After the cation exchanger was formed ,it was subjected to various studies viz. ash content, moisture

content, sulphur, carbon exchange capacity, exchange equillibria, exchange kinetics, effect of concentraton of electrolyte on exchange, effect of flow and effect of particle size etc.The cation exchangers were converted into various forms viz hydrogen form, sodium form, potassium form magnesium an barium form.The result obtained were then compared with synthetic cationexchangers as shown in table(1-5)

Benzene	1 gm	72 hour	1.3782
Acetone	1 gm	10 min	1.0705
Acetone	1 gm	24 hour	1.1143
Acetone	1 gm	48 hour	1.1279
Acetone	1 gm	72 hour	1.1627

TABLE-1 -Proximate analysis of S.W.S

1.Proximate Analysis	% by Mass
(as received basis)	
Ash Content	3.82
Moisture content	10.01
Volatile Matter	68.56
Fixed Carbon(by diff.)	19.23
2. Ultimate analysis	
Carbon	43.64
Nitrogen	0.54
Sulphur	less than 0.02
Hydrogen	16.09
Ash	4.24
Oxygen	remainder

Table 2- Moisture Content and Ash Content For Different Forms of Cation Exchanger from SWS

Forms of Cation Exchanger from 5 w5					
S.No	Forms of	% Ash	% Moisture		
	SWS	Content	Content		
1	Ba ⁺	16.02	17.35		
2	Na ⁺	13.89	12.90		
3	K ⁺	12.98	13.82		
4	Mg^+	13.01	13.20		
5	H^+	14.04	13.97		

Table-3 Density of Swollen Form of SWS

Solvent	Amount	Time of	Density
	of SWS	Contact	
Water	1 gm	10 min	0.8989
Water	1 gm	24 hour	0.9243
Water	1 gm	48 hour	0.9622
Water	1 gm	72 hour	0.9954
Benzene	1 gm	10 min	1.2111
Benzene	1 gm	24 hour	1.2521
Benzene	1 gm	48 hour	1.3011

Table-4 Exchange Capacities of	Various	Cation-
Exchangers.		

Trade	Porosity/Type	Exchange
Name		Capacity(Meq/gm)
Duolite	10 W	3.0
C-3		
Duolite	High	8.4
A-2	-	
Duolite	High	2.9
C-10	_	
Zea -Karb	High	1.6
Wafatit	Low	2.5
Zeolit	Low	2.6
215		
SWS	Low	0.9

Table-5 Exchange Capacities of Various Forms of SWS

S.No	Form of	Exchange Capacity in
	SWS	Meq/gm
1	Ba^+	1.1009
2	Mg^+	1.482
3	\mathbf{K}^+	1.0392
4	NH^+	1.1140
5	Ca^+	1.402
6	H^+	0.921
7	Na ⁺	1.2217

Table 6- Treatment of Distillery Effluent with SWS

S.N	Paramete	Untreat	Treate	% age with
0	rs	ed	d	SWS
		Effluent	Efflue	
			nt	
			with	
			SWS	
1	D.0	0.4	4.8	
2	Acidity	480	80	72
		ppm	ppm	
3	Chloride	185.8	97.8	88.02
	Content	ppm	ppm	
4	BOD	445	243	49.20
5	COD	9760	2429	75.91
6	Alkalinit	270	170	43.60 ppm
	у	ppm	ppm	
7	Free	300	117	63.70 ppm
	CO_2	ppm	ppm	
8	Total	4900	1525	75.89 ppm

	Hardness	ppm	ppm	
9	Permane	2767	573	74.80 ppm
	nt	ppm	ppm	
	Hardness			
10	Tempora	2133	952	1.09 ppm
	ry	ppm	ppm	
	Hardness			
11	Total	99,314	68763	32.15
	Solids	ppm	ppm	
12	Dissolve	85,432	54675	34.15
	d Solids	ppm	ppm	
13	Suspend	13,882	14,088	20.11
	ed Solid	ppm	ppm	

Table 7 Treatment of Steel Mill Effluent with SWS

S.No	Paramet	Untreate	Treate	% age with
	ers	d Paper	d	SWS
		Mill	Paper	
		Effluent	Mill	
			Efflue	
			nt with	
			SWS	
1.	pН	7.9	6.4	
	-			
2.	D.0	2.9	6.9	
3.	Acidity	64 ppm	45	33.10
			ppm	
4.	Chlorid	182.5	96.6	47.20
	e	ppm	ppm	
	Content			
5.	BOD	185	57	69.20
6.	COD	370	209	45.81
7.	Alkalini	220	150	31.60 ppm
	ty	ppm	ppm	
8.	Free	28 ppm	19	33 ppm
	CO_2		ppm	
9.	Total	3860	2000	49.12 ppm
	Hardnes	ppm	ppm	
	S			
10	Perman	3360	1810	50.80 ppm
	ent	ppm	ppm	
	Hardnes			
	S			
11	Tempor	500	190	51.09 ppm
	ary	ppm	ppm	
	Hardnes			
	S			
12	Total	1854	1400	32.15
	Solids	ppm	ppm	
13	Dissolv	1150	730	31.15
	ed	ppm	ppm	
	Solids			
14	Suspen	704	670	30.11

ded p Solid	pm	ppm	
----------------	----	-----	--

Table 8 Treatment of Steel Mill Effluent with SWS

S No	Parameters	Untreate	Treated	% age
5.110	i arameters	d Paper	Paper	with
		Mill	Mill	SWS
		Effluont	Effluon	5445
		Linuein	t with	
1		2.6	3003	
1.	рн	2.0	4.0	
-	5.0	0.5	• •	
2.	D.0	0.5	2.8	
3.	Acidity	47000	1810	62.10
		ppm	ppm	
4.	BOD	5220	1930	65.20
		ppm	ppm	
5.	COD	370ppm	209pp	45.81
			m	
6.	Alkalinity	10600	4050	98.60
	-	ppm	ppm	ppm
7.	Free CO ₂	84 ppm	23 ppm	74 ppm
8.	Total	19000	7400	66.12
	Hardness	ppm	ppm	ppm
9.	Permanent	15000	4900	50.80
	Hardness	ppm	ppm	ppm
10	Temporary	4000	190	51.09
	Hardness	ppm	ppm	ppm
11	Total	81000	59000	28.15
	Solids	ppm	ppm	
12	Dissolved	12000	39000	28.12
	Solids	ppm	ppm	
13	Suspended	69000	20000	71.11
	Solid	ppm	ppm	

III. RESULT AND DISCUSSION

The conversion of wheat straw into cation exchanger is an indigenous approach for using agricultural waste for the production of cation-exchangers .The average value of exchange capacities of various forms of cation -exchanger from wheat straw was found to be 0.9meq/gm only while the exchange capacity of synthetic cation exchangers is app (1.9 to 2.9 meq/gm).But the cost of formation of cation-exchanger from wheat straw in finished form is approximately (Rs40/500 gm) as compared to commercially available cation exchangers appx(Rs 300/500gm).Thus the price of cation-exchanger from wheat straw is quite less and economically more viable as compared to synthetic cation exchangers and can be generated easily by dipping them in decinormal hydrochloric acid for 24 hrs. There is no storage problem for them. It has been observed that effluents of various industries when treated with S.W.S showed considerable reduction in various physico-chemical parameters such as D.O, Acidity, Alkalinity, B.O.D, C.O.D, Free CO_2 and Total suspended solids as shown in table (6 to 8) . The cation excahnger from wheat straw can reduce the pollution load of industrial effluents to such an extent that it can successfully used for irrigation purposes or after treatment may be drained into water bodies.

REFERENCES

- [1] Dbrowski, A. et al. (2004), Chemosphere 56, 91-106 : Selective removal of the heavy metal ions from waters and industrial wastewaters by ion exchange method.
- [2] Bauman, W.C Skidmore, J.R., P.4R, (1947), Abstracts of the 112th meeting of the American chemical Society, "Recent Advances in the Manufacture of High Capacity Cation Exchange Resins".
- [3] Gujral B.S, Rastogi,S.N and Anand M.L Dec 22-23,P.1-8(1984) ,A Study of conversion of rice husk to cation exchanger, National Seminar on social perspective for utilisation of Indigenous science and technology IIT Kanpur.
- [4] Gujral B.S and Sharma Vijay, (1992), Physico chemical studies of low cost cation-exchanger from Paper Mill sludge and their suitability for the treatment of industrial effluents, Water Environment federation Annual Conference Singapore.
- [5] Sharma Vijay, Kapoor R.P ,(2004),Conversion of waste sludge of paper mill into cation exchanger and treatment of paper mill effluent ,Indian National Congress Chandigarh.
- [6] Mischissin, Stephen G. (7 February 2012). "University of Rochester - Investigation of Steam Turbine Extraction Line Failures" (PDF). Arlington, VA. pp. 25–26. Archived from the original (PDF) on 23 September 2015. Retrieved 23 February 2015.
- [7] Shkolnikov, Viktor; Bahga, Supreet S.; Santiago, Juan G. (August 28, 2012). "Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation" (PDF). 14 (32). Phys. Chem. Chem Phys.