Antiurolithiatic Property of *Pratia Nummularia* Kurz, *Cyperus Rotundus* Linn and *Citrus Latipes* and Comparison of Their Antiurolithiatic Properties with Cystone, a Herbal Drug

O.Ibopishak Singh^{#1}, A.Bimola Devi^{*2}

[#]Associate Professor, Chemistry Department, Modern College(affiliated to MU, Canchipur), *Associate Professor, Chemistry Department, Modern College(affiliated to MU, Canchipur), [#]Chemistry Department, Modern College, Imphal East - 795005, Manipur, India

ABSTRACT

Medicinal plants are used to combat diseases from the dawn of civilization. These plants have rich resources of therapeutic agents for the prevention of various ailments like urolithiasis, diabetes, hypertension etc. Urolithiasis is the condition where urinary calculi are formed in the tract. It is a common disorder estimated to occur in approximately 12% of the population, with a recurrence rate of 70-80 % in males and 47-60% in females. It causes health problems such as severe pain, urinary tract obstruction and infection that adversely affect well being individuals. Treatment option includes shock wave lithotripsy, ureterocopy,

Keywords: Medicinal plants, Antiurolithiatic, Lithotripsy, Ureterocopy, Diabetes, Herbal drug

I. INTRODUCTION

Medicinal plants are used to combat many diseases from the dawn of civilization. These plants are the rich source of therapeutic agents for the treatment and prevention of many ailments. These plants and their traditional use are the most economic and low side effective method of choice for the treatment of many diseases and ailments for the worldwide .India is one of the world's 12 biodiversity centers with the presence of over 45000 different plant species ^[11]. Many of these plants are rare and endemic and found only in the forest regions. Some plants are very effective in the antiurolithiatic property.

Stone formation in the kidney and gall bladder is very common now-a-days. It is estimated that 12% world population experience renal stone diseases with a recurrence rate of 70-80% in male open or laproscopy stone removal etc. which are costly and painful. Many synthetic drugs are used for the antilithiasis but overuse of synthetic drugs which results in the higher incidence of adverse drugs reactions have motivated humans to return to nature for safe remedies. Medicinal plants have less side effect and more economically viable. In the present paper, an attempt has been made for the antiurolithiatic property of some plants in the vitro condition i.e. one in the aqueous medium and other in the urinary medium. And also observe the comparison of their antiurolithiatic properties with Cystone, a herbal drug.

and 47-60% in female $^{[2,3]}$. Urinary calculi are the third most common affliction of the urinary tract which are exceeded by the urinary tract infections and prostate diseases $^{[4]}$.

Kidney stone diseases is a most ancient and common affliction in human beings with about 1-15% of the world population affected. No age is spread and no country or ethnic group is protected from this common clinical problem. Although a few individuals die as a direct consequence of stone diseases, it does lead to substantial morbidity from pain, urinary tract infection and obstructive uropathy. Now-a-days people know the effective programme for both treatment and prevention of stone diseases .

Factors responsible for the stone formation include age, sex, occupation, social class, season of

the year and climate, dietary and fluid intake and genetic predisposition ^[6,7].Genetic predisposition is essential endorsed by the most frequent episodes of stone formation in the family members of stone formers as compared to non-stone formers. Nevertheless some environmental factors (likely to be dietary habits) shared by family members are believed to be relatively more important that genetic predisposition. A hot sunny climate may influence stone formation through inducing dehydration with increased perspiration and increased solute concentration with decreased urine volume, coupled with inadequate liquid intake. This is possibly through the greater exposure to UV radiation which eventually results in an increased vitamin D production conceivably correlated with seasonal variation in Ca and excretion to the urine. Therefore stone formation is a process that occurs due to imbalance between promotion and inhibitors in the kidney^[8]. Hence in brief, factors affecting stone are urine output(hence the concentration). The concentration of specific constituent, urine p^H, infection or damage within the urinary tract ^[9].

Physicians usually do not treat kidney stone, rather they just medicate the pain until the stone pass out their own. The easiest way is the open renal surgery. But the vegetarian diet, heavy on herbs and liquids, can be helpful in the prevention and treatment of kidney stone. So the best way to prevent kidney stone is to drain plenty of water and take a vegetarian high in magnesium. Hence the best safety way for the treatment of stone is the use of medicinal plants. In Manipur, the north east state of India, traditional knowledge for the treatment of stones in kidney and its tract are widely used. In such treatment, aqueous extract of medicinal plants are mainly used. The present study is focused on the collection of crude from the aqueous extract of the plants and study of their chemoinhibitory effects on mineralization of calcium phosphate and calcium oxalate in urinary medium in vitro condition.

Different experimental procedures have been proposed to study growth and inhibition of stone formation in vitro using synthetic diluted or natural supersaturated aqueous solution of urine are taken. Crystallization is triggered by adding calcium oxalate and phosphate to the reaction medium. The effects of hydromethanolic extracts of *Pratia nummularia* Kurz^[10], *Cyperus rotundus* Linn^[10] and *Citrus latipes*^[10] were studied on the growth and inhibition of calcium oxalate monohydrate(COM) and calcium phosphate(CP) in vitro. In the vitro study, we show that plant extracts are used in urine owing to its therapeutic potential as a preventive agent by hindering the formation of COM and CP crystals.

II. EXPERIMENTAL

Manipur is rich in medicinal plants. The healthy plants(leaf, whole parts and fruit) of *Pratia nummularia* Kurz, *Cyperus rotundus* Linn and *Citrus latipes* are collected from the different parts of Manipur. The herbarium of the plants is already reported. The parts of the plants were washed, dried, chopped and powdered. In the meantime Cystone, a

herbal drug, manufactured by the Himalayan company, was procured from the pharmacy. The dried powdered leaf and fruit of the three plants were socked in 50% aqueous methanol in a soxhlet extractor under hot condition^[11,12]. The extract were distilled under reduced pressure using Rotary Vacuum Evaporator(RII) to produce crude mass which further spread in Petridis and kept in desiccators.

Table I: Medicinal plants with scientific and local names and plant used parts.

SL.No.	Scientific name	Local Name	Part used
1	Pratia nummularia Kurz	Kihomman	Leaf
2	Cyperus rotundus Linn	Sembang Kaothum	Whole parts
3	Citrus latipes	Heiribob	Fruit

A. Collection of Urine

Urine was collected from a healthy male(30 years) who does not have any stone cases, in a sterilized container and camphor was added as

preservative. It is so required just as solvent to mimic the natural solvent system. The freshly collected urine was always used in the experiment.

Water contents of the three plants were determined and are shown in Table II.

Table II: Water content

Sl.No.	Plants	Parts	Mass of plant extract before	Mass of plant extract after drying(g)	Mass of water content(g)
			drying(g)		,
1	Pratia nummularia Kurz	Leaf	3.2059	0.7240	2.4810
2	Cyperus rotundus Linn	Whole part	1.0260	0.2670	0.7590
3	Citrus latipes	Fruit	2.6340	0.2580	2.3760

Inhibitory experiments of the plants including blank reading both in aqueous and urinary media were performed. All the inhibition experiments were performed according to T.V.RK Rao ^[13]. 0.01M each of CaCl₂ and Na₃PO₄ were taken for CP crystallization. Similarly 0.01M each of CaCl₂ and Na₂OX were taken for COM crystallization. 50ml of plant extract(PE)(0.01% of crude) in water or urine was taken as inhibitor solutions. Simultaneous blank experiments with water or urine in place of inhibitor solution were also carried out for evaluating the inhibitor efficiency of inhibitors compared to water or urine(Table III&IV). All the experiments were conducted at room temperature (25°C). At the end the

content of the beaker were digested on a hot water bath for 10 minutes, cooled at room temperature and centrifuged in small volume. The total centrifugates were collected. Calcium content of the centrifugate, left after stone had formed, was determined by complexometric titration using standard EDTA solution(0,01M) ^[14], EBT(1%) indicator and NH₃ – NH₄Cl as buffer(p^H-10).While calculating the Ca content of the centrifugate, a titre value of EDTA versus corresponding total inhibition solution was deduced from the total titre value(equivalent to centrifugate)(Table V to XIII). Inhibition efficiency was calculating by using the following equation.

Inhibition efficiency(i.e.% Inhibition) = $\frac{Ca^{2+}$ in centrifugate Total Ca^{2+} inthe experiment

Thus, % increase of inhibition efficiency relative to $blank = \frac{Increase of \% inhibition over blank}{\% Inhibition by blank}$

When the total Ca^{2+} in the experiment equals the Ca^{2+} contents of 50ml CaCl₂ solution which was determined separately. The experimental findings are shown in Tables(III to VII)

	Aque	eous mediun	n for CP form	nation	Urinary medium for CP formation			
Sl.No.	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)
1	0	10.3	10.3		0	10.9	10.9	
2	0	10.2	10.2	10.2	0	10.8	10.8	10.8
3	0	10.2	10.2		0	10.8	10.8	

Table III: Inhibition experiment for CP formation in aqueous and urinary media

Table IV: Inhibition experiment for COM formation in aqueous and urinary media

	Aque	ous medium	n for COM for	rmation	Urinary medium for COM formation			
Sl.No.	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)
1	0	1.2	1.2		0	2.6	2.6	
2	0	1.2	1.2	1.2	0	2.5	2.5	2.5
3	0	1.2	1.2		0	2.5	2.5	

Table V: Inhibition	experiment	for Pratia	nummularia	Kurz
---------------------	------------	------------	------------	------

	PE(0.1%) in aqueous medium for CP formation				PE(0.1%) in urinary medium for CP formation			
Sl.No.	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)
1	0	9.0	9.0		0	10.5	10.5	
2	0	8.9	8.9	8.9	0	10.4	10.4	10.4
3	0	8.9	8.9		0	10.4	10.4	

SSRG International Journal of Applied Chemistry (SSRG-IJAC) – Volume 6 Issue 3 – Sep - Dec 2019

	PE(0.1% formation	· •	medium for	СОМ	PE(0.1%) in urinary medium for COM formation			
1	0	10.0	10.0		0	5.4	5.4	
2	0	9.9	9.9	9.9	0	5.3	5.3	5.3
3	0	0 9.9 9.9				5.3	5.3	

Table VI: Inhibition experiment for Cyperus rotundus Linn

	PE(0.1%)	in aqueous 1	medium for C	CP formation	PE(0.1%) in urinary medium for CP formation				
Sl.No.	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)	
1	0	10.0	10.0		0	12.6	12.6		
2	0	9.9	9.9 9.9		0	12.5	12.5	12.5	
3	0	9.9	9.9		0	12.5	12.5		
	PE(0.	1%) in aque	ous medium	for COM	PE(0.1%) in urinary medium for COM				
		for	mation		formation				
1	0	2.5	2.5		0	6.3	6.3		
2	0	2.4	2.4	2.4	0	6.2	6.2	6.2	
3	0	2.4	2.4		0	6.2	6.2		

Table VII: Inhibition experiment for Citrus latipes

	PE(0.1%)	in aqueous r	nedium for C	CP formation	PE(0.1%) in urinary medium for CP formation				
Sl.No.	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)	IR(ml)	FR(ml)	Diff.(ml)	Mean(ml)	
1	0	9.1	9.1		0	15.6	15.6		
2	0	9.0	9.0	9.0	0	15.5	15.5	15.5	
3	0	9.0	9.0		0	15.5	15.5		
	PE(0.1%) in aqueous	medium for	COM	PE(0.1%) in urinary medium for COM				
	formation	1			formation				
1	0	2.0	2.9		0	7.1	7.1		
2	0	1.9	1.9	1.9	0	7.0	7.0	7.0	
3	0	1.9	1.9		0	7.0	7.0		

Table VIII: Effect of Blank solution on CP formation

Sl.No.	Solvent	BR	Ca ²⁺ in solution(g)	Ca ²⁺ in precipitate(g)	% Inhibition
1	Water	10.2	0.0008x10.2 =0.00816	0.07351-0.00816 =0.06545	0.00816x100/0.07351 =11.1005
2	Urine	10.8	0.0008×12.8 = 0.00864	$\begin{array}{r} 0.07351 - 0.00864 \\ = 0.06487 \end{array}$	0.00864x100/0.07351 =11.7535

Table IX:	Effect of	PE on C	P formation	in aqueous	medium
-----------	-----------	---------	-------------	------------	--------

S1.	Plant name	Inhibitors	Ca ²⁺ in	Ca ²⁺ in	% of Inhibition	Diff. in % of inhibition	Relative
Ν		0.1%	solution(g)	precipitate(g)		between sample and	% of inhibition
0.						blank	
1	Pratia	8.9	0.0008x8.9	0.07351-	0.00712x100/0.073	9.6858-8.924	0.7622x11.205
	<i>nummularia</i> Kurz		= 0.00712	0.00712	51	=0.7622	8
				=0.0664	= 9.6858		=8.5411
2	Cyperus rotundus	9.9	0.0008x9.9	0.07351-	0.00792x100/0.073	10.7740-8.9240	1.8501x11.205
	Linn		= 0.00792	0.00792	51	=1.8501	8
				= 0.0656	=10.7740		=20.7319

SSRG International Journal of Applied Chemistry (SSRG-IJAC) – Volume 6 Issue 3 – Sep - Dec 2019

3	Citrus latipes	9.0	0.0008x9.0	0.07351-0.0072	0.0072x100/0.0735	9.7946-8.9240	0.8706x11.205
	_		=0.0072	=0.0663	1	=0.8706	8
					=9.7946		=9.7558

Sl. No	Plant name	Inhibitor s 0.1%	Ca ²⁺ in solution(g)	Ca ²⁺ in precipitate(g)	% of Inhibition	Diff. in % of inhibition between sample and	Relative % of inhibition
1	D (:	10.4	0.0008-10.4	0.07251	0.0092-100/0.07	blank	0 1005-100/11 1
1	Pratia nummularia	10.4	0.0008×10.4 =0.0083	0.07351- 0.0083	0.0083x100/0.07 351	11.2910- 11.1005	0.1905x100/11.1 005
	Kurz		-0.0085	=0.0652	= 11.2910	=0.1905	=1.7161
2	Cyperus	12.5	0.0008x12.5	0.07351-	0.0008x100/0.07	13.6036-	2.5031x100/11.1
	rotundus Linn		=0.0100	0.0100	351	11.1005	005
				=0.0635	= 13.6036	=2.5031	= 22.5494
3	Citrus latipes	15.5	0.0008x15.5	0.07351-	0.0008x100/0.07	16.8685-	5.7679x100/11.1
			= 0.0124	0.0124	351	11.1005=	005
				= 0.0611	= 16.8685	5.7679	= 51.9607

Table X : Effect of PE on CP formation in Urinary medium

Table XI: Effect of Blank solution on COM formation

Sl.No.	Solvent	BR	Ca ²⁺ in solution(g)	Ca ²⁺ in precipitate(g)	% Inhibition
1	Water	1.2	0.0008x1.2	0.07351- 0.00096	0.00096x100/0.07351
			=0.00096	=0.0726	=1.3059
2	Urine	2.5	0.0008x2.5	0.07351- 0.00020	0.0020x100/0.07351
			=0.0020	=0.07151	=2.7207

Table XII: Effect of PE on	COM formation in	aqueous medium
55		1

S1.	Plant name	Inhibitor	Ca ²⁺ in	Ca ²⁺ in	% of Inhibition	Diff. in % of	Relative
No.		S	solution(g	precipitate(g)		inhibition	% of inhibition
		0.1%)			between	
						sample and	
						blank	
1	Pratia	Crude	0.0008x2.	0.07351-	0.00224x100/0.073	3.0472-	1.6651x100/1.382
	<i>nummularia</i> Kurz	BR=2.8	8	0.00224	51	1.3821	1
			=0.00224	=0.07127	=3.0472	= 1.6651	=120.4761
2	Cyperus	Crude	0.0008x2.	0.07351-	0.0192x100/0.0735	2.6119-	1.3060x100/1.305
	<i>rotundus</i> Linn	BR = 2.4	4	0.00192	1	1.3059	9
			=0.0192	=0.07159	=2.6119	=1.3060	=100.0077
3	Citrus latipes	Crude	0.0008x1.	0.07351-	0.0152x100/0.0735	2.0677-	0.7618x100/1.305
		BR=1.9	9	0.00152	1	1.3059	9
			=0.00152	=0.07199	=2.0677	=0.7618	=58.3352

Table XIII: Effect of PE on COM formation in urinary medium

Sl.	Plant name	Inhibito	Ca ²⁺ in	Ca ²⁺ in	% of Inhibition	Diff. in % of	Relative % of
No.		rs	solution(g)	precipitate(inhibition	inhibition
		0.1%		g)		between sample	
						and blank	
1	Pratia	Crude	0.0008x5.3	0.07351-	0.00424/100/.07351	5.7679-3.4009	2.3670x100/0.3.40
	<i>nummularia</i> Kurz	BR=5.3	=0.00424	0.00424	=5.7679	=2.3670	09
				=0.0693			=69.5992
2	Cyperus rotundus	Crude	0.0008x6.2	0.07351-	0.00496x100/0.07351	6.7474-2.7207	4.0267x100/2.7207

	Linn	BR=6.2	=0.00496	0.00496	=6.7474	=4.0267	=148.0023
				=0.0686			
3	Citrus latipes	Crude	0.0008x7.0	0.07351-	0.0056x100/0.07351	7.6506-2.7207	4.9293x100/2.7207
		BR=7.0	=0.0056	0.0056	=7.6506	=4.9293	=181.1997
				=0.0679			

III. RESULT AND DISCUSSION

From the above inhibition experiment, it is clear that the activity of inhibition was greater than blank aqueous and blank urine showing the potential effectiveness of the plant extract in CP and COM formation. It is seen that the inhibitory effect in the mineralization of stone forming chemicals in blank urine were more than aqueous medium. This shows that there may be some natural inhibitor in urine.

Out of the three plants, *Cyperus rotundus* Linn has the highest inhibitory effect in the mineralization of CP in aqueous medium while *Citrus latipes*(Heiribob, figure1) has the highest inhibitory effect in the mineralization of CP in urinary medium. Further *Pratia nummularia* Kurz has the highest inhibitory effect in the mineralization of COM in aqueous medium while Cyperus latipes has the highest inhibition effect in the mineralization of COM in urinary medium. In the meantime we took Cystone, a Herbal drug, manufactured by Himalaya company. It is an Ayurvedic properietory medicine for kidney stone cases. The chemoinhibitory of cystone and the three plants in aqueous and urinary media for CP and COM is shown in Table 14.In the comparative study Cystone has more inhibitory capacity for CP than the three plants both in aqueous and urinary media. But all the three plants have more inhibitory effect for COM both in aqueous and urinary media except the plant Citrus Latipes whose inhibitory power for COM in aqueous medium greater by Cystone.

Table XIV: Comparison of	^c Chemoinhibitory	effect of Cystone	and the three plants
······································		· · · · · · · · · · · · · · · · · · ·	Free free free free free free free free

Sl.No.	Name of drug	Type of	Aqueous me	dium	Urinary medium	
	& Plant	stone	% Inhibitor	% Relative Inhibition	%Inhibitor	%Relative inhibition
1	Cystone	СР	31.6485	-ve	47.3400	-ve
		COM	1.6324	25.0000	4.4619	68.8595
2	Pratia nummularia Kurz	СР	9.6858	8.5411	11.2910	1.7161
		COM	3.0472	120.4716	5.7679	69.5992
3	Cyperus rotundus Linn	СР	10.7740	20.7319	13.6036	22.5494
		COM	2.6119	100.0077	6.7474	148.0023
4	Citrus latipes	СР	9.7946	9.7558	16.8685	51.9607
		COM	2.0677	58.3352	7.6506	181.1997

Fig. I: Citrus latipes(Heiribob)

IV. CONCLUSION

Pratia nummularia Kurz(Kihomman), *Cyperus rotundus* Linn(Sembang kaothum) and *Citrus latipes*(Heiribob) have high activity to inhibit the stone formation which may be either CP or COM. However, these plants are effective in controlling COM stone formation than that of CP formation. If such plants are fed to the kidney stone patients, it can reduce the size of kidney stone to

V. ACKNOWLEDGEMENT

The authors show gratitude to the UGC, New Delhi, for the financial support. Authors also show gratitude to the Head, Department of

REFERENCES

- Jalwa S , Gupta AK , Singla R , Gupta V , "General awareness and relative popularity of allopathic, ayurvedic and homeopathic systems", J. Chem. Phar. Res., 1 ,p.p 105-12, 2009.
- [2] M.Hasrh, Text Book of Pathophysiology, Delhi, Jaypee brothers publications, edn 6, p.p 690.
- [3] Sundaranjan P , Mahesh R , Ramesh T, Hajeena B , "Effect of Aerva lanata on Calcium oxalate urolithiasis", Indian J. A. Bio., 24,p.p981-986, 2006.
- [4] Hamid M , Mohammad M N , Glanea L ," Evaluation of Raphanus sativus effect on urinary P^{H"}, J. Res. Med. Sci., 12(2),p.p58, 2007.
- [5] Choo-Kang E, "Chemical composition of Urinary Tract Stone at the University Hospital of West Indies", West Ind. Med.J., 5,p.p57,2008.
- [6] Srivastava A, Swain KK, Ajith N, Wagh D N, Acharya R, Reddy, A V R," Chemical Trace Element study of Kidney Stones from subjects belonging to Stone belt region of India", J. Rad. Nucl. Chem., 294, p. 425-428, 2012.
- [7] M.D. Menon, B.G. Parulkar, G.W. Drach, Campell's Urology, edn 7, New York, W.B Sauders Company(1988).
- [8] Sathish R, Nataranjan K, Nikhad K M, "Effect of hydrophila Spinosa tanders on ethylene glycol induced

some extent. However we are still continuing our investigation with other medicinal plants and will find out which plants has the highest dissolving power of kidney stone and which chemical compounds present in these plants are actually involved in the process. And also further investigation are required to determine exact doses and its side effects to the human trial.

chemistry for continuous support for the research work.

urolithiasis in rats", Asian J. Pharm. and Clin. Res., 3(4), p.p61-63,2010.

- [9] Michell A R ," Urolithiasis-Historical comparative and Pathological aspects: a review", J.Roy. Soc. of Med.,82,p.p 669,1989.
- [10] Lokendrajit, Swapana N, Dhananjoy Singh Ch and Singh CB, "Herbal folk medicines used for urinary and calculi/stone cases complaint in Manipur", NeBIO, 2(3), p.p1, 2011.
- [11] Jack I.R and Nwachoko N, "Constituents of the ethanolic extract of Bryophylum pinnatum leaves" SSRG-IJAC, 3(1),p.p.1-4, 2016.
- [12] B.U.Ugi and Obeten M.F., "Inhibitory impact of crude phytochemical compounds of symphytum officinali(Comfrey) leaves on the corrosion of copper by hydrogen tetraoxosulphate(IV)(H₂SO₄) acid solution", SSRG-IJAC, 5(2), p.p 22-32, 2018.
- [13] Rao TVRK and Choudhury VK, "Chemoinhibition of Mineralization of Urinary Stone forming minerals by some Inorganic and Organic salts of Aluminium in Aqueous and Urinary Media", Asian J. of Chem.,20(7),p.p5046-5052, 2008.
- [14] Vogel AI, Text Book of Quantitative Inorganic Analysis, edn 4, London, ELBS, and Longman.