Synthesis and Characterization of an Al³⁺-Selective Fluorescent Probe

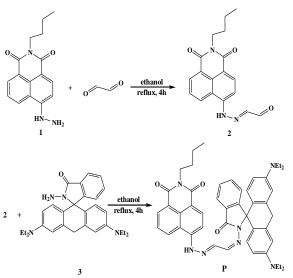
Wenting Zhang¹, Mei Yang¹, Shaobai Wen^{2,*}, Lijuan Li¹, Yuxiang Ji^{2,3*}

¹School of Public Health, Hainan Medical University, Haikou, 571199, China.

²Laboratory of Environmental Monitoring, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China.

³Laboratory of Tropical Biomedicine and Biotechnology, Hainan Medical University, Haikou, 571199, China.

Abstract


A new fluorescent probe **P** based on rhodamin B was synthesized and characterized as an Al^{3+} -selective fluorescent probe in ethonal. The linear range of probe **P** to Al^{3+} was 2.0×10^{-6} - 1.6×10^{-5} M with a detection limit of 6.7×10^{-7} M.

Keywords: *Fluorescent probe; Rhodamin B; Al*³⁺.

I. INTRODUCTION

Among the detection methods of metal ions, fluorescent peobes are easily obtainable, and the results are visual inspection^[1-4]. Many different heavy metal ions selective fluorescent probes have been synthesized and reported^[3-6]. It has been found that Al^{3+} can be enriched in the human body, and if the content of Al^{3+} in organisms is too high, it will cause a toxic effect of metabolic disorder and damage the human brain cells. The World Health Organization stipulates that aluminum's daily intake should not exceed 0.6 mg/kg^[6]. Therefore, the detection of Al^{3+} is of great significance.

In this work, a rhodamine B derivative **P** was synthesized and characterized as an Al^{3+} -selective fluorescent probe (Scheme 1). The study showed the proposed probe **P** has good selectivity and sensitivity to Al^{3+} compared to other tested metal ions.

Scheme 1 Synthesis route of probe P

II. MATERIALS METHODS

A. Reagents and instruments

All reagents and solvents are commercially available and used directly.

Fluorescence emission spectra were measured on a Hitachi F-4600 spectrofluorometer. UV-Vis spectra were obtained on a Hitachi U-2910 spectrophotometer. Mass (MS) spectra were recorded on a Thermo TSQ Quantum Access Agillent 1100. pH values were conducted on a pH-meter PBS-3C.

B. Synthesis of P

Compounds 1 and 3 were synthesized as a reported method, respectively.^[3,5]

Synthesis of compound **2**. Compound **1** (0.2 mmol) and glyoxal (0.3 mmol) were mixed and stirred in ethanol (30 mL) under reflux for 4 h. After the reaction was finished, the yellow precipitate so obtained was filtered and used directly. Yields: 80.3 %. MS: 322.1 $[M-H^+]^-$.

Synthesis of probe **P**. 1.0 mmol compound **2** and 1.0 mmol **3** were mixed in ethanol (40 mL) and stirred under reflux for 4 h; the mixture was cooled to room temperature. The red precipitate so obtained was filtered and dried in vacuum and used directly. Yields: 85.6 %. MS m/z: 762.80 $[M+H^+]^*$.

C. General spectroscopic methods

1.0 mM stock solutions were obtained by dissolving metal ions and \mathbf{P} in deionized water and DMSO. Before spectroscopic measurements, the solution was freshly prepared by diluting the high concentration stock solution to the corresponding solution. For all measurements, excitation and emission slit widths were all 2.5 nm; excitation wavelength was 430 nm.

III. RESULTS AND DISCUSSION

A. Selectivity of P

Firstly, the selectivity of the proposed probe **P** (10 μ M) was measured, and the testing ions were Na⁺, K⁺, Ag⁺, Ca²⁺, Mg²⁺, Ba²⁺, Co²⁺, Zn²⁺, Cu²⁺, Cd²⁺, Pb²⁺, Hg²⁺, Cr³⁺, Ni²⁺, and Al³⁺ (10 μ M), respectively (**Figure 1**). The results showed that only the addition of Al³⁺ caused an obvious fluorescent enhancement of the tested solution. The competition experiment was also carried out. The addition of various metal ions (10 μ M) to the system of **P** (10 μ M) with Al³⁺ (10 μ M) did not cause the change of

fluorescent intensity (**Figure 2**). These all proved that **P** has good selectivity to Al^{3+} .

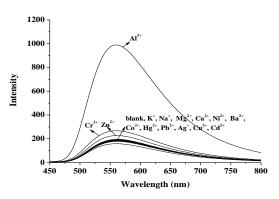


Fig 1: Selectivity of P (10 μ M) to different metal ions (10 μ M) in ethanol.

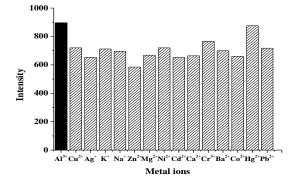


Fig 2: Fluorescence response of P (10 μ M) to Al³⁺ (10 μ M) and the mixture of different metal ions (10 μ M) with Al³⁺ (10 μ M) in ethanol.

B. Sensitivity behavior of P for Al^{3+}

The sensitivity of **P** was examined by titrating different concentrations of Al^{3+} using fluorescence spectra in **Figure 3**. With the increase in the concentration of Al^{3+} , the fluorescent intensity was enhanced at 560 nm gradually. It showed a linear response in the range of 2.0×10^{-6} - 1.6×10^{-5} M Al^{3+} with a detection limit of 8.5×10^{-7} M.

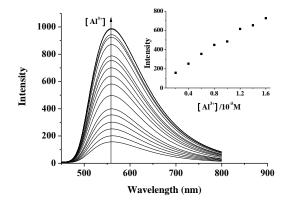
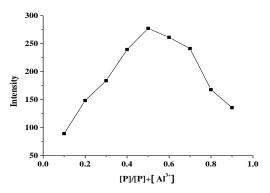




Fig 3: Fluorescence response of \mathbf{P} (10 μ M) to various concentrations of Al³⁺ in ethanol solution. Inset: The fluorescence at 560 nm of \mathbf{P} (10 μ M) as a function of Al³⁺ concentrations (0-16 μ M).

C. The proposed reaction mechanism

The binding mode was studied by Job plot analysis and showed a 1:1 stoichiometry for the \mathbf{P} -Al³⁺ complexation (**Figure 4**). According to the results above mentioned, the coordination mode of \mathbf{P} -Al³⁺ was proposed, as shown in **Scheme 2**.

Fig 4: Job's plot of **P** with Al³⁺. The total concentration of **P** and Al³⁺ was kept at a fixed 10 μM.

Scheme 2 Proposed binding mode of **P** with Al³⁺.

IV. CONCLUSIONS

In summary, an Al^{3+} -selective fluorescent probe **P** based on rhodamin B was synthesized and characterized. The conception may expand a promising approach to develop selective detection method for Al^{3+} and lead to the development of probes for other metal ions.

ACKNOWLEDGMENT

This work was financially supported by the National Natural Science Foundation of China (No. 81660356).

REFERENCES

- Fa Dai, Liyun Gao, Shaobai Wen. "Characterization of Mg²⁺-Selective Fluorescent Probe Based on Benzoylhydrazine". International Journal of Latest Research in Science and Technology, 2016,6, (5):69-70.
- [2] Fa Dai, Fan Liu, Qing Luo, Chunwei Yu, Qionglian Huang. "Synthesis and Characterization of a New Al³⁺-Selective Probe Based on Benzoyl Hydrazine Derivative". International Journal of Science and Technology, 2014, 3(3): 1-4.
- [3] Chunwei Yu, Ting Wang, Ke Xu, Jing Zhao, Maohua Li, Shixing Weng, Jun Zhang. "Characterization of a highly Cu²⁺-selective fluorescent probe derived from rhodamine B". Dyes and Pigments, 2013, 96 (2013): 38-44.
- [4] Jinbin Lin, Yuxiang Ji, Wei Ye, Rui Chen, Lifang Zeng, Tianshun Li, and Ziqian Tang. "Synthesis and characterization of a naphthalimide derivative-based Cu²⁺-selective fluorescent probe." International Journal of Development Research, 2017, 7(10): 16435-16437.

- [5] Dr. K.Senthilkumar, N. SriGokilavani, Dr. P. Akilamudhan, "Kinetic studies on the removal of Cr (VI) using natural adsorbent" SSRG International Journal of of Chemical Engineering Research 4.1 (2017): 28-53.
- [6] Chunwei Yu, Jun Zhang, Lingxin Chen. Silver(I) ion-only sensing in an aqueous media is based on an "off-on" fluorescent probe.

Analytical Methods, 2012, 4(2): 342-344.

[7] Chunwei Yu, Shuhua Cui, Yuxiang Ji, Shaobai Wen, Li Jian, Jun Zhang. "A pH tuning single fluorescent probe based on naphthalene for dual-analytes (Mg²⁺ and Al³⁺) and its application in cell imaging". Rsc Advances, 2020, 10, 21399-21405.